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Mendelian randomisation (MR) analysis is an important tool to elucidate the causal relevance

of environmental and biological risk factors for disease. However, causal inference is

undermined if genetic variants used to instrument a risk factor also influence alternative

disease-pathways (horizontal pleiotropy). Here we report how the ‘no horizontal pleiotropy

assumption’ is strengthened when proteins are the risk factors of interest. Proteins are

typically the proximal effectors of biological processes encoded in the genome. Moreover,

proteins are the targets of most medicines, so MR studies of drug targets are becoming a

fundamental tool in drug development. To enable such studies, we introduce a mathematical

framework that contrasts MR analysis of proteins with that of risk factors located more

distally in the causal chain from gene to disease. We illustrate key model decisions and

introduce an analytical framework for maximising power and evaluating the robustness of

analyses.
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Mendelian randomisation (MR) studies estimate the
causal relationship of a risk factor of interest to disease
outcomes using genetic variants as instruments to index

the risk factor. The naturally randomised allocation of genetic
variation at conception limits the potential for confounding,
which compromises causal inference drawn from the directly
observed association between risk factor and disease1.

Risk factors of interest (some of which are amenable to mod-
ification by drugs or behaviour change) can be both exogenous
and endogenous, encompassing health-related behaviours (e.g.
smoking and alcohol consumption), complex biological traits (e.g.
blood pressure and body mass index) or circulating constituents
of the blood e.g. complex analytes such as lipoproteins, metabo-
lites such as uric acid, or proteins such as interleukin-
62–4 (protein quantitative trait loci; pQTL). Interest has also
emerged in tissue-level mRNA expression as an exposure of
interest5 (expression quantitative trait loci; eQTL).

Most prior MR analyses utilise an approach whereby multiple
SNPs identified from GWAS are used as instruments to increase
precision. SNPs are drawn from throughout the genome, often
with a single variant selected per locus ensuring instruments are
independent (i.e. in linkage equilibrium, LD); preventing erro-
neously statistical significance. This standard approach has been
applied regardless of the position of the exposure of interest in the
biological pathway connecting genetic variation to disease risk.

As an example, prior work used MR analysis to assess the causal
relevance of the major circulating lipid fractions (LDL-C, HDL-C
and triglycerides) for coronary heart disease (CHD), utilising var-
iants from throughout the genome as instruments. However, the
approach we explore in this paper uses genetic instruments
restricted to the target of interest (acting in cis). The two approaches
are both relevant but seek to answer different questions. Whereas
the former addresses the causal relevance of the biomarker for
CHD, the latter seeks to address whether modification of a specified
drug target will reduce CHD and uses the biomarker as a proxy of
protein concentration and activity. These two approaches may yield
different estimates when the protein drug target, for example CETP,
affects multiple pathways (e.g. HDL-C and LDL-C) through so-
called post-translational pleiotropy (defined below).

Implicitly cis-MR analyses of drug targets such as CETP,
attempt to understand the involvement of the encoded protein in
a disease. When proteins of interest are potentially druggable (as
with CETP) such MR analyses can be referred to as ‘drug target
MR’. Recent technological developments enable measurement of
hundreds or thousands of proteins on an –omics scale in a single
biological sample4. This opens up the possibility of scaled drug
target MR analysis of thousands of proteins against hundreds of
diseases to inform understanding of their causes and improve
drug development yield.

In the current manuscript we develop a mathematical framework
for drug target MR, showing why these analyses are more robust
than MR analyses of more distal traits. We next discuss the choice of
exposure variables (mRNA, protein or downstream biomarker),
indicating that proteins may be preferred as exposures but when
unavailable that drug target MR analyse weighted by mRNA or
downstream biomarkers may provide valid test of a protein’ effect
on disease. Next, we introduce four positive control loci that encode
targets of licensed or clinical phase drugs (HMGCR, PCSK9,
NPC1L1, and CETP), and empirically evaluate instrument selection
strategies, proposing a scalable approach to maximise power while
safeguarding against erroneous significance. We further show that
tissue-specific drug target MR estimates of eQTL weighted analyses
do not always agree with that of similar blood-based pQTL analyses
or with evidence from drug trials. Finally, the scalability of our
approach is showcased in a phenome-wide scan of an additional five
targets on 35 therapeutically relevant outcomes.

