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ABSTRACT 
 

Among the phenotypic, biochemical, and molecular methods employed in assessment of genetic 
diversity, the phenotypic method has proven efficient for the assessment, description and 
classification of germplasm collections to enhance their use in maize breeding. The objectives of the 
present study were: (i) to assess the extent of genetic diversity in a collection of Egyptian 
commercial maize hybrids and populations, through field evaluation under water and N stressed and 
non-stressed conditions, using morphological data based on Principle Component Analysis (PCA), 
(ii) to measure the genetic distance among these genotypes using UPGMA cluster analysis and (iii) 
to assess the relationship between grain yield and yield-related traits of maize genotypes using GT-
biplot analysis. A two-year field experiment was conducted in a split-split plot design with 3 
replications, where 2 irrigation regimes, three N rates and 19 maize genotypes occupied the main 
plots, sub plots and sub-sub plots, respectively. The germplasm was assessed for 21 agronomic 
traits. Highly significant differences (P ≤ 0.01) were observed among the maize hybrids and 
populations for all measured traits.  Results of the GT biplot in the present study indicated that high 
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values of 100-Kernel weight, ears/plant, kernels/plant, kernels/row, plant height, nitrogen use 
efficiency, nitrogen utilization efficiency, and grain nitrogen content and short ASI could be 
considered reliable secondary traits for improving grain yield under stressed and non-stressed 
conditions. The highest genetic distance was found between G9 (SC-2055) and each of G15 
(American Early Dent), G18 (Midland) or G19 (Ried Type). The Agglomerative Hierarchical 
Clustering based on phenotypic data assigned the maize genotypes into five groups. The different 
groups obtained can be useful for deriving the inbred lines with diverse features and diversifying the 
heterotic pools. 
 

 

Keywords: Phenotypic data; PCA; GT-biplot; maize collections; clustering. 
 

1. INTRODUCTION 
 

Maize (Zea mays L.)  is one of the most 
important cereal crops having wider adaptability 
under varied agro-climatic conditions. It ranks the 
second amongst cereal crops grown in Egypt 
with regard to the harvested area and production 
after wheat (Triticum aestivum L.). According to 
FAOSTAT [1], Egypt in 2017 grew 920,601 
hectares and produced 7.1 million tons of grains, 
with an average yield of 7.72-ton ha

-1
. It is 

consumed as food by humans and as a feed for 
the livestock and poultry. It is also used as basic 
raw material in numerous industrial products 
including starch, oil, protein, alcoholic beverages, 
food sweeteners, pharmaceutical, cosmetic, film, 
textile, gum, package, paper industries and so on 
[2]. Maize has high nutritive value as it contains 
72 per cent starch, 10 per cent protein, 4.80 per 
cent oil, 8.50 percent fiber, 30 per cent sugar and 
1.70 per cent ash [3].  
 
The local production of maize in Egypt is not 
sufficient to satisfy the local consumption, which 
is about 16 million tons. So Egypt imports every 
year more than nine million tons of maize grains. 
To reach self-sufficiency of maize production in 
Egypt, efforts are devoted to increase the 
production via increasing the cultivated area by 
growing maize in the sandy soils of low water-
holding capacity and deficiency in nutrients, 
especially nitrogen. Egypt needs to improve the 
productivity of maize under such conditions, i.e. 
develop drought and/or low-N tolerant maize 
cultivars. To start a successful breeding program 
for improving low N and/or drought tolerance, 
available maize germplasm should be screened 
for productivity and agronomic and physiological 
performance under such stressed and non-
stressed conditions in order to identify the best 
genotypes that could be used directly or 
indirectly as suitable sources for developing 
tolerant hybrids to these stresses. The success 
of the improvement of new maize cultivars 
tolerant to these stresses depends on the 
availability of genetic variability [3]. In order to 

achieve this, available maize germplasm should 
be screened for genetic diversity. The higher the 
genetic diversity possessed, the greater the 
chances of success for developing new superior 
cultivars. Measuring the available genetic 
diversity is of utmost importance for effective 
evaluation and utilization of germplasm [4]. To 
get improved cultivars, breeders must use 
diverse material in their breeding programs for 
development of crosses and selection of 
heterotic inbred lines and pools [5]. 
 

Genetic diversity studies in maize are well 
documented by various authors, therefore 
providing a rationale on the importance of such 
studies [6-8]. Dao et al. [6] stated that genetic 
diversity in different populations provides and 
strengthens the adaptability to changing 
environments and market requirements. 
Additionally, Legesse et al. [7] cited that the 
importance of genetic diversity in the formation of 
heterotic groups for use as source materials in a 
breeding program. Genetic progress in yield and 
other traits of economic importance in any 
breeding program is highly dependent and 
influenced by the genetic variability within the 
breeding population [8]. Therefore, selection of 
the improved breeding material depends on the 
level of available genetic variability [8]. 
 

Both morphological and molecular methods are 
employed in estimating genetic diversity in 
germplasm collections. Although morphological 
evaluation is limited by effect of environment on 
trait expression, exhibits low heritability, is time 
consuming, labor intensive, requires large 
population size, and does not cover the genome 
[9], it offers an unparalleled means of 
identification of phenotypic variation. 
Morphological characterization is the first step for 
the assessment, description and classification of 
germplasm collections to enhance their use in 
maize breeding [10,11]. Phenotypic descriptors 
are easy to record, inexpensive and are reliable 
for estimating heritability [12,13]. For these 
reasons, they are highly preferred in developing 
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countries, where labor is readily available at 
reduced cost. Phenotypic assessment has 
proven efficient for diversity analysis in cereal 
crops, including maize [14-17].  
 
Multivariate analysis is the most popular 
approach for genetic variability estimation to 
study the patterns of variation and their genetic 
relationships among germplasm collections [18, 
19]. The PCA and cluster analysis are preferred 
tools for morphological characterization of 
genotypes and their grouping on similarity basis 
based on this approach [20]. Multivariate 
analyses have been utilized in many countries for 
maize [21,22]. 
 
Although researchers investigated several traits 
in different environments, they usually 
experienced problems in assessments of these 
traits. The problem gets complicated in selection 
studies especially when there is a negative 
interaction between the primary trait of the 
experiments and the other traits [23]. Genotype 
main effect plus genotype × environment 
interaction (GGE) biplot method is considered as 
the best method for reliable assessments in 
multi-environment experiments [24]. The method 
was developed by Yan [24] and it uses different 
types of biplot graphs created through adding 
Genotype × Environment interaction effect onto 
genotype main effects for the target trait. GGE 
biplot method allows the user to assess entire 
two-way data [25]. Assessments are usually 
performed over PC1 and PC2 axes calculated 
from the data of rows and columns from a two 
dimensional array produced by the combination 
of genotypes and environments in multiple 
environment datasets [26]. Different uses of the 
method were explained in detail by Yan [24]. 
GGE biplot method is commonly used for visual 
assessment of Genotype × Environment 
interaction for grain yield of different plants in 
multi-environment experiments [27,28]. The 
method is also used for visual assessments of 
correlations among investigated traits through 
Genotype × Trait biplot graph [26].  

