
 Open access  Posted Content  DOI:10.1101/383737

Genetic draft and valley crossing — Source link 

Taylor A Kessinger, Jeremy Van Cleve

Institutions: University of Kentucky

Published on: 02 Aug 2018 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Fitness landscape and Genetic hitchhiking

Related papers:

 Rapid evolutionary escape by large populations from local fitness peaks is likely in nature

 Fitness-valley crossing in subdivided asexual populations

 Cryptic Genetic Variation Can Make Irreducible Complexity a Common Mode of Adaptation

 Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations.

 The Dynamics of Genetic Draft in Rapidly Adapting Populations

Share this paper:    

View more about this paper here: https://typeset.io/papers/genetic-draft-and-valley-crossing-
2px16ularu

https://typeset.io/
https://www.doi.org/10.1101/383737
https://typeset.io/papers/genetic-draft-and-valley-crossing-2px16ularu
https://typeset.io/authors/taylor-a-kessinger-1hlib4pu1o
https://typeset.io/authors/jeremy-van-cleve-4k96vhih7h
https://typeset.io/institutions/university-of-kentucky-2aen3wlv
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/fitness-landscape-51o2yirt
https://typeset.io/topics/genetic-hitchhiking-35e2ybm8
https://typeset.io/papers/rapid-evolutionary-escape-by-large-populations-from-local-3woekfuagu
https://typeset.io/papers/fitness-valley-crossing-in-subdivided-asexual-populations-2su3s8jujt
https://typeset.io/papers/cryptic-genetic-variation-can-make-irreducible-complexity-a-320sueiu5e
https://typeset.io/papers/cryptic-genetic-variation-can-make-irreducible-complexity-a-429c830gif
https://typeset.io/papers/the-dynamics-of-genetic-draft-in-rapidly-adapting-mbxx0pvpmt
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/genetic-draft-and-valley-crossing-2px16ularu
https://twitter.com/intent/tweet?text=Genetic%20draft%20and%20valley%20crossing&url=https://typeset.io/papers/genetic-draft-and-valley-crossing-2px16ularu
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/genetic-draft-and-valley-crossing-2px16ularu
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/genetic-draft-and-valley-crossing-2px16ularu
https://typeset.io/papers/genetic-draft-and-valley-crossing-2px16ularu


GENETICS | INVESTIGATION

Genetic draft and valley crossing

Taylor Kessinger∗ and Jeremy Van Cleve∗,1

∗Department of Biology, University of Kentucky

ABSTRACT Living systems are characterized by complex adaptations which require multiple coordinated mutations in order to

function. Empirical studies of fitness landscapes that result from the many possible mutations in a gene region reveal many

fitness peaks and valleys that connect them. Thus, it is possible that some complex adaptations have arisen by evolutionary

paths whose intermediate states are neutral or even deleterious. When intermediates are deleterious, traversing such an

evolutionary path is known as “crossing a fitness valley". Previous efforts at studying this problem have rigorously characterized

the rate at which such complex adaptations evolve in populations of roughly equally fit individuals. However, populations that

are very large or have broad fitness distributions, such as many microbial populations, adapt quickly, which substantially alters

the fate and dynamics of individual mutations due to the action of genetic draft. We investigate the rate at which complex

adaptations evolve in these rapidly adapting populations in regions without recombination. We confirm that rapid adaptation

overall increases the time required to cross a valley; however, rapid adaptation can make it easier for deeper valleys to be

crossed relative to the time required for single beneficial mutations to sweep to fixation.

KEYWORDS genetic drift; rapid adaptation; epistasis; fitness landscape

Introduction

The simplest adaptive scenarios in evolution involve the

arisal and fixation of successive beneficial mutations. This

appears to be how Darwin thought even complex systems,

such as the vertebrate eye, evolved (Darwin 1859), and

this assumption underlies many models in evolutionary

theory including those from adaptive dynamics (Geritz

et al. 1998; Dercole and Rinaldi 2008) and theories of adap-

tation (Gillespie 1983; Orr 1998; Gillespie 1991). Evolution

will certainly proceed in this fashion if there always ex-
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ists a sequence of mutations from an initial genotype to

the high fitness genotype in which each mutant genotype

in the sequence has a higher fitness than the previous

one. If the individual fitness of each genotype is visual-

ized as a surface or landscape where the axes represent

alternative alleles at each locus, then smooth landscapes

with a single peak ensure that uphill paths exist no mat-

ter where a population starts. However, many empirical

fitness landscapes are not completely smooth and have

multiple peaks (reviewed in Szendro et al. 2013; de Visser

and Krug 2014; Obolski et al. 2018). In such landscapes,

wild type individuals may have to traverse a mutational

valley–a region of lower fitness–in order to reach a higher

fitness peak. This is a special case of “sign epistasis". We

seek to characterize this “valley crossing" process in or-
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der to better understand the routes adaptation is likely to

take on these rugged empirical landscapes (e.g., Aguilar-

Rodríguez et al. 2017) and to assess the likelihood of valley

crossing under more complex scenarios in which it may

in fact be common (e.g. Trotter et al. 2014).