Results
A mathematical framework for cis-MR analysis. MR studies
determine the causal effect of a risk factor on a disease using
instrumental variable (IV) methods6, leveraging two estimates:
the genetic association with the risk factor (exposure) and the
genetic association with the disease (outcome). For the effect
estimate in MR to equate to a causal estimate the following cri-
tical assumptions should hold: (i) the genetic instrument is
(strongly) associated with the exposure, (ii) the genetic instru-
ment is independent of observed and unobserved confounders of
the exposure-outcome association (which is secure because
genetic variants are fixed and allocated at random), and (iii)
conditional on the exposure and confounders, the genetic
instrument is independent of the outcome (i.e. there is no
instrument—outcome effect other than through the exposure of
interest—the ‘no horizontal pleiotropy’ assumption).

The no horizontal pleiotropy assumption is violated when there
are additional pathways by which the instrument may be related to
the disease, sidestepping the exposure of interest. In contrast, the
association of a genetic instrument with exposures that lie in the
causal chain distal to the exposure of interest (vertical pleiotropy7)
does not violate the assumptions underpinning MR analysis. When
proteins serve as the exposure of interest in MR analysis, it becomes
possible to give biological context to the concepts of vertical and
horizontal pleiotropy. This is because horizontal pleiotropy equates
to pathways from gene to disease, which precede translation of the
protein of interest, e.g. through alternative splicing or micro-RNA
effects. By contrast, vertical pleiotropy refers to the downstream
actions of the translated protein, which should be reproduced by a
drug with specific action on the protein. Therefore, in the context of
MR analysis of proteins, vertical and horizontal pleiotropy
correspond to ‘pre-’ and ‘post’-translational effects, respectively. In
the methods section we describe how to analytically explore and
adjust for horizontal pleiotropy.

Figure 1 illustrates the MR considerations, where a genetic
variant (G) influences the disease risk (D) directly (ϕG) or
through its effect (~δ) on a protein (P), which exerts its action
through a downstream biomarker (X), which in turn influences
disease risk. The relevant genetic effects can be resolved as
follows:

(1) The genetic effect on the protein ~δ.
(2) The genetic effect on a downstream complex biomarker ~δμ.
(3) The genetic effect on disease ϕG þ ~δðϕP þ μθÞ, which

comprises:

(a) A direct effect of the variant on disease ϕG.
(b) An indirect effect: ~δðϕP þ μθÞ, which is a function of the

genetic effect on a protein ~δ, the direct effect of the protein
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� �
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�

Fig. 1 Directed acyclic graphs of potential Mendelian randomisation
pathways. Nodes are presented in bold face, with G representing a genetic
variant, P a protein drug target, X a biomarker, D the outcome, and U
(potentially unmeasured) common causes of both P, X, D. Labelled paths
represent the (causal) effects between nodes.
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on disease ϕP, the effect of the protein on a biomarker μ,
and the biomarker effect on disease θ.

Depending on the risk factor of interest, an MR analysis
constitutes a simple quotient of the genetic effect on disease by
the genetic effect on the risk factor. For example, if we are
interested in the causal effect the biomarker X on disease, i.e. θ,
we use the following ratio.

ϕG þ ~δ ϕP þ μθ
� �

~δμ
: ð1Þ

For this expression to equate to the causal effect on disease we
need to additionally assume that there is no horizontal pleiotropy,
in other words ϕG= ϕP= 0, which reduces the expression to:

ϕG þ ~δ ϕP þ μθ
� �

~δμ
¼

~δμθ
~δμ

;

¼ θ:

ð2Þ

In contrast, if we are interested in the causal effect of the
protein P on disease D, we want to obtain an estimate of ω, where
ω= ϕP+ μθ, and assuming ϕG= 0 we calculate the ratio:

~δ ϕP þ μθ
� �

~δ
¼ ϕP þ μθ;

¼ ω:

ð3Þ

Critically, where the causal effect of the protein is the
parameter of interest, we only need to assume that there is no
direct effect of the genetic variant on disease, i.e. ϕG= 0, and the
protein can have any mixture of direct (ϕP), and indirect (μθ)
effects. For this reason, MR analysis of protein-disease relation-
ships is less prone to violation of the ‘no horizontal pleiotropy’
assumption than MR analysis of downstream exposures. In the
methods section we further elaborate on the statistical inference
of drug target MR analyses using genetic associations with up- or
downstream proxies of a (protein) drug target. We show that in
most cases the estimand is distinct from ω. However, under the
same no pre-translational pleiotropy assumption, statistical tests
will correctly reject the null-hypothesis ω= 0, without inflated
false positive rates. In addition, we prove that in the presence of
post-translational pleiotropy drug target MR remains valid, even
when a downstream proxy (such as lipids) does not causally affect
disease.

Selection of loci encoding proteins. Unlike MR analysis of non-
protein traits, where it has become common to select instruments
from throughout the genome, cis-MR analysis necessitates the
selection of genetic variants from within or near a protein-coding
gene. The Ensembl 97 GRCh38 human genome assembly con-
tains an estimated 20,454 protein-coding genes, encoding an
estimated 24,700 protein-coding transcripts (merged Ensembl/
Havana annotation). Of these transcripts, 21,869 have a degree of
experimental support for the presence of these transcripts. In
addition, UniProt (version 2019_06, combining SwissProt and
TrEMBL) reports 20,416 high quality manually annotated
proteins.

Selection of loci encoding druggable genes. Not all encoded
proteins are amenable to pharmacological action by (small
molecule) drugs, or peptide and monoclonal antibody ther-
apeutics, which currently account for the majority of medicines.
cis-MR for drug target validation requires the selection of genes
encoding druggable proteins. Progressive efforts to delineate the
druggable genome8,9 (available through the DGI database
(DGIdb10), have culminated in the latest iteration containing

4,479 genes11 encompassing targets of existing therapeutics,
potentially druggable close orthologues and targets accessible by
monoclonal antibodies. Of these, ChEMBL v.24 identifies 896
genes as encoding the target components for existing ther-
apeutics. These include single protein targets, protein complex
targets and targets comprising whole protein families. A further
535 genes encode target components of compounds currently in
clinical testing. The druggable genome is not static and will be
redefined periodically, reflecting changes in drug targeting
mechanisms. However, currently, to define the druggable genome
is to progressively reduce the high-dimensional search space for
genetic instruments from the whole genome to around 20,000
protein-coding genes to fewer than 5000 genes encoding drug-
gable targets. As such, a specific subset of cis-MR can inform drug
development, which we term ‘drug target MR’.

Instrument selection. Drug target MR focuses on a gene known
to encode a protein drug target, and variants within and around a
gene are used to characterise the effect(s) of the drug target on a
single or multiple outcome(s). Given the inferential target, it
would seem logical to select variants based on the variant to
protein level association (~δ) in a relevant tissue. Ideally one would
only select causal variants known to affect the drug target,
maximising precision (power). However, typically the nature and
number of causal variant(s) is unknown, imposing the need for
instrument selection. Similarly, while the first GWAS on the
proteome are becoming available, currently most drug target MR
analyses utilise biomarkers downstream of the drug target pro-
tein. As such, to evaluate the current modus operandi, we explore
instrument selection using biomarker proxies, and compare this
to using the actual pQTL effects, and alternatively eQTL effects
(as upstream proxies of a drug target).

In such cases, variants are often selected based on (1) a
biomarker association (e.g. LDL-C in the case of PCSK9 discussed
earlier), (2) predicted functionality; and (3) low LD, typically
including a single12,13 or perhaps a handful of SNPs14,15, out of a
multitude of potential candidate SNPs. It is often unclear how
well such a small subset of SNPs characterises the drug
target effect, and how influential such strategies are on the final
result.