 
The objectives of the present study were: (i) to 
assess the extent of genetic diversity in Egyptian 
commercial maize hybrids and populations, 
through field evaluation under water and/or N 
stressed and non-stressed conditions, using 
morphological data based on PCA, (ii) to 
measure the genetic distance among these 
genotypes using UPGMA cluster analysis and 
(iii) to assess the relationship between grain yield 
and yield-related traits of maize genotypes 

across all environments using genotype × trait 
(GT) biplot analysis. This information will be 
useful for identifying genotypes for broadening 
the genetic base in the gene pools of maize 
improvement programs. 
 
2. MATERIALS AND METHODS 
 

2.1 Plant Materials 
 
Seeds of 19 maize (Zea mays L.) genotypes (9 
single crosses, 5 three-way crosses, and 5 open-
pollinated populations) collected from Agricultural 
Research Center (ARC) (13 genotypes), Hi-Tec 
Company (3 genotypes), Pioneer-Corteva 
Agriscience (2 genotypes), Fine Seeds Company 
(one genotype), were used in this study       
(Table 1). 
 

2.2 Experimental Procedure 
 
This study was carried out in the two successive 
growing seasons 2016 and 2017 at the 
Agricultural Experiment and Research Station of 
the Faculty of Agriculture, Cairo University, Giza, 
Egypt (30° 02'N latitude and 31° 13'E longitude 
with an altitude of 22.50 meters above sea level). 
Sowing date was April 24

th
 in the 1

st
 season 

(2016) and April 30ht in the 2nd season (2017). 
Sowing was done in rows; each row was 4 m 
long and 0.7 m width. Seeds were over sown in 
hills 25 cm apart, thereafter (after 21 days from 
planting and before the 1

st
 irrigation) were 

thinned to one plant/hill to achieve a plant density 
of about 24,000 plants/fed. Each experimental 
plot included two rows (plot size = 5.6 m2).  

 
Evaluation in each season was carried out under 
6 environments (from E1 to E6), i.e., three 
nitrogen levels, i.e., high-N (HN), medium-N (MN) 
and low-N (LN) by adding 285.6, 166.6 and 47.6 
kg N/ha, respectively in two equal doses in the 
form of Urea 46% before 1st and 2nd irrigations 
and two irrigation regimes, i.e., well-watered 
(WW) and water stressed (WS) conditions as 
follows:  E1: High nitrogen-well watered (HN-
WW), E2: High nitrogen-water stress (HN-WS), 
E3: Medium nitrogen- well watered (MN-WW), 
E4: Medium nitrogen-water stress (MN-WS), E5: 
Low nitrogen-well watered (LN-WW) and E6: 
Low nitrogen-water stress (LN-WS). 
 
2.3 Experimental Design 
 

A split-split-plot design in randomized complete 
blocks arrangement with three replications was 
used. Main plots were allotted to two irrigation
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Table 1. Designation, origin and grain color of maize genotypes under investigation 
 

Genotype No. Designation Origin Genetics Nature Grain Color 
1 SC-10 ARC-Egypt Single cross White 
2 30K8 Pioneer-Corteva Single cross White 
3 SC-101 Fine seeds, Egypt Single cross White 
4 SC-131 ARC-Egypt Single cross White 
5 SC-2031 Hi-tec, Egypt Single cross White 
6 SC-30 N11 Pioneer-Corteva  Single cross Yellow 
7 SC-168 ARC-Egypt Single cross Yellow 
8 SC-176 ARC-Egypt Single cross Yellow 
9 SC-2055 Hi-tec, Egypt Single cross Yellow 
10 TWC-310 ARC-Egypt 3-ways cross White 
11 TWC-321 ARC-Egypt 3-ways cross White 
12 TWC-1100 Hi-tec, Egypt 3-ways cross White 
13 TWC-352 ARC-Egypt 3-ways cross Yellow 
14 TWC- 360 ARC-Egypt 3-ways cross Yellow 
15 American Early Dent ARC-Egypt Population White 
16 Giza-2 ARC-Egypt Population White 
17 Nubaria-355 ARC-Egypt Population White 
18 Original Midland Kensas - USA Population Yellow 
19 Reid Type Composite USA Population Yellow 

 

regimes, i.e. well-watered (WW) and water 
stressed treatments at flowering (WS). Each 
main plot was surrounded with an alley (4 m 
width), to avoid water leaching between plots. 
Sub-plots were assigned to three nitrogen 
fertilizer rates, i.e. 47.6, 166.6 and 285.6 kg 
N/ha, respectively. Sub-sub-plots were devoted 
to nineteen maize genotypes. 
 

2.4 Water Regimes 
 

The following two different water regimes were 
used: 1. Well-watered (WW): Irrigation was 
applied by flooding, the second irrigation was 
given after three weeks and subsequent 
irrigations were applied every 12 days. 2. Water 
stress at flowering (WS): The irrigation regime 
was just like well watering, but the 4th and 5th 
irrigations were withheld, resulting in 24 days’ 
water stress just before and during the flowering 
stage. 
 

2.5 Fertilization Regimes 
 

Nitrogen fertilization for each rate was added in 
two equal doses of Urea 46 % before the first 
and second irrigation. Triple Superphosphate 
Fertilizer (46% P2O5) at the rate of 30 kg 
P2O5/fed (70 kg P2O5/ha), was added as soil 
application before sowing during the preparation 
of the soil for planting.  
 
Weed control was performed chemically with 
Stomp herbicide just after sowing and before the 
planting irrigation and manually by hoeing twice, 
the first before the first irrigation (after 21 days 
from sowing) and the second before the second 

irrigation (after 33 days from sowing). Pest 
control was performed when required by 
spraying plants with Lannate (Methomyl) 90% 
(manufactured by DuPont, USA) against corn 
borers. All other agricultural practices were 
followed according to the recommendations of 
ARC, Egypt.  
 

2.6 Soil Analysis 
 
Physical and chemical soil analyses of the field 
experiments (Table 2) were performed at 
laboratories of Soil and Water Research Institute 
of ARC, Egypt. 
 