Valley crossing in asexual populations is increasingly

well understood (Weissman et al. 2009). If the number of

mutants produced every generation is high, as is the case

in large populations with high mutation rates, a complex

adaptation requiring multiple mutations that is destined

to fix will eventually be generated de novo. This is some-

times called deterministic fixation of the multiple mutant

(Weissman et al. 2009). In small populations, neutral or

deleterious intermediate mutants generated by wild type

individuals can drift to fixation. Further mutations neces-

sary for the adaptation can then arise on intermediate mu-

tant backgrounds and fix due to positive selection. This

is the sequential fixation regime (Weissman et al. 2009). A

third possibility occurs for intermediate population sizes

where wild type individuals generate transient mutant

subpopulations or “bubbles". These bubbles are ordinarily

doomed to extinction due to drift, but additional muta-

tions in a lucky bubble may generate a complex adapta-

tion that sweeps to fixation; this process has been referred

to as “tunneling" (Iwasa et al. 2004; Weissman et al. 2009).

On its own, valley crossing becomes more likely as the

population size increases (Weissman et al. 2009). However,

recent work suggests that valley crossing relative to the

fixation of a simple beneficial mutation is least likely at in-

termediate population sizes where tunneling occurs Ochs

and Desai (2015). This suggests that tunneling may be

the most difficult mode of valley crossing. Recombination

also affects the rate of valley crossing. Infrequent recom-

bination decreases valley crossing times (Weissman et al.

2010). At high values of the recombination rate, however,

individuals carrying the full complex adaptation outcross

with the wild type and produce more deleterious inter-

mediates that retard the growth of the multiple mutant.

An additional effect that can heighten the rate at which

valley crossing occurs is population subdivision (Bitbol

and Schwab 2014): the population size within a subdivi-

sion is smaller, meaning that selection against potentially

harmful intermediates is relaxed.

Previous studies of valley crossing focus primarily on

populations where all individuals are equal in fitness ex-

cept for the focal loci, i.e., the loci at which the individual

mutations comprising the complex adaptation segregate.

This is tantamount to assuming that, if there is variation

in the background fitness of the population, it is negligi-

ble. In such populations, genetic drift governs the fate of

neutral alleles, as well as the behavior of deleterious or

beneficial alleles where they are rare (close to frequency

zero) or common (close to frequency one). Alleles whose

dynamics are primarily determined by genetic drift can be

effectively modeled by a diffusion approximation (Wright

1945; Kimura 1955, 1957), and the ancestry of a popula-

tion is described well by the classic Kingman coalescent

(Kingman 1982) where pairs of branches in the genealogy

merge back in time until the most recent common ances-

tor. When population sizes are very large or the fitness

variation in the population is substantial, however, the

behavior of genetic variation is governed more by genetic

draft than by genetic drift (Gillespie 2000, 2001; Masel 2011;

Neher and Shraiman 2011). Whereas drift is the effect of

imperfect sampling from generation to generation, draft

is the sum of hitchhiking effects due to selection on sites

linked to the focal loci. Draft is fundamentally different

from drift: for example, drafting populations experience

large jumps in allele frequencies that cannot be encapsu-

lated by a diffusion approximation (Neher and Shraiman

2011). They commonly have genealogies in which more

than two branches merge at once and that are better de-

scribed by alternative coalescent processes such as the

Bolthausen-Sznitman coalescent (Neher and Hallatschek

2013; Brunet et al. 2007; Schweinsberg 2017). Additionally

under genetic draft, the frequency spectrum of neutral
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alleles is non-monotonic, with a marked uptick near fre-

quency one–or, equivalently, a depression in intermediate

frequency alleles, which are quickly swept out of the pop-

ulation (Neher and Shraiman 2011; Kosheleva and Desai

2013; Neher and Hallatschek 2013). Only a handful of

individuals near the “nose" of the fitness distribution are

likely to persist, and they give rise to the bulk of the fu-

ture population and carry linked alleles with them. The

parameter that determines whether drift or draft is more

important is the product of the population size N and the

standard deviation in fitness σ (Neher and Hallatschek

2013).