To explore this, we mimicked instrument selection by
repeatedly (500 times) sampling four SNPs at random per locus
from four known drug target encoding loci HMGCR (statins),
NPC1L1 (ezetimibe), PCSK9 (PCSK9 inhibitors), and CETP
(CETP inhibitors). These loci contain variants that influence
LDL-cholesterol (HMGCR, NPC1L1, PCSK9, CETP) with variants
at the CETP locus additionally influencing HDL-cholesterol and
triglycerides as identified by the Global Lipids Genetics
Consortium (GLGC16). We used a generalised least squares
(GLS) method17,18 to account for pairwise LD between variants at
each locus. Variants were extracted from within the gene ±2.5 kB,
with a minor allele frequency (MAF) above 0.01, and LD <0.80
(Supplementary Tables 1–5, Supplementary Fig. 1).

The first and third quartiles (Q) of the CHD odds ratios (OR)
per standard deviation (SD) in LDL-C for HMGCR, NPC1L1,
PCSK9 (or HDL-C in the case of CETP) indicated modest
variability in the point estimate: (Q1 1.61, Q3 1.78) for HMGCR,
(Q1 1.42, Q3 1.77) for PCSK9, (Q1 1.19, Q3 1.68) for NPC1L1,
and (Q1 0.87, Q3 0.91) for CETP. Between 95 and 99% of the
estimates across all four genes were in the expected direction as
inferred from the findings of drugs used in clinical trials to target
the corresponding proteins19–25.

We further categorised effect estimates based on the EnsEMBL
Variant Effect Prediction (VEP)26 of each variant (Fig. 2), finding
little to no difference between estimates derived using non-coding
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variants only and those estimates based on functional variants.
The overall stability and agreement between estimates derived
with or without functional annotations suggests a strong
influence of multivariate LD between the selected and unselected
variants in small cis-regions (Supplementary Fig. 1). We did
however observe a large degree of variability in the p values which
is explored in the subsequent section (Supplementary Fig. 2).

Taking advantage of linkage disequilibrium within the region.
Given the observed influence of LD it seems desirable to leverage
this in drug target MR. For example, after defining a cis-genetic
region (discussed further below) one can LD-clump highly cor-
related variants that might destabilise a statistical model (multi-
collinearity) and account for remaining pairwise LD using an LD-
reference panel to maximize power and decrease variability.
Besides increasing power and robustness, this strategy introduces
some complexities, e.g. the choice of LD threshold.

The effect of LD thresholds can be readily explored by
performing a ‘grid search’, clumping variants at different R-
squared thresholds. From modelling theory (and empirically:
Fig. 2), one would expect that when using such a grid search the
point estimate stabilises early (at low thresholds), while the
standard errors decrease further until, at a certain point,

multicollinearity results in a clear deviation from the overall
tendency. Such a grid search was implemented in Fig. 3 showing
signs of multicollinearity for the HMGCR and PCSK9 estimates,
but less so for NPC1L1. While trends observed for HMGCR and
PCSK9 are examples of what one would expect on theoretical
grounds, this does not occur at the same threshold, and seemingly
not at all for the CETP locus. Given the ongoing debate on
whether the beneficial effect of CETP-inhibition depends on
HDL-C raising or LDL-C lowering activity, we repeated these
analyses using LDL-C weights (Supplementary Fig. 3) with
similar results to those observed using HDL-C weights.

Linkage disequilibrium modelling compared with selecting
functional variants. Based on these considerations, we explored
the performance of a very limited instrument selection strategy,
geared towards characterising a cis-genetic region encoding a
drug target as fully as possible by (1) considering all variants with
limited LD clumping to prevent multicollinearity; (2) selecting the
most significant variant in an ‘LD-block’; (3) modelling LD using
external data such as the 1000 genomes reference panel. This
strategy (with R2= 0.60) was applied to our four empirical
examples and compared with MR estimates at the same locus
using only variants with strong evidence of function based on

N: 93 N: 69 N: 59 N: 140 N: 18 N: 51 N: 55 N: 150.2

0.5

1.0

2.0

4.0

Non
e

M
iss

UTR 5

UTR 3

M
iss

 &
 U

TR 5

M
iss

 &
 U

TR 3

3 
& 5

 U
TR

M
iss

, 3
 &

 5
 U

TR

O
R

(p
er

 S
D

 L
D

L−
C

)