Available soil nitrogen in 30 cm depth was 
analyzed immediately prior to sowing at the 
laboratories of Water and Environment Unit, ARC, 
Egypt and found to be 148.0 and 72.6 kg N/ha in 
2016 and 2017 seasons, respectively. Available 
soil nitrogen after adding nitrogen fertilizer was 
therefore 433.6, 314.6 and 195.6 kg N/ha, in the 
1st season and 358.2, 239.2 and 120.2 kg N/ha, 
in the 2

nd
 season for the 3 N treatments, i.e. HN, 

MN, and LN, respectively. The available nitrogen 
to each plant (including soil and added N) was 
calculated for each environment and found to be 
7.59, 5.51 and 3.42 g N/plant in the first season 
and 6.27, 4.19 and 2.10 g N/plant in the second 
season, with an average across the two seasons 
of 6.93, 4.85 and 2.76 g N/plant for the three N 
treatments, respectively.  
 

2.7 Meteorological Data 
 
The required weather data for the experimental 
site through the two growing seasons were 
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obtained from Central Lab for Agricultural 
Climate, Agricultural Research Center at Giza, 
Governorate, Egypt (Table 3). 
 

2.8 Morphological Data Recorded 
 
1-Days to 50% tasselling (DTA), 2-Days to 50% 
silking (DTS), 3-Anthesis-silking interval (ASI), 4-
Plant height (PH), 5-Ear height (EH), 6-
Chlorophyll concentration index (CCI) by 
Chlorophyll Concentration Meter, Model CCM-200, USA 
(available on line at: 
http://www.apogeeinstruments.co.uk/apogee-
instruments-chlorophyll-content-meter-technical-
information/), 7-Number of ears plant-1 (EPP), 8-
Number of rows ear-1 (RPE), 9-Number of 
kernels row-1 (KPR), 10-Number of kernels plant-1 
(KPP), 11-100-kernel weight (HKW) (g),  12-Grain yield 
plant-1 (GYPP) (g): (adjusted at 15.5% grain moisture), 
13-Economic nitrogen use efficiency (NUEe) (g/g) as 
follows: NUEe = GDM/Ns, where GDM= grain dry 
matter,  Ns = available soil-N/plant, 14-Grain nitrogen 
content (GN) (in g), 15-Grain nitrogen utilization 
efficiency (NUTEg) (g/g) as follows: NUTEg = 

(GDM/GN), 16-Grain protein content (GPC) in %, 
17-Grain starch content (GSC) in %, 18-Grain oil 
content (GOC) in %, 19-Grain ash content (GAC) 
in %, 20-Grain fiber content (GFC) in % and 21-
Grain moisture content (GMC) in %. The grain 
quality traits (GPC, GSC, GOC, GAC, GFC and 
GMC) were measured in both seasons, on 
samples taken from the grain bulk of each maize 
genotype by using INSTALAB 600 Near Infrared 
(NIR) Product Analyzer manufactured by 
DICKEY-john Corporation, Auburn, Illinois, USA.  
 

2.9 Biometrical Analysis 
 
Analysis of variance of the split-split-plot design 
each year was computed on the basis of 
individual plot observation using the MIXED 
procedure of MSTAT ®.  A combined analysis of 
variance of the split-split-plot design across the 
two years was also performed if the homogeneity 
test was non-significant. LSD values were 
calculated to test the significance of      
differences between means according to Steel et 
al. [29].  

 
Table 2. Soil analysis at 0-30 cm depth in the experimental fields at Giza   in 2016 and 2017 

growing seasons 
 

Soil characteristics 2016 season 2017 season 

 Physical analysis 
Silt % 36.4 42.55 
Clay % 305.3 36.15 
Fine sand % 22.8 13.35 
Coarse sand % 5.5 7.95 
Soil Type Clay loam Clay loam 

                                              Chemical analysis 

pH (paste extract) 7.92 7.95 
EC (dSm

-1
) 1.66 2.8 

SP 62.5 61.5 
CaCO3 % 7.7 4.8 
Soil bulk density g cm

-3
 1.2 1.15 

                                               Soluble anions (mEqu/l) 

HCO3 0.71 8 
Cl 13.37 12.75 
SO4 0.92 7.25 

 
      Soluble cations (mEqu/l) 

 

Ca
++

 4.7 12.04 
Mg++ 2.2 7.66 
Na

+
 8.0 8.09 

K
+
 0.1 0.197 

                                              Available nutrients (mg/kg) 

N  371 182 
P  6.35 8.86 
K  398 409 
Zn  4.34 6.55 
Mn  9.08 10.12 
Fe  10.14 15.2 

Source: Central Lab for Soil Analysis, Agricultural Research Center, Cairo, Egypt 
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Table 3. Meteorological data during the two growing seasons of the experiment 
 

Month Temperature RH% Wind speed 2 m 
(m/ sec) 

Sunshine duration (hr) 

Max. (°C) Min. (°C) Aver. (°C) 
 2016 

May 34.6 19.1 28.9 38.7 3.4 13.4 
June 38.6 22.5 33.5 31.7 2.0 13.9 
July 36.6 24.3 32.6 46.3 2.1 13.8 
August 37.2 23.8 32.5 44.3 3.5 13.0 

 2017 

May 34.6 19.4 29.3 34.0 2.0 13.4 
June 36.7 16.0 23.3 23.3 2.0 13.9 
July 38.2 24.5 33.5 42.3 1.6 13.8 
August 37.1 24.6 32.5 46.3 2.0 13.1 
Source: Central Lab for Agricultural Climate, Agricultural Research Center, Giza Governorate, Egypt, Aver. = Average, Max. = 

Maximum, Min. = Minimum, RH % =Relative humidity 

 

2.10 Morphological Evaluations 
 
The best use of the information contained in the 
data for morphological characterization is an 
important issue in plant breeding. To display the 
genetic variability among maize genotypes, a 
Genotype × Trait biplot (GT biplot) of 
standardized data was applied. To generate a 
GT biplot [30], the genotype by trait two-way 
table of data was first trait-standardized. The 
standardization is necessary to remove the units, 
because different traits use different units. The 
trait-standardized table (data standardized) was 
then decomposed into principal components 
(PC). The first two PC (PC1 and PC2) were used 
to generate a GT biplot. PC1 and PC2 were 
scaled so that values are symmetrically 
distributed between the genotype scores and trait 
scores. A genotype by trait biplot is constructed 
by plotting the PC1 scores against the PC2 
scores for each genotype and each trait. The 
biplot technique provides a powerful tool for data 
analysis of genotype × trait data in individual 
environments and can be used to visualize the 
genetic correlations among traits and evaluation 
of the genotype on the basis of multiple traits 
[31]. The GT biplot software XLSTAT [32] was 
used for all calculations. 
 

2.11 Cluster Analysis of Morphological 
Data 

 

Data for all the traits averaged across stressed 
and non stressed environments were used to 
develop dendrograms of phenotypic variation for 
the 19 genotypes. Principal component analysis 
was computed using XLSTAT software [32]. 
Agglomerative hierarchical clustering (AHC) 
analysis was performed using XLSTAT [32]. 
Based on normalized Euclidean distance 
matrices with the complete linkage method 

and dendrograms were constructed by 
XLSTAT [32]. GGE biplot could be used for all 
types of two-way data set such as genotypes 
with multiple traits. Yan and Rajcan [33] used the 
genotype by trait (GT) biplot, which is an 
application of the GGE biplot to study the 
genotype by trait data. Because the traits were 
measured in different units, the biplot procedure 
was generated using the standardized values of 
the trait means.  
 