It is increasingly realized that draft may play a criti-

cal role in shaping genetic diversity, especially in many

microbial species, where population sizes can be large

but “effective population sizes" are many orders of mag-

nitude smaller (Masel 2011). The possibility that neu-

tral variants are affected more strongly by selection at

linked sites than by genetic drift, even in organisms like

Drosophila, is one possible explanation for the “paradox

of variation", the fact that genetic diversity and popula-

tion size often do not scale linearly (Gillespie 2000, 2001;

Neher et al. 2013; Corbett-Detig et al. 2015). Draft likewise

may have profound effects on the evolution of complex

adaptations. Preliminary evidence for this comes from Ne-

her and Shraiman (2011), who explored how draft affects

valley crossing via stochastic tunneling by calculating

the mutant bubble size distribution in a rapidly adapting

population. They found that, compared to drift, draft gen-

erally causes the distribution of bubble sizes to drop off

more quickly, meaning that small bubbles are more com-

mon but large bubbles are very rare. Thus, while draft

may make valley crossing via tunneling more difficult,

the total effect isn’t immediately obvious. Here, we ex-

tend these previous results by studying how genetic draft

in asexual populations affects the rate of crossing fitness

valleys across a range of population sizes.

The complicating factor is that, in an asexual pop-

ab Ab aB AB

1-δ
1

1+s

Figure 1 Fitness landscape.

ulation, the dynamics are governed almost entirely by

what happens in the nose of the fitness distribution, and

these dynamics can be highly stochastic. In previous ap-

proaches, these stochastic effects were smoothed due to

the presence of recombination (Neher and Shraiman 2011,

2009). We therefore must focus primarily on simulation

approaches, as analytical solutions for the behavior of a

mutation in the nose of an asexual population are difficult

to obtain. We show that fitness valley crossing occurs

at an overall lower rate in rapidly adapting populations.

However, this is consistent with the fact that all forms of

adaptation are slowed down due to clonal interference

and genetic background effects. In addition, we confirm

that in rapidly adapting populations, adaptive fixations of

alleles are more likely to be complex adaptations involv-

ing a fitness valley than they are in populations where

genetic drift is the primary force shaping genetic varia-

tion at linked sites; essentially, genetic draft maintains

the linkage that makes it possible to leap across fitness

landscapes rather than adapt primarily by climbing to

local peaks. These observations add to the growing in-

tuition that complex adaptations that involve evolution

across fitness valleys may not be a surprising result of the

evolutionary process, but rather an expected one.

Mathematical background

Our model features a population of N haploid individuals

in which an effectively infinite number of “background"

loci, with weak fitness effects, are currently segregating.
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We focus on two loci, which are initially fixed for alleles

a and b. These alleles mutate to A and B at rates µA and

µB, respectively (we neglect back mutations). Genotypes

ab, Ab, aB, and AB have fitnesses 1, 1 − δA, 1 − δB, and

1 + s respectively, with δ ≥ 0 (intermediate genotypes

are deleterious) and 1/N < s < 1 (double mutant AB is

strongly beneficial); see 1. For the remainder of our anal-

ysis, we will assume that µA = µB = µ and δA = δB = δ.

We further assume that the large number of loci of weak

effect contribute to a constant background fitness vari-

ance σ2. By Fisher’s “fundamental theorem" of natural

selection (Fisher 1930), the rate v at which the mean fit-

ness advances due to selection is set to σ2. If x is the

background fitness of a lineage, then the distribution of

background fitnesses f (x) is assumed to be roughly Gaus-

sian: f (x) = 1√
2πσ

exp( (x−x̄)2

2σ2 ). Given this background

fitness variance, we are interested in the expected time

E [T] for the double mutant AB (our so-called “complex

adaptation”) to arise and fix in the population. We empha-

size that σ2 is only a background fitness variance and does

not include the effects of the focal loci. For the most part,

we assume that the focal loci are either at low enough

frequency that they do not substantially affect the total

fitness variance or that they are on the way to fixation and

the population is destined to become roughly monomor-

phic (until new beneficial background mutations can be

introduced).

In very large populations, enough double mutants are

generated that the valley crossing time is dominated by

the time required for a double mutant to sweep through

the population. At the other extreme, in small populations,

the crossing time is dominated by the wait for a deleteri-

ous single mutant to fix: only thereafter does a successful

double mutant appear. We zero in on the intermediate

case: stochastic tunneling, the most interesting and math-

ematically demanding mode of valley crossing. We will

review existing theory for this case, discuss the difficulty

in the mathematical analysis due to genetic draft, and then

present results for valley crossing times using forward-

time simulations across a range of population sizes that

include the sequential fixation, stochastic tunneling, and

semi-deterministic tunneling cases.