HMGCR

N: 112N: 52 N: 44 N: 65 N: 70 N: 23 N: 21 N: 21 N: 31 N: 22 N: 21 N: 5 N: 7

2.50

1.50

1.00

0.75

Non
e

UTR 3
M

iss

Spli
ce Up

M
iss

 &
 U

p

M
iss

 &
 U

TR 3

M
iss

 &
 S

pli
ce

UTR 3
 &

 S
pli

ce

UTR 3
 &

 U
p

Spli
ce

 &
 U

p

M
iss

, S
pli

ce
 &

 U
p

M
iss

, U
TR 3

 &
 S

pli
ce

O
R

(p
er

 S
D

 L
D

L−
C

)

PCSK9

N: 56 N: 35 N: 82 N: 151 N: 29 N: 29 N: 99 N: 19
0.5

1.0

2.0

4.0

Non
e

UTR 5

Syn
on Up

UTR 5
 &

 S
yn

on

UTR 5
 &

 U
p

Syn
on

 &
 U

p

UTR 5
  &

 S
yn

on
 &

 U
p

O
R

(p
er

 S
D

 L
D

L−
C

)

NPC1L1

N: 68 N: 18 N: 19 N: 17 N: 14 N: 232 N: 25 N: 21 N: 29 N: 31

1.10

1.00

0.90

0.75

Non
e

M
iss

UTR 5

UTR 3

Syn
on Up

M
iss

 &
 U

p

Syn
on

 &
 U

p

UTR 5
 &

 S
yn

on

UTR 3
 &

 U
p

O
R

(p
er

 S
D

 H
D

L−
C

)

CETP

Fig. 2 Instrument selection related variation in the point estimates of drug target Mendelian randomisation studies on the lipid’s association with
CHD. Each estimate is based on randomly (500 iterations) selecting 4 SNPs out of 17 HMGCR, 30 PCSK9, 21 NPC1L1, 36 CETP candidate variants. Lipids data
were used from the GLGC and linked to coronary heart disease data from CardiogramPlusC4D. estimates were grouped by the inclusion of instruments
with worsted predicted functional or regulatory consequence; categories occurring less than five times were removed. Any pairwise LD was accounted for
using the 1000 genomes ‘EUR’ reference panel and a generalised least squares method17. The boxplots depict quartiles 1, 2 (median), and 3 as a box, with
the whiskers presented as vertical bars and values ±1.5 times the interquartile range as dots.
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VEP (Fig. 4 and Supplementary Tables 6–9). We found general
agreement between the effect estimates from both analytical
approaches, with the GLS estimates having higher precision (1/
SE) than those based on functional variants alone. For example,
the precision of the two PCSK9 splice variants used in MR was
5.72 compared with 13.33 for the GLS estimates (incorporating
variants selected based on LD structure irrespective of function).

These results confirm that precision/power is increased by
including more correlated variants. To prevent erroneously low p
values in such analyses, we accounted (conditioned) for pairwise
LD using the European 1000 genomes panel. We further
investigated the influence of different 1000G ancestry reference

panels on the effect estimates and found these to be stable for the
four examples evaluated (Supplementary Fig. 4); although
significance of the NPC1L1 was dependent on the panel used.
We did, however, observe that the GLS method often failed
because of (small) changes in LD resulting in multicollinearity.
After inspection, this seemed to be related to LD-estimates of low
MAF variants varying across ethnicities (Supplementary Fig. 5).
Improved behaviour may be expected with either increased
sample size (1000G sample size n~100), or with the removal of
low MAF variants (at the risk of losing information).

Drug target MR using pQTLs. The analyses to this point utilised
lipid exposures to index the effect of four drug targets. Large scale
GWAS studies of the proteome have recently become possible
(e.g. the INTERVAL study4), opening up the possibility of using
the genetic effect on protein concentration as a more direct proxy
of the drug target effects. Of the four proteins considered thus far,
we had access to pQTL estimates from GWAS of circulating
CETP and PCSK9 concentration measured by enzyme-linked
immunosorbent assays (ELISA)27,28 in about 4000 and
3000 subjects, respectively. Initially focussing on variants in the
same ±2.5 kB region as before, we found circulating CETP
increased CHD risk, consistent with the findings of a recent large-
scale clinical trial where CETP inhibition reduces CHD risk
(Fig. 5). Similarly convincing results were observed for the ana-
lyses of log(PCSK9) concentration and CHD.