3. RESULTS  
 

3.1 Phenotypic Identification and Varia-
tion 

 
Mean squares (Table 4)  due to genotypes from 
analysis of variance of split-split plot design 
across two years were significant (P ≤ 0.01), 
indicating significant differences among maize 
genotypes (hybrids and populations) for all 
studied traits. Coefficient of variation (CV) was 
generally very low (<10%) for all studied traits, 
except  for ASI, and three of grain quality traits 
(GMC, GOC and GFC), which were 32.8, 20.67, 
16.69 and 21.92%, respectively, indicating good 
accurcy of the experiment. 
  
The variability among maize genotypes 
expressed by phenotypic coeffiecient of variatiov 
(PCV) was the highest for anthesis-silking 
interval (ASI) followed by NUE (85.6%), GYPP 
(77.7%), GOC (60.0%), GFC (57.5%), CCI 
(49.4%) and KPP (36.9%) traits, while the lowest 
PCV was exhibited by GSC (7.0%), GMC (8.6%), 
DTS (11.3%), and DTA (12.1%).  
 
Range of grain yield/plant was between 95.6 
to 216.5 g with an average of 146.5 g (Table 4). 
The single cross hybrid SC-101 (G3) had the 
highest grain yield, the highest 100-kernel 
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weight (41.78 g), grain starch (69.68%) and 
moisture content (11.08%) and the highest NUTE 
(44.64g/g). Days to 50% anthesis ranged 
between 58.6 and 68.7 with an average of 62.8.  
Days to 50% silking ranged between 62.8 and 
73.2 with an average of 66.8. Anthesis silking 
interval ranged from 2.8 to 6.7 day with an 
average of  4 day. Genotype G6 (SC-30N11) had 
the latest anthesis (68.7 day) and silking (73.2 
day), the tallest plant (276.6 cm), the highest ear 
position (141.69 cm), the highest chlorophyll 
concentration (22.08%), the highest number of 
ears/plant (1.167), the highest grain nitrogen 
(2.611g), but the lowest number of kernel/row, 
lowest NUE (72.44g/g), and the lowest grain 
moisture content (10.3%). 

 
The genotype G2 (SC-30K8) had the highest 
grain oil content (4.00%), the highest NUE (96.76 
g/g) and the highest kernels/row (44.12) but has 
the lowest grain protein content (6.60 %). The 
genotype G13 (TWC-352) had the highest 
number of rows/ear (15.66) and the shortest 
plant (218.4 cm). The highest protein content in 
the grain (9.49%) was shown by the genotype 
G7 (SC-168). The genotype G9 (SC-2055) had 

the highest number of kernels/plant (675.4) and 
the highest grain ash content (11.82%).  
 

3.2 Principal Component Analysis 
 
To display the genetic variability among maize 
genotypes, a principal component analysis of 
standardized data was applied to display maize 
trait relationships, and its application in genotype 
characterization and comparison (Table 5). 
Because different traits use different units, the 
data standardization is necessary to remove the 
units. Principal components, PC1 and PC2 were 
scaled so that values are symmetrically 
distributed between the genotype scores and trait 
scores. A genotype by trait biplot is constructed 
by plotting the PC1 scores against the PC2 
scores for each genotype (19) and each trait 
(21). The genotype by trait biplot effectively 
reveals the interrelationships among maize traits 
(Fig. 1). It also provides a tool for visual 
comparison among genotypes based on multiple 
traits. The results of the genotype by trait biplot, 
explained 57.91% of the total variation, and are a 
good approximation of the total variation of the 
standardization data. 

 
Table 4. Summary statistics for 21 phenotypic attributes of 19 maize genotypes evaluated in 

the field across six environments (2 irrigation regimes x 3 N levels) and two seasons 
 

Trait Minimum Maximum Mean LSD05 
(Genotype) 

CV% R
2
 MS 

(Genotype) 

PCV
% 

DTA 58.6(18,19) 68.7(6) 62.8 0.83 2.9 0.89 ** 12.1 

DTS 62.8(3,16) 73.2(6) 66.8 0.91 3.0 0.909 ** 11.3 

ASI 2.8(5) 6.7 (15) 4.0 0.6 32.8 0.782 ** 85.6 

PH (cm) 218.4(13) 276.6(6) 242.1 7.56 6.7 0.788 ** 20.2 

EH (cm) 96.5(18) 141.69(6) 114.6 5.09 9.6 0.729 ** 25.1 

CCI (%) 13.05(8) 22.08(6) 15.8 0.68 9.3 0.962 ** 49.4 

EPP 0.843(15) 1.167(6) 0.982 0.02 5.3 0.927 ** 27.7 

RPE 11.5(5) 15.66 (13) 13.8 0.28 4.4 0.896 ** 23.8 

KPR 31.90(6) 44.12(2) 39.66 0.2 3.9 0.951 ** 25.7 

KPP 479.7(15) 675.4 (9) 534.5 7.9 3.2 0.988 ** 36.9 

HKW (g) 25.36(19) 41.78(3) 32.23 1.18 7.9 0.83 ** 32.1 

GYPP (g) 95.6(19) 216.5(3) 146.5 3.42 5.4 0.992 ** 77.7 

GN (g) 1.179(19) 2.611(6) 1.751 0.08 10.4 0.973 ** 34.1 

NUEe (g/g) 72.44(6) 96.76(2) 83.88 3.92 6.2 0.995 ** 85.6 

NUTEg (g/g) 19.71(19) 44.64(3) 30.2 1.04 9.9 0.824 ** 30.8 

GMC (%) 10.3 (6) 11.08(3) 10.64 0.21 20.7 0.815 ** 8.6 

GPC (%) 6.60(2,4) 9.49(7) 7.59 0.59 4.2 0.918 ** 34.2 

GOC (%) 2.07(3) 4.00(2) 3.04 0.29 16.7 0.739 ** 60.0 

GSC (%) 64.56(9) 69.68(3) 66.86 0.78 2.5 0.773 ** 7.0 

GFC (%) 1.12(3) 2.12(19) 1.72 0.17 21.9 0.795 ** 57.5 

GAC (%) 8.85(14) 11.82(9) 10.36 0.34 7.2 0.839 ** 27.1 
Values are followed by genotype (G) No. in parenthesis. MS= Mean squares from ANOVA. CV= coefficient of variation,  

** indicate significance at 0.01 probability level 
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Table 5. Principal component analysis (PCA) for morphological data, combined across all 
environments 