There are three components to the process of stochas-

tic tunneling. First, a single mutant lineage must ap-

pear, which occurs with rate Nµ. If this lineage arises

at time t0 and persists until time T, then it gives rise

to W =
∫ T

t0
n(t)dt total individuals before going extinct,

where n(t) is the number of mutant individuals extant at

time t. As in the introduction, we refer to such a short-

lived mutant lineage, and all the individuals generated

within that lineage, as a mutant “bubble": the time in-

tegrated number of individuals W is the “weight" of the

bubble. During the lifetime of a bubble, the complex adap-

tation must appear and establish; that is, it must rise to a

high enough frequency that fixation is almost guaranteed,

which occurs at rate µpfix where pfix is the probability that

the double mutant reaches fixation from a single initial

individual. If it establishes, the complex adaptation will

quickly sweep to fixation. The first two steps can be folded

in together and considered as one process, so that what

is relevant is the expected time until a single mutant lin-

eage arises that is destined to produce a successful double

mutant. In this way, E [T] = E [T0 + T1], where T0 is the

time to the first successful bubble–the first that produces

a double mutant that is destined for fixation–and T1 is the

time required for the double mutant to sweep. We assume

that T0 ≫ T1, so that the wait time is dominated by the

first term: the time required for T1 to establish will be of

order 1/s (Desai and Fisher 2007), and the sweep time

will be of order 1/s log(Ns), but T0 can be many orders of

magnitude greater.

Most of the time, a bubble will simply arise and go ex-

tinct. If mutation and fixation are sufficiently rare events,

then fixation of the double mutant can be modeled as a

Poisson process: with probability 1 − e−µpfixW , the bubble

with total size W will give rise to a successful double mu-
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tant. Computing the expected value of this quantity over

all bubble sizes, φ =
〈

1 − eµpfixW
〉

, gives the probability

that some bubble will lead to a successful valley crossing.

One difficulty in computing the rate of tunneling in the

high Nσ case (where genetic draft is significant) is that

the expected bubble size and fixation probability will both

turn out to depend on the background fitness of an indi-

vidual. That is to say, it is not possible to simply compute

pfix and the weight distribution by themselves, but rather

one must convolute both of them over the background

fitness. Individuals whose background fitness is near the

nose of the fitness distribution will tend to give rise to

longer-lived lineages, and if those individuals give rise to

the complex adaptation, it will therefore likewise be more

likely to fix. Thus, W will depend on the background

fitness x and the valley depth δ, and pfix will depend on

x and the peak height s. These will have to be integrated

over the fitness distribution f (x) in order to obtain the to-

tal crossing probability Φ(s, δ) =
∫

∞

−∞
φ(x, s, δ) f (x)dx. The

expected valley crossing time then becomes 1/NµΦ. An

additional difficulty is that technically, pfix will depend

not on the fitness of the initial lineage in a bubble but on

the fitness of the specific background on which the dou-

ble mutant arose. These will not necessarily be the same;

for example, individuals within the single mutant lineage

may accumulate additional background mutations. As-

suming that this does not happen, that is, assuming that

pfix depends on the fitness x of the founding single mu-

tant lineage, is tantamount to assuming that bubbles are

too short lived to accumulate background mutations that

significantly affect their fitness.

We begin by considering the dynamics of pfix(x, s) be-

fore moving on to consider the distribution of bubble

sizes. We focus on the case where background mutations

are frequent but of weak effect–that is, the mean effect of

background mutations ǭ is small compared to σ, but back-

ground mutations occur at a high rate Ub. Hallatschek

(2011) and Good and Desai (2014) showed that the fixation

probability in this regime obeys the differential equation

v∂x pfix(x, s) = xpfix(x, s) +
Ub ǭ2

2
∂2

x pfix(x, s) − pfix(x, s)2

2
,

(1)

in which we have further assumed that v ≈ σ2, which

is tantamount to claiming that mutational effects are less

important than selection in determining the advance of

the mean fitness. For a neutral mutation (s = 0), the fixa-

tion probability is effectively zero at low x but increases

exponentially up until xc, at which it becomes roughly

linear in x. In this regime, xc ≈ 2σ4/Ub ǭ2: when σ is large,

only mutations in the nose stand any chance of fixing un-

less they can be dragged to higher fitness by background

mutations. The effect of introducing a nonzero s is essen-

tially to shift the value of x and xc: for large negative s,

xc may be far enough in the nose that it is unlikely any

individuals will actually be present, and for large positive

s, even unfit individuals can give rise to a lineage that is

destined to fix.

In order to obtain the total valley crossing probability Φ,

the only remaining element to compute is the distribution

of mutant bubble sizes W as function of their background

fitness x. Since the tunneling probability for a lineage with

background fitness x is given by φ =
〈

1 − e−µpfixW
〉

, we do

not need to compute the full distribution of W but rather

only its Laplace transform: L [p(w)] =
∫

∞

0 e−zw p(w)dw,

with z = µpfix. Neher and Shraiman (2011) showed that φ

follows the equation

∂tφ = z + (z + x − σ2t + δ)φ − (1 + x − σ2t + δ)φ2, (2)

but their analysis also included a recombination term that

made it possible to pull out the integrated Laplace trans-

form
∫

∞

−∞
p(x)φ(x)dx without the need to actually solve

this equation. They also avoided the need to explicitly

send time to infinity, which is necessary to incorporate

all possible bubble sizes and lifetimes. Unfortunately this

method is not available to us, and the nose dominance of

the bubble size distribution, combined with the x depen-

Genetic draft and valley crossing 5

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2018. ; https://doi.org/10.1101/383737doi: bioRxiv preprint 

https://doi.org/10.1101/383737
http://creativecommons.org/licenses/by-nc/4.0/


dence of z (via z = µpfix(x)), lead to difficulty in deriving a

simple closed form expression for Φ. Therefore, we focus

on simulation methods to study the dynamics of valley

crossing.