In the biomarker weighted analysis, the size of the genetic
flanking region was constrained to prevent erroneously modelling
effects from neighbouring genes not encoding the drug target of
interest (horizontal pleiotropy). However, pQTL associations
provide a direct estimate of the genetic association with the drug-
target and hence may reduce the need to focus on small flaking
regions. We therefore compared findings from the ±2.5 kB region
to pQTL MR results using a broader ±1MB flanking region. To
further guard against potential horizontal pleiotropy (for example
through LD) we additionally implemented the Egger adjustment.
CETP was (again) robustly causally associated with CHD, with
larger R-squared values decreasing variability without any
indication of model instability (Fig. 5). Due to the limited
number of additional variants, the ±1MB PCSK9 pQTL analysis
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Fig. 3 Mendelian randomisation estimates of the lipids weighted associations with CHD under increasingly liberal LD-clumping thresholds. Lipids data
were used from the GLGC, and linked to coronary heart disease data from CardiogramPlusC4D. Pairwise LD remaining after LD-clumping was accounted
for using the 1000 genomes ‘EUR’ reference panel52 and a generalised least squares method17. Estimates for PCSK9, HMGCR, and NPC1L1 are given per SD
in LDL-C, CETP estimates per HDL-C reflecting the likely effectiveness pathway to CHD. The number of included variants is depicted above the x-axis.
Estimates are given as OR with 95%CI (vertical error bars).
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Fig. 4 Mendelian randomisation estimates of the lipids weighted
associations with CHD stratified by functionally of the included variants.
Lipids data were used from the GLGC, and linked to coronary heart disease
data from CardiogramPlusC4D. Pairwise LD remaining (after clumping on
R-squared of 0.60) was accounted for using the 1000 genomes ‘EUR’
reference panel52 and a (GLS) generalised least squares method17.
Estimates for PCSK9, HMGCR, and NPC1L1 are given per SD in LDL-C, CETP
estimates per HDL-C reflecting the likely effectiveness pathway to CHD.
Estimates are given as OR with 95%CI (vertical error bars). Numerical
details, including the number of variants used, are provided in
Supplementary Tables 6–9.
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did not differ markedly from the ±2.5 kB, and the MR-Egger
estimate was fairly unstable.

We further performed eQTL weighted analyses of the same
positive control drug targets, observing persistent directional
discordance between the tissue specific CHD association of a
single drug target. For example, PCSK9 mRNA expression in the
adrenal gland was associated with an increase in CHD risk: OR
1.09 (95%CI 1.02; 1.16), while PCSK9 expression in the uterus
was associated with decreased CHD risk: OR 0.92 (95% 0.88;
0.97). This discordance was not explained by horizontal
pleiotropy, region size, or influence of enhancer variants
(Supplementary Discussion, and Supplementary Tables 9,10).

Further examples: phenome-wide drug target analysis. To
further showcase the generalisability of the proposed approach,
we conducted drug target analyses focussing on circulating pro-
teins that are the direct efficacy targets of clinical phase devel-
opmental or licensed drugs. Genetic instruments for cis-MR
analyses were identified from the INTERVAL study which con-
ducted a GWAS of around 3000 circulating proteins4, measured
using the Somalogic aptamer-based proteomics platform. From
the reported data we identified five proteins encoded in the
druggable genome11 (F10, IL-12B, PLG, IL-1R1, MMP-9) for
which sufficient sentinel variants could be identified. We then
conducted a phenome-wide drug target MR analysis against 35
clinically relevant disease and biomarker phenotypes (see
‘Methods’).