 
Trait PC1 PC2 PC3 PC4 PC5 PC6 PC7 
Days to anthesis 0.53 -0.58 -0.20 -0.42 -0.36 0.11 -0.05 
Days to silking 0.29 -0.74 -0.22 -0.45 -0.23 0.10 0.04 
Anthesis silking interval -0.71 -0.36 -0.05 -0.04 0.39 -0.05 0.25 
Plant height 0.69 -0.30 -0.14 -0.30 0.11 -0.46 -0.04 
Ear height 0.63 -0.58 -0.29 -0.29 -0.05 -0.12 0.06 
Chlorophyll Con. Index 0.34 -0.64 -0.14 0.26 0.25 0.51 0.00 
Ears/plant 0.81 -0.33 -0.04 0.33 -0.11 0.16 -0.18 
Rows/ear -0.75 -0.21 0.30 0.41 -0.25 -0.12 0.08 
Kernels/row 0.45 0.42 0.59 -0.39 0.07 -0.03 -0.16 
Kernels/plant 0.33 -0.03 0.79 0.30 -0.26 -0.02 -0.23 
100 Kernel weight 0.81 0.20 -0.17 -0.27 0.34 0.02 0.05 
Grain yield/plant 0.87 0.28 0.07 0.34 0.15 -0.05 0.05 
Grain nitrogen 0.78 -0.13 -0.26 0.50 0.16 -0.14 -0.02 
NUTE 0.34 0.63 0.57 -0.28 -0.04 0.19 0.12 
NUE 0.87 0.28 0.07 0.34 0.15 -0.05 0.05 
Moisture% 0.15 0.83 -0.19 0.05 -0.25 -0.14 0.05 
Protein% -0.34 -0.58 -0.55 0.31 -0.03 -0.14 -0.18 
Oil% 0.08 -0.63 0.74 -0.05 0.15 -0.04 0.02 
Starch% -0.03 0.84 -0.45 -0.14 0.06 0.15 -0.06 
Fiber% -0.56 -0.31 0.46 -0.24 0.41 -0.05 -0.33 
Ash% 0.37 -0.52 0.66 0.12 -0.10 -0.05 0.33 
Eigenvalue 6.87 5.30 3.45 1.97 1.02 0.68 0.46 
Variability % 32.69 25.22 16.41 9.37 4.85 3.24 2.21 
Cumulative % 32.69 57.91 74.32 83.69 88.54 91.78 93.99 
The cosine of the angle between the vectors of two traits measures the similarity or the correlation between them relative to 

their variation among genotypes. Thus, an angle of zero indicates a correlation of +1, an angle < 90° suggests a positive 
correlation, an angle of 90° indicates no (0) correlation, implying independence, an angle > 90° indicates negative correlation, 

and an angle of 180° represents a correlation of -1 

 

 
 

Fig. 1. Genotype by trait biplot illustrating the relationship between PC1 and PC2 for 19 
genotypes and 21 traits of maize 

 
Based on PC1 and PC2, grain yield/plant, NUE 
followed by 100-kernel weight, ears/plant, 
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starch content, grain moisture content had 
relatively long vectors, suggesting that there was 
relatively large variation among genotypes. In 
other words, they show large variation among the 
19 genotypes studied, suggesting that they are 
the most discriminator of the morphological data 
under study. On the contrary, kernels/row, 
kernels/plant, grain ash content and grain oil 
content were the least discriminator, based on 
both PC1 and PC2 (Table 5 and Fig. 1). Grain 
yield/plant, followed by 100-kernel weight, 
ears/plant, rows/ear, grain N, anthesis-silking 
interval, plant height, ear height and grain fiber 
content, grain starch content, grain moisture 
content based on PC1 only, kernels/row, 
kernels/plant, grain ash content and grain oil 
content based on PC2 only are the                 
most discriminator of the studied morphological 
traits.  
 

Fig. 1 showed four groups of traits versus four 
groups of genotypes, namely GYPP, NUE, KPR, 
NUTE, 100-KW and GMC for the genotypes G3, 
G4, G1 and G17 in the first group, GSC for the 
genotypes G8, G14, G16 and G19 in the second 
group, RPE, GFC, ASI and, GPC for the 
genotypes G7, G13, G15 and G18 in the third 
group, DTA, DTS, EPP, EH, PH, GN, CCI, GAC, 
KPP and GOC for the genotypes G2, G5, G6, 
G9, G10, G11 and G12 in the 4th group. 
 

The above mentioned four groups of genotypes 
were characterized by high values in GYPP, 
NUE, 100-KW, KPR, NUTE and grain moisture 
% traits for the first group, grain starch content 
for the 2

nd 
group, grain protein content, GFC, 

GAC, ASI, and RPE for the 3
rd

 group and days to 
anthesis, DTS, EPP, EH, PH, GN, CCI, GAC, 
KPP and GOC for the 4

th
 group (Fig. 1). 

 
The traits pair GYPP and NUE had an angle of 
zero, indicating a perfect correlation of +1. Traits 
of each group had acute (< 90°) angles between 
them, indicating that their variation were similar, 
so each trait inside a specific group can be 
recorded instead of the other trait in the same 
group (GYPP, NUE, KPR, NUTE, 100-KW and 
GMC in the 1

st
 group, RPE, GFC, ASI and, GPC 

in the 3rd group and DTA, DTS, EPP, EH, PH, 
GN, CCI, GAC, KPP and GOC in the 4

th
 group). 

Trait pairs GYPP or NUE vs CCI, DTS and GAC, 
GMC vs KPP, NUTE vs EPP or PH, 100-KW vs 
DTS, GN vs GPC, GAC vs RPE, ASI or GFC vs 
DTA had a near-right angle, indicating that 
variation of one trait was more or less 
independent of the other trait (near zero 
correlation). On the contrary, GYPP or NUE vs 

(RPE, GFC, GPC, GOC, ASI) NUTE vs (EH, 
DTA, GAC, CCI, DTS, GOC, GPC) and GMC or 
GSC vs (GN, EPP, PH, EH, DTA, GAC, CCI, 
DTS, GOC) had obtuse (>90°) angles, indicating 
that their variation was in opposite directions 
(negative correlation). Trait pairs GYPP (NUE) vs 
RPE, NUTE vs GPC and GSC vs GOC had an 
angle of 180° representing a perfect negative 
correlation of -1. Trait pairs GYPP (or NUE) vs 
CCI, DTS and GAC had an angle of 90° 
indicating no (0) correlation. 
 
The trait pairs GYPP or NUE vs ASI and GFC, 
100-KW vs RPE, GSC vs GOC, NUTE vs GPC 
and KPR vs GPC had an angle near 180

o
, 

indicating a correlation close to -1 (complete 
negative correlation). An angle near to zero 
indicates a correlation near to +1 such as 
between GYPP and NUE, EPP and PH, KPP and 
GN, ASI and GFC, GYPP or NUE and       100-
KW. 