Simulation methods

To analyze our model, we perform forward simulations

using a customized version of FFPopSim (Zanini and Ne-

her 2012), a discrete time forward simulation package

that implements a modified Wright-Fisher model. The

simulation code is available via GitHub. In FFPopSim, in-

dividuals are organized by “clones" (sets of individuals

with the same genome): each individual gives rise to a

Poisson distributed number of offspring, with the mean

dependent on the relative fitness. The mean offspring

number is further adjusted to keep the population roughly

at a pre-specified carrying capacity. We initialize a wild

type population of N individuals consisting of haploid

genomes of with L = 200 loci. Genetic loci are partitioned

into two groups, the two “focal" loci where the epistatic

alleles A and B will segregate and the remaining “back-

ground" loci that are responsible for the underlying fitness

distribution. We set the focal loci to be at positions L/4

and 3L/4. For the background loci, we make use of a

modified infinite sites model (Kimura 1971; Watterson

1975): any time a locus becomes monomorphic, a muta-

tion at that locus is injected into a random individual in

the population. In this way, the population experiences a

constant influx of beneficial mutations at the background

loci. These mutations’ fitness effects are drawn from an

exponential distribution; the background fitness variance

is set to a constant value σ2 by manually adjusting the

selection coefficients every generation (they are multipled

by the current variance and divided by σ2). In this way,

the mutation rate Ub and average fitness effect ǭ at the

background loci are not parameters of our simulation

model but must be directly measured from simulations;

i.e., they are constrained by L and σ. We estimate them

by manually counting the number of injected mutations

every generation and averaging over the fitness effect at

each locus.

Simulations are allowed to proceed for an equilibration

time of N/10 generations to allow sufficient genetic diver-

sity to be introduced. During this time, the mutation rate

µ for the focal loci is set to zero. After equilibration, we

set the per-site mutation rate µ for the focal loci (allow-

ing forward and backward mutations) with single mutant

fitness disadvantage δ and double mutant advantage s.

When the double mutant reaches frequency 0.5, we con-

sider it to have fixed. We then set the focal loci allele

frequencies back to zero, randomize the selection coeffi-

cients for the genetic background by drawing anew from

an exponential distribution, and allow the population to

equilibrate for another N/10 generations. This ensures

that independent valley crossing trials are independent

despite occurring in the same simulation run.

We partitioned our simulations as follows. We first

studied the effect of increasing σ in the sequential fixa-

tion, stochastic tunneling, semi-deterministic tunneling,

and deterministic fixation regimes (Weissman et al. 2009).

For small populations, sequential fixation applies when

N ≪ min(1/δ, 1/
√

µs), so that a successful mutant is un-

likely to arise until the intermediate has fixed, but the in-

termediate’s fitness disadvantage is too weak for selection

to inhibit it. Tunneling becomes relevant when N is too

large for sequential fixation, i.e., the tunneling probability

becomes more significant than the probability that the

intermediate will fix: this mandates N & 1/
√

µs. It also

requires that N ≪ 1/µ, meaning that only one mutant lin-

eage is likely to be extant at any given time and, if lineages

do co-occur, they are unlikely to interfere with each other

or substantially affect the mean fitness. By increasing

N far above the 1/µ limit, multiple deleterious mutants

are likely to occur every generation, reaching mutation-

selection balance at low frequency and providing many

opportunities for a lucky double mutant to appear; this
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is semi-deterministic tunneling. At still higher popula-

tion sizes (N & s/µ2), multiple double mutants are likely

to appear every generation, and their dynamics can be

modeled as deterministic.

Finally, we compared the dynamics of valley crossing

versus sweeping mutations. We performed simulations

with a sweeping focal beneficial mutation, with selection

coefficient ssweep, at position L/2, with the background

loci kept polymorphic as in the valley crossing simula-

tions. We recorded the time for a beneficial mutation to

arise and reach frequency 0.5, considering it to have fixed

at that point. We then computed the ratio of the sweep

time to the valley crossing time for a complex adaptation,

with valley depth δ and larger fitness advantage svalley.

To determine the effect of σ on this ratio, we performed

simulations at both high and low σ and computed the

ratio of these ratios: the result is a measure of the extent to

which rapid adaptation increases the likelihood of valley

crossing relative to the speed of simple sweeps.

Data availability

Simulation and analysis scripts needed to replicate the

results are available at https://github.com/tkessinger/draft_

valley_crossing under the Creative Commons BY-NC-SA li-

cense (https://creativecommons.org/licenses/by-nc-sa/4.0/).

Results

Here we present the key results of our simulation analy-

sis. In general, we expect valley crossing to require more

time in rapidly adapting populations (large Nσ) experienc-

ing genetic draft; bubbles are doomed to extinction more

quickly (lineages experience larger fluctuations in size

and decline in frequency as the mean fitness advances)

and beneficial lineages are less likely to fix, especially

when valleys are shallow. Figures 2 and 3 confirm these

expectations: the overall rate of valley crossing is gen-

erally slowed as σ increases. At higher σ, the effect of

the genetic background in which an mutation finds it-
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Figure 2 Valley crossing times in the semi-deterministic
tunneling regime as a function of σ. In both figures,
s = 10−2 and δ = 10−3: on the left, N = 105 and µ =
10−4, and on the right, N = 106 and µ = 10−3; the right
figure has a high enough value of Nµ2 that fixation is
almost deterministic. Orange lines are averages, boxes
are interquartile ranges, and end caps are overall ranges.
Each box represents about 100 simulation runs.

self becomes more significant in determining the fate of

that mutation than the fitness effect of the mutation itself.

This genetic draft buffets the frequency of mutations so

that these mutations behave as though they are more neu-

tral than they really are: in effect, the fitness landscape

is “flattened". This depresses the fixation probability of

the double mutant and other complex adaptations, which

appears to account for the majority of the change in fixa-

tion time. In the case of stochastic tunneling, the overall

size distribution of bubble sizes is reduced as well: the

distribution P(w) scales not as w−3/2 but as w−2 (Neher

and Shraiman 2011), so there are fewer chances for the

complex adaptation to arise on a mutant background and

fix.
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Figure 3 Valley crossing times in the sequential fixation
(left) and tunneling (right) regimes as a function of σ.
In both figures, s = 10−2 and δ = 10−3: on the left,
N = 104 and µ = 3 × 10−5, and on the right, N = 105 and
µ = 3 × 10−6. Labeling is as in figure 2.

On the other hand, the reduced effectiveness of selec-

tion should generally be helpful in crossing deeper valleys

by mitigating the deleterious effect of single mutants. This

can be seen in figure 4. At high values of σ, the fitness

effect of the deleterious intermediate mutation has very

little effect on the valley crossing time, which means that

deep valleys can be crossed. This suggests that travers-

ing rugged fitness landscapes by valley crossing may be

enhanced in rapidly adapting populations as landscapes

under genetic draft appear to be “flattened".

So far, we can see that valley crossing is slower in

rapidly adapting populations but the crossing time is less

sensitive to the depth of the valley. How do these two

effects combine to shape the likelihood of valley cross-

ing in rapidly adapting populations experiencing genetic

draft compared to populations only experiencing drift? To

6 5 4 3 2
log10( )

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

lo
g 1

0(
)

=5×10 6

=5×10 2

Figure 4 Valley crossing times for varied σ and δ. In
these simulations, N = 105, µ = 3 × 10−6, and s = 10−2.
Note the lack of dependence on δ at high σ.

explore this, we first introduce the ratio α = τvalley/τsweep,

where τsweep is the time required for a single beneficial

mutation to sweep to fixation and τvalley is the time re-

quired for a valley crossing event to occur. By comparing

how α changes as a function of the strength of selection

on linked variation, σ, we can determine how σ affects

the speed of valley crossing relative to simple beneficial

sweeps. Higher (or lower) values of α mean that valley

crossing times increase (or decrease) relative to the time

required for a simple beneficial sweep. Though the precise

value of this ratio depends on δ and on the selection coeffi-

cients svalley and ssweep of the complex adaptation and the

single beneficial mutation, respectively, a general trend

nonetheless emerges. In Figure 5, we set ssweep = 0.01,

ssweep = 0.1, and µ = 10−5. Figure 5b shows the expected

pattern that deeper valleys in smaller populations take

longer to cross. At a higher value of σ, valley depth has

a weaker effect on the valley crossing time in both an

absolute sense (Figure 5a) and relative to the time for a

single beneficial sweep (Figure 5b). Moreover, values of

α are generally lower for the population with higher σ

experiencing genetic draft than for the population with

lower σ experiencing only drift. This implies that draft

tends reduce the valley crossing time relative to the time

for a single beneficial mutation to sweep.