 
3.3 Dissimilarity Euclidean Coefficients 

Based on Phenotypic Traits 
 
The dissimilarity Euclidean coefficients among 
the 19 maize genotypes, based on phenotypic 
traits ranged from 13.7 to 206.1 with an average 
of 84.39 (Table 5). 
 
Dissimilarity Euclidean distances showed that G9 
(SC-2055) was the most dissimilar with each of 
G15 (A.E.D.), G18 (Midland), G19 (Reid Type), 
G6 (SC-30N11), G3 (SC-101) and G14(TWC 
360) genotypes, since G9 (SC-2055) showed the 
highest dissimilarity Euclidean coefficients with 
these genotypes; so these pairs of genotypes are 
the most unrelated genotypes. Such dissimilarity 
suggests that inbred lines isolated from the F2 of 
SC-2055 might show good heterosis when 
crossed with those inbreds isolated from the 
populations of the other genotypes (A.E.D., Reid 
Type, Midland, F2 of SC-30N11, SC-101 or TWC 
360). 
 
On the contrary, dissimilarity Euclidean distances 
showed that the most related genotypes based 
on phenotypic data; i.e. those showed the lowest 
dissimilarity Euclidean coefficients, were the pair 
of genotypes G18 (Midland population) and G19 
(Reid Type population) followed by the pair of 
genotypes G8 (SC-176) and G16 (Giza-2 
population), the pair of genotypes G11 (TWC-
321) and G16 (Giza-2 population);  the pair of 
genotypes G10 (TWC-310) and G11 (TWC-321);  
and the pair of genotypes G10 (TWC-310) and
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Table 6. Dissimilarity Euclidean coefficients based on phenotypic traits analysis among 19 maize genotypes (Combined across 6 environments) 
 

  G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 
G2 126                  
G3 70.9 172                 
G4 70.4 60.1 116                
G5 52 172.2 75.6 115.1               
G6 59.9 180.7 77 125.9 35.8              
G7 64.6 97.6 114.9 49.1 91.2 103.7             
G8 42.1 130 85.6 74 52.6 72.7 51.3            
G9 143 33.5 195.1 85 189.2 195.3 116.7 147.9           
G10 37.3 138 88.6 82.4 38.9 60.7 54.9 25.2 154.9          
G11 28.7 117.9 87.6 61.7 55.6 72.7 42.7 26.8 136.3 21.9         
G12 52.2 134.4 107.8 83.5 54.2 78.4 54.9 35.8 150 22.1 30        
G13 84.8 155.4 118.2 104.1 72.1 95.8 62.8 53.3 174.2 51 61.2 48       
G14 80.6 170.3 98.9 114.1 56.3 81.2 77.7 55.1 191.1 50.8 64.3 56.5 29.1      
G15 90.5 189.1 113.7 134.4 51.7 77 97.5 66.6 206.1 57.5 77.4 60 45.5 34.3     
G16 35.6 116.8 80.7 58.7 61.3 76.6 40.4 20.1 136.7 31.9 21.2 43.9 61.3 63.5 80.5    
G17 45.6 122.9 71.7 63.4 65.8 83.4 48.9 33.7 146.7 43.3 34.4 55.2 61.6 58.5 82.6 22.3   
G18 104 184.5 124.4 132 75.6 100.6 92.6 70.8 203.1 69.5 84.9 69.2 32.6 31.6 32.5 82.9 81.9  
G19 104 185.6 127.7 133.4 76 101.5 93.5 73.9 204 69.6 85.2 67.7 31.5 31.8 30.6 85.6 84.4 13.7 

Dissimilarity Euclidean distances showed that G9 (SC-2055) was the most dissimilar with each of G15 (A.E.D.), G18 (Midland), G19 (Reid Type), G6 (SC-30N11), G3 (SC-101) and G14(TWC 360) 
genotypes, since G9 (SC-2055) showed the highest dissimilarity Euclidean coefficients with these genotypes; so these pairs of genotypes are the most unrelated genotypes. Such dissimilarity 

suggests that inbred lines isolated from the F2 of SC-2055 might show good heterosis when crossed with those inbreds isolated from the populations of the other genotypes (A.E.D., Reid Type, 
Midland, F2 of SC-30N11, SC-101 or TWC 360) 
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G12 (TWC-1100); they are the most related 
genotypes in this experiment. These results 
indicate that the two populations Reid Type and 
Midland might have a common ancestor (both of 
them are of USA origin). Moreover, one or more 
inbred parents of the SC-176 (G8) or TWC-321 
(G11) might come from the synthetic population 
Giza-2 (G16), since they were among the most 
related pairs of genotypes in this experiment 
based on the dissimilarity Euclidean distances. 
Also, the two hybrids TWC-310 and TWC-321 
were closely related based on the dissimilarity 
Euclidean distances, suggesting that these two 
hybrids might have common ancestor in the 
breeding program of ARC-Egypt. 
 

3.4 Agglomerative Hierarchical Clustering 
(AHC) Analysis 

 

Morphological traits, involving principal 
component analyses, are also commonly used in 
genetic diversity estimates. Principal component 
analyses of morphological traits (Table 6) found 
that the first principal component, which 
explained 32.39% of the total variability among 
genotypes, contrasted grain protein, grain fiber, 
and grain ash contents, anthesis-silking interval 
and rows/ear with the grain yield, 100-kernel 
weight, NUE, kernels/row, grain moisture content 
and NUTE. The result implies that cultivars 
characterized by short ASI and low protein, fiber 
and ash content were higher yielding, kernel 
weight and number, nitrogen use and utilization 
efficiency. Moreover, the 1

st
 principal component 

indicated the joint importance of GYPP, NUE 
followed by 100-kernel weight, ears/plant, grain 
N, anthesis-silking interval, plant height, and ear 
height in discriminating maize cultivars and 
populations. The second principal component 
explained 25.22% of the total variability and 
indicated the joint importance of grain starch 
content, grain moisture content, grain protein 
content, days to silking and to anthesis, NUTE 
and CCI, in the discrimination of maize 
genotypes (Table 5).  
 

The clustering pattern of the maize genotypes 
generated from the standardized morphological 
data across stressed and non-stressed 
environments using complete linkage method is 
depicted in Fig. 2. The analysis assigned the 19 
genotypes into four groups. Group1 included two 
genotypes; namely G2 (Pioneer-Corteva cultivar 
SC-30K8) characterized by high grain yield, 
number of grains/row, grain oil content, NUTE 
and NUE and the Hi-Tec cultivar G9 (SC-2055) 
characterized high grain yield, grain 
number/plant and grain fiber content, but these 

two genotypes were among the most distant 
genotypes (Table 4).  
 

The second group include five genotypes (G13, 
G14, G15, G18 and G19) grouped together 
which had low-yielding, low NUE, short plant, low 
ear height, high grain fiber and ash content, long 
ASI; they were closely interrelated genotypes. 
The first group is widely distant from the second 
group. 
 

The third group included three genotypes located 
in two sub-groups; the first sub-group included 
the Fine Seed cultivar only SC-101 (G3) which is 
the best genotype in this experiment for high 
GYPP, NUE, NUTE, 100-KW, GN, low ash and 
fiber, and early in DTS. The second sub-group of 
the third group included the two genotypes G5 
(Hi-Tec cultivar SC-2031) and G6 (Pioneer-
Corteva cultivar SC-30N11) grouped together 
which had average GYPP, high protein, GN, 
EPP, PH, CCI, late DTS, low KPP and grain 
moisture content; they were closely related 
genotypes. 
 

The fourth group includes nine genotypes, seven 
of them are bred by ARC-Egypt and sub-divided 
into three sub-groups; the 1st sub-group included 
G4 (SC-131) and G7 (SC-168); both of them had 
high GN, but they differ in protein and NUTE; 
where G7 had high protein and low NUTE but G4 
had low protein and high NUTE.  G4 (SC-131) 
and G7 (SC-168) were closely related 
genotypes. The 2nd sub-group included the three 
genotypes G10 (TWC-310) from ARC, Egypt, 
G11 (TWC-321) from ARC, Egypt and G12 
(TWC-1100) from Hi-Tec; they are very closely 
related with respect of the morphological traits. 
The 4th sub-group included four genotypes; G1 
(SC-10) in one separate sub sub-group, G17 
(Nubaria population) in the 2nd sub sub-group 
and G8 (SC-176) and G16 (Giza-2 population) in 
the 3rd sub sub-group. G8 and G16 were the 
most closely related genotypes. 
 

4. DISCUSSION 
 
The present study investigated 19 maize 
genotypes (14 Egyptian hybrid cultivars and five 
populations) by 21 phenotypic traits. Although 
morphological analysis for genetic diversity 
assessment presents many limitations as low 
polymorphism and influence of environment on 
phenotypic expression [34], phenotypic traits 
were helpful as a preliminary evaluation of maize 
genetic diversity and provided practical and 
critical information required to characterize 
genetic resources [35,36].  
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Fig. 2. Dendrogram of 19 maize genotypes based on 21 morphological characters measured 
across six stressed and non-stressed environments using the average method of clustering 

 
Morphological traits measured (21 traits) 
depicted significant (P ≤ 0.01) differences among 
the maize hybrids and populations. Variation for 
most of the traits was observed. Morphological 
traits are very important for grouping corn genetic 
resources, and also are essential and useful for 
plant breeders seeking to improve existing 
germplasm by introducing novel genetic variation 
for certain traits into the breeding populations [5, 
37-40]. They reported the existence of 
substantial variability in different gene pools of 
maize germplasm.  

 
Coefficient of variation (CV) was generally very 
low (<10%) for most of studied traits, indicating 
good accurcy of the experiment. The exceptions 
were ASI, GMC, GOC and GFC, where CV was 
32.8, 20.67, 16.69 and 21.92%, respectively. The 
large coefficients of variability in this study for 
anthesis-silking interval were comparable to 
other investigators [37,38].  
 

The high phenotypic variability was observed, 
particularly for the agronomic traits ASI, NUE, 
GYPP, CCI, KPP and 100-KW and the grain 
quality traits grain oil and fiber contents.  Sultana 
[41] also determined highly significant differences 
for these traits. Sharma et al. [42] observed 
significant differences among 20 maize 
genotypes for days to 50% flowering, cob length, 
plant height, 100 grain weight, grain yield per 
plant and stalk weight. Saeed et al. [43] found 
significant differences among genotypes 

provided by CIMMYT and local checks for all 
traits except ear height. Such high variability 
suggested that the germplasm was adapted to a 
wide range of environmental conditions, and 
could provide valuable alleles for maize 
improvement [40,44].  
 
Variability in ASI, NUE and GYPP was about six 
to seven fold larger than variability in DTA and 
DTS, in the studied cultivars and populations of 
maize. Such a large phenotypic diversity this 
much, reflects the differential fitness to the 
environment, flexibility and survival in changing 
environmental conditions. The data obtained will 
guide parental selection for maize improvement 
and broadening of the genetic base of breeding 
populations [38,39]. The presence of genetic 
variability among the genotypes for grain yield 
and other agronomic traits under drought or low 
N stress and no stress conditions indicated              
that significant progress could be made in 
selecting for improved grain yield and other traits 
under stressed and no stressed conditions [45]. 
 

The highest GYPP, 100-KW, GSC and NUTE 
were shown by the genotype G3, while the 
highest grain protein content, grain oil content, 
ears/plant and the shortest ASI were recorded by 
G7, G2, G6 and G5, respectively. Genotype G2 
was also the best in NUE and kernels/row.  
These genotypes might possess favorable genes 
that could be exploited to improve Egyptian 
maize for the respective traits. 
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Various studies have employed multivariate 
statistical analysis such as principal component 
analysis (PCA) to evaluate the magnitude of 
genetic diversity among the crop germplasm [46, 
47] and to reduce a large number of observed 
traits into a smaller set of traits that have the 
maximum contribution in separating the 
genotypes. The PCA was performed to classify 
the hybrids and populations on the basis of the 
most discriminating traits. Our results revealed 
two main components accounting for 57.91% of 
total variability. Generally, the contribution of 
PC1 for the 21 traits were 1.3 fold more than that 
of PC2. Bin Mustafa et al. [48] stated that 59.3 
and 55% of the total variation were contributed 
by the first two PCs when evaluating maize 
genotypes at 100 and 40% moisture levels. PCA 
showed that the three factors had eigenvalue > 
1, moreover 56.13 and 57.2; 56.22 and 58.94% 
of the total variability were explained by the first 
two PCs under the same conditions. Others 
recorded two PCs that contributed to 94.01% and 
91.15% of total variation in root traits of 103 
maize inbred lines evaluated in control and 
water-stressed conditions [49]. Suryanarayana et 
al. [50] applied PCA and cluster analysis to data 
for 30 maize accessions in India. In their study 
the first five PCs had eigenvalues greater than 1, 
which collectively explaining 85.31% of the 
variance. They identified days to 50% anthesis, 
ear length and number of kernels per row as the 
factors that made the greatest contributions to 
total variance. Pahadi et al. [51] found 
eigenvalues greater than 1 for their first two PCs, 
which explained 73.7% of the variance. They 
noted that days to 50% anthesis was the most 
influential trait. Ali et al. [52] found eigenvalues 
greater than 1 for their first three PCs, which 
accounted for 89.60% of the variance in maize 
hybrids grown in Pakistan. Kumari et al. [5] found 
that the first two principal components explained 
more than 50% of the phenotypic variation 
among collected landraces and traditional 
cultivars of maize. Saeed et al. [43] found four 
PCs had eigenvalues greater than 1 and 
explained 73.38% of the total variance in maize 
genotypes provided by CIMMYT and in local 
checks in Pakistan. 
 