We can get a clearer picture of how draft affects valley
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Figure 5 Behavior of valley crossing times for varied δ,
N, and σ. In all cases, ssweep = 0.01, svalley = 0.1, and

µ = 10−5. Panel (a) shows that valley crossing times τ
increase with δ and σ but decrease with N, as predicted.
Panel (b) shows the ratio α = τvalley/τsweep as a function
of δ, N, and σ.

crossing times relative to single beneficial sweeps by con-

sidering the ratio ασ2/ασ1
where σ1 = 10−6 and σ2 = 10−2,

which is a measure of the extent to which rapid adaptation

speeds up valley crossing relative to sweeping (lower val-

ues indicate that rapid adaptation favors valley crossing).

The ratio can be seen in Figure 6. Overall, we find that

raising σ increases the extent to which valley crossing is

favored for lower population sizes: for this combination

of parameters, the condition is N < 105. In this regime,

raising δ also increases the degree to which valley crossing

is favored under draft, which means that the deeper the

valley, the more that draft increases the likelihood of val-

ley crossing relative to a single beneficial mutation. The

exception is at very high values of N and δ and low values

of µ, where draft turns out again not to be helpful; see the

lower right part of the leftmost plot. In this regime, δ is

on the order of σ in our draft simulations, meaning that

single mutant lineages are rapidly cut off by the advanc-

ing mean fitness and are likely almost never present in

the nose of the fitness distribution. Essentially, the popu-

lation size is large enough that intermediate mutants can

be “seen" by selection, but the fitness detriment is severe

enough compared to σ that draft is no longer helpful in

allowing mutant lineages to reach high frequency. This

problem disappears as µ increases (center and right plots)

and the population is beyond the deleterious tunneling

barrier where the valley crossing time depends on the

depth of the valley δ.

Discussion

We have used simulation methods to examine the rate of

crossing fitness valleys in rapidly adapting populations

that experience genetic draft. We find that although the

overall valley crossing time is longer in rapidly adapting

than in slowly adapting (drifting) populations, a higher

fraction of adaptive events in rapidly adapting popula-

tions will occur through valley crossing than in slowly

adapting populations. This mean that the genetic draft

that results from rapid adaptation accelerates the rate at

which populations escape from local peaks in a fitness

landscape and move towards global peaks. Thus, adapta-

tion at loci unhindered by genetic draft occurs faster but is

more likely to get stuck on a local peak in a rugged fitness

landscape.

The source of this difference in behavior between popu-

lations experiencing genetic draft and those experiencing

drift comes from two effects. First, the effect of the dele-

terious intermediate in the rapidly adapting population

is much smaller: for δ . σ, the precise value of δ al-

most does not affect the crossing rate. Second, the time to

the evolution of even simple adaptations (i.e., ones requr-

ing substitution only at a single locus) is much longer in

rapidly adapting populations. This means that the pres-

ence of a fitness valley is not as steep of an impediment

to the evolution of a complex adaptation for a drafting

Genetic draft and valley crossing 9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2018. ; https://doi.org/10.1101/383737doi: bioRxiv preprint 

https://doi.org/10.1101/383737
http://creativecommons.org/licenses/by-nc/4.0/


0 10 4.5 10 4 10 3.5 10 3 10 2.5 10 2

103

103.5

104

104.5

105

105.5

106

N

1=5×10 5

0 10 4.5 10 4 10 3.5 10 3 10 2.5 10 2

2=10 4

0 10 4.5 10 4 10 3.5 10 3 10 2.5 10 2

3=5×10 4

0.8

0.6

0.4

0.2

0.0

0.2

lo
g 1

0(
2/

1)

Figure 6 Ratio of α values at high and low σ (log (ασ2/ασ1) where σ1 = 10−6 and σ2 = 10−2), for varied values of µ.
Genetic draft is helpful for crossing deep valleys in the sequential fixation and tunneling regimes, though at large
population sizes it can slow down the crossing rate for deep valleys; at higher values of µ this limitation disappears.

population as it is for a drifting one.

Our results complement and build on those of Ochs

and Desai (2015), who compared valley crossing and a

sweeping beneficial mutation in a slowly evolving popu-

lation. They considered the scenario where the sweeping

beneficial mutation competes with a particular complex

adaptation, whereas we treat these two scenarios sepa-

rately. They find that large populations are more likely

to cross valleys than fix a simple beneficial mutation than

small populations (for comparison, see the σ = 5 × 10−6

panel in our Figure 5b). However, they also find that

intermediate-sized populations in which stochastic tun-

neling occurs are the least likely to cross a fitness valley

instead of fixing a beneficial mutation. In contrast, our re-

sults suggest that the stochastic tunneling regime is where

rapid adaptation and genetic draft increase the likelihood

of valley crossing relative to a simple beneficial mutation.

Thus, it is possible that genetic draft improves the likeli-

hood of valley crossing precisely where it is least likely

under genetic drift.

We have focused exclusively on asexual populations,

but extensions to sexual populations are possible. The

relevant parameter is likely to be the product of N and the

proportion of the fitness standard deviation segregating

in a small, effectively asexual block, σb (Neher et al. 2013).

If both Nσ and Nσb are large, and the focal loci segregate

in the same block, then the analysis presented here should

determine the crossing time. If, on the other hand, Nσ

is large but Nσb is small, or the map distance between

the focal loci is much larger than the block length, then

recombination between the focal loci can be modeled as

“free", with individuals effectively shuffling their entire

genomes every generation. In that case, the communal

recombination analysis of Neher and Shraiman (2011) and

Neher et al. (2010) is likely to be important: the relation-

ship between σ and the recombination rate ρ determines

the crossing rate. If σ is large, then draft dominates the

crossing rate: if ρ is large, then drift dominates it.

One common feature of the effect of genetic draft and

population subdivision on valley crossing is that they

both increase the appearance of complex adaptations by

reducing selection against deleterious intermediates (i.e.,

the valley genotypes). In contrast, high migration rates

and high recombination rates (Neher and Shraiman 2009)

allow selection to more easily remove deleterious inter-

mediates. This commonality has implications for Wright’s
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“shifting balance theory" (Wright 1932), which posits that

population subdivision can enhance evolution on rugged

fitness landscapes: deleterious intermediates accumulate

due to genetic drift induced by subdivision, and sub-

sequent beneficial mutations fix both in locally and are

spread globally due to migration. However, it has long

been known that the shifting balance theory has impor-

tant limitations due to the fact that too much migration

prevents the accumulation of deleterious intermediates

and too little reduces the success of genotypes from the

fitter peaks and prevents them from spreading through-

out the metapopulation (Coyne et al. 2000; Van Cleve and

Weissman 2015). Recent work by Bitbol and Schwab (2014)

confirms the fact that intermediate migration rates yield

the fastest valley crossing times; however, it also finds

that valley crossing is faster in subdivided populations

with these intermediate migration rates than in panmictic

populations.

In light of our results that show that genetic draft can

improve the likelihood of valley crossing, populations

which experience both subdivision and rapid adaptation

are ideal candidates in which the shifting balance the-

ory may apply. Such populations include HIV, in which

host-specific adaptations evolve quickly (Zhang et al. 1997;

Wain et al. 2007; Dapp et al. 2017; Theys et al. 2018) and

in which deleterious mutations are known to hitchhike

to high frequency (Zanini and Neher 2013; Zanini et al.

2015). Our work also shines light on the likely pathway

through which multi-drug resistance evolves in HIV. In

recent years of the HIV pandemic, resistance has generally

been slower to evolve (Feder et al. 2015) because more and

stronger drugs are used. There are two possible expla-

nations for this. One is that the use of anti-HIV drugs

decreases the number of virions segregating within an

individual, thus lowering the number of possible chances

for a resistant phenotype to appear. The other is that such

drugs, especially when used in concert, contort the fitness

landscape so that evolution of a phenotype that is resis-

tant to a drug cocktail is more difficult. Both factors are

likely to play a role. However, since HIV is a population

in which draft, not drift, is the dominant stochastic force

and hence population size is less important in determin-

ing the evolutionary dynamics, our work suggests that

the second factor is likely to be more significant in HIV

compared to organisms in which draft is less important.

Our results for the dynamics of valley crossing under

genetic draft are likely to be important for other evolution-

ary problems in which stochastic forces are known to be

important. For example, there is a sort of duality between

the evolution of complex adaptations and the evolution of

cooperation, which can be seen as a complex behavioral

adaptation where the highest per capita fitness at equi-

librium requires the combination of multiple cooperative

individuals (i.e., the combination of genes among differ-

ent individuals instead among different loci). In social

evolution theory, high migration rates between demes,

which cause organisms to be less likely to interact with

close kin, disfavor the evolution of cooperation: likewise,

when migration rates are low, cooperation can be favored

(Hamilton 1970; Rousset 2004; Van Cleve 2015). Evolution-

ary forces which strengthen existing associations between

loci are more likely to lead to such complex phenotypes:

evolutionary forces which weaken these associations hin-

der their evolution. This reasoning applies whether the

loci in question appear in the same individual (as in the

case of sign epistasis) or in different individuals (as in the

case of social evolution). These effects can even interact:

cooperation can function as an additional evolutionary

force that favors valley crossing (Obolski et al. 2017) and

can in some cases be a valley crossing adaptation in itself

(Van Cleve and Lehmann 2013). The interplay between co-

operation and valley crossing is an area that needs further

study, as it may shed light on the evolution of cooperation

within large microbial populations such as yeast (Gore

et al. 2009; Sanchez and Gore 2013) and bacterial biofilms

(Rainey and Rainey 2003; van Gestel et al. 2014).
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