Biplot in the principal component represents 
variables that are super imposed on a plot as 
vectors where relative length of vectors 
represents the relative proportion of variability in 
each variable represented on biplot [41].  The 
results of the GT biplot analysis revealed that 
among the traits analyzed, grain yield/plant, NUE 
followed by 100-kernel weight, ears/plant, 

rows/ear, grain N, anthesis-silking interval, plant 
height, ear height, played a crucial role in 
differentiating the hybrids and populations, as 
they had relatively long vectors. In other words, 
they are the most discriminator of the 
morphological data under study. On the contrary, 
kernels/row, kernels/plant, grain ash content and 
grain oil content were the least discriminator, as 
they had relatively short trait vectors, indicating 
that they may be less important in evaluating 
maize genotypes for drought/low N tolerance. 
The PCA-based grouping of Egyptian maize 
germplasm is in agreement with those obtained 
by several authors [36,53,54], who reported that 
plant height and ear height, ear length and yield 
were the most discriminating traits to identify 
maize populations in Eastern Serbia and Mexico, 
respectively.  
 

The knowledge of interrelationships between 
grain yield and its associated traits will improve 
the efficiency of breeding programs through the 
use of appropriate selection indices [45]. The 
small acute angle observed between grain yield 
and each of NUE, 100-KW, EPP, PH, KPP, KPR, 
NUTE, and GN (Fig. 1) indicated the existence of 
very strong positive correlations between grain 
yield and such traits and that improvement in 
these traits would contribute to significant 
progress in grain yield under water/nitrogen 
stressed and non-stressed conditions. Similarly, 
the existence of negative correlations between 
grain yield and anthesis-silking interval (ASI), 
grain protein content, RPE and GFC under   
water/nitrogen stressed and non-stressed 
conditions indicate that these traits might have 
direct or indirect effects on grain yield under 
these conditions. These results justified the 
inclusion of most of these traits in the base index 
for selection of genotypes for tolerance to 
drought and or low N stresses. Several studies 
have identified yield components as strong 
secondary traits for yield improvement under 
drought/low N stress due to the strong genetic 
correlations with yield under stress conditions.  
On the contrary, results of the GT biplot in the 
present study indicated that short ASI was the 
most reliable secondary trait for improving grain 
yield under stressed and non-stressed 
conditions. These results are in agreement with 
those reported by earlier investigators [45,55-61]. 
These results corroborated the findings of Aci et 
al. [44], who reported that maize landraces 
characterized by short ASI were the most 
productive. An ASI period of 2-4 days is 
considered ideal for drought tolerance [62]. 
Results by Ziyomo and Bernardo [63] recorded 
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negative correlations of ASI with YP and PH. The 
study by Monneveux et al. [64] suggested that 
selection for bigger grains and smaller tassels 
may help to increase grain yield in water-limited 
environments in the near future.  
 
Cluster analysis is a method used in grouping a 
set of characters into clusters. Genotypic 
clustering makes use of a procedure called 
Agglomerative Hierarchical Clustering (AHC) 
using Unweighted Pair Group Method with 
Arithmetic mean (UPGMA) [20]. Cluster analysis 
is one of the statistical techniques aimed at 
grouping objects in clusters so that the objects in 
one cluster have high similarities than those in 
other clusters [65]. Euclidian distance values in 
the range of 0-1 indicates a small dissimilarity, 
whereas, its value more than 1 indicates a large 
dissimilarity coefficient. A small dissimilarity 
coefficient indicates that for each genotype one 
or the other characters have a narrow variability 
[66]. Cluster analysis for 19 maize genotypes 
using 21 morphological traits is presented in Fig. 
2. The analysis assigned the 19 genotypes            
into four groups. The clusters represent 
uncorrelated groups which may be useful for 
future heterotic breeding as their trait 
performance may be governed by different sets 
of alleles [38].  

 
The highest genetic distance was found between 
G9 (SC-2055) and each of G15 (A.E.D.) and G18 
(Midland) followed by G19 (Ried Type), since 
they showed the highest dissimilarity Euclidean 
coefficients (Table 6). Such dissimilarity suggests 
that inbred lines isolated from the F2 of the single 
cross SC-2055 might show maximum heterosis 
when crossed with those inbreds isolated from 
either A.E.D., Midland or Ried Type populations. 
On the other hand, the lowest genetic distance 
was found between the maize genotype G18 
(Midland population) and G19 (Reid Type 
population) in the same group, since they 
showed the lowest dissimilarity Euclidean 
coefficients. These two populations might have a 
common ancestor (both of them are of USA 
origin). 

 
The partitioning of the hybrids and populations 
into clusters suggests that benefits would be 
accrued from intercrossing between clusters to 
exploit heterosis for grain yield, and other 
desirable traits, such as short ASI which indicate 
less sensitivity to drought or low N stress. A 
within cluster crossing involving a large number 
of ears should preserve the rare alleles in the 
collection [67]. He added that the combined high 

yield and early-maturity traits present novel 
genes at these loci and may be beneficial for 
broadening the genetic base of elite gene    
pools. 

 
The results of the present study clearly revealed 
significant phenotypic diversity of the Egyptian 
maize hybrids and populations. Furthermore, this 
diversity among maize hybrids and populations 
could be related to different plant response to 
different environments. Therefore, these 
promising maize hybrids and populations could 
be potentially utilized for the introgression of 
adaptive traits, which may be found in extreme 
environments [36]. The distribution of hybrids 
and populations into morphologically similar 
groups should quicken the usefulness of these 
data to maize breeders. 

 
5. CONCLUSION 
 
Multivariate statistical analysis such as principal 
component analysis (PCA) of morphological data 
was able to assess genetic diversity, describe 
and classify a collection of 19 maize Egyptian 
cultivars and populations. Our data showed 
substantial variation in morphological traits 
among these genotypes. The genotype × trait 
(GT) biplot method allowed easy and better 
assessment of correlations between the traits 
and identified the reliable secondary traits for 
improving grain yield under water and/or low N 
stressed and non-stressed conditions. The 
Agglomerative Hierarchical clustering based on 
morphological data was able to identify the most 
unrelated hybrids and populations to be used as 
parents for isolating inbred lines when crossed 
would show maximum heterosis. This information 
will be useful for identifying genotypes for 
broadening the genetic base in the gene pools of 
maize improvement programs. Further 
investigations should be undertaken for 
collection, characterization and utilization of 
Egyptian and exotic maize germplasm.  
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