Circulating factor X (encoded by F10) was associated with a
higher risk of any stroke (OR 1.13 95%CI, 1.05,1.21), which is
keeping with the use of direct-acting anticoagulant drugs that
inhibit factor X (e.g. apixaban) to prevent stroke in patients with
atrial fibrillation (AF)29. Furthermore, we found a possible effect

of factor X on asthma (OR 0.78 95%CI 0.62, 0.99) (Fig. 6). The
monoclonal antibody ustekinumab directed against a common
subunit of interleukin 12 and interleukin 23 interferes with the
binding of these cytokines with the IL-12 receptor to inhibit
inflammatory signalling30. Ustekinumab has European marketing
authorisation for the treatment of psoriasis and Crohn’s disease
(CD) after demonstrating efficacy in clinical trials31, and is under
evaluation for ulcerative colitis (UC). Consistent with this,
genetically instrumented higher interleukin-12 subunit beta
(encoded by IL12B) was associated with a higher risk of CD
(OR 2.02; 95% CI 1.48, 2.76), UC (OR 1.56; 95% CI, 1.31, 1.87),
and inflammatory bowel disease (IBD) (OR 1.56 95%CI 1.31,
1.87) (Fig. 6). Genetically-instrumented higher circulating con-
centration of plasminogen (encoded by PLG) was associated with
a lower ischaemic stroke risk (OR 0.85; 95% CI 0.72, 1.00)
(Fig. 6), consistent with the known efficacy of recombinant tissue
plasminogen activator (tPA) for acute ischaemic stroke32. The
PLG association with an increased risk of any stroke (OR 1.06;
95%CI 1.01, 1.11) is presumably due to an increase in
haemorrhagic events. Increased levels of PLG were furthermore
associated with increased risk of AF, IBD, CD, Alzheimer’s
disease (Fig. 6) as well as lipids, and increased SBP (Fig. 6), but
these effects may not be observed therapeutically because tPA is
given as a single dose in acute MI and ischaemic stroke. Higher
circulating concentration of interleukin-1 receptor 1 (encoded by
IL1R1) was associated with a lower risk of both CD, IBD and UC.
This would be in keeping with the circulating form of the receptor
functioning as decoy to reduce signalling through the membrane-
bound form of the receptor by the pro-inflammatory cytokine
interleukin 1β. We also found evidence through cis-MR of a
causative role for MMP9 in CD and IBD. Recent phase 2 trials
failed to demonstrate efficacy of andecaliximab, a monoclonal
antibody targeting MMP9 in either UC or CD33,34 (Fig. 6).
However, given the evidence from the MR analysis, further
consideration should be given to the type, dose, frequency and
duration of ant-MMP9 therapy in Crohn’s disease before this
target is discounted for these diseases.

Discussion
We have used biological and mathematical arguments to for-
malise the distinction between locus-specific Mendelian rando-
misation (MR) analysis for drug target validation, where the
appropriate instruments are variants in or within the vicinity of
the encoding genes, and other types of MR analysis, e.g. for risk
factor validation, where instruments are used from throughout
the genome. Using algebraic derivations, we show that because
drug target MR considers the effects of perturbing a protein drug
target on disease, this type of MR may be applied in settings
where traditional MR, focussed on distal traits, could be biased
through horizontal pleiotropy. We also illustrate the challenges
when undertaking MR for drug target validation. These include
defining the loci of interest, accounting for linkage dis-
equilibrium, and selecting the exposure through which to weight
the genetic outcome association.

We discuss resources available for the identification of ‘drug-
gable’ protein-coding genes and show that, because MR for drug
target validation is framed as a cis-focused analysis, instrument
selection is distinct from that for MR for validating the causal
relevance of a non-protein or environmental exposure. We
investigated strategies for characterising the drug target-encoding
region through linkage disequilibrium (LD). Grid-search algo-
rithms were introduced aiding researcher in optimising LD-
thresholds, as well as genetic regions, with intuitive sensitivity
analyses to estimate robustness to the choices of LD reference
panel, the presence of functional variants as well as regulatory
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Fig. 5 Mendelian randomisation estimates of protein level effects on
CHD, with a grid of LD threshold. Pairwise LD was accounted for using the
1000 genomes ‘EUR’ reference panel52 and a (GLS) generalised least
squares method17 with or without Egger correction for possible horizontal
pleiotropy. The number of included variants in the 1 mega base flanking
region is depicted above the x-axis of the top panels. Estimates are given as
OR with 95%CI (vertical error bars). The top panel depicts the variant to
CHD or protein level effect for clumping threshold 0.5 for CETP (based on
an Egger correct GLS model), and at 0.4 for PCSK9 using an IVW GLS
model; 38 and 9 variants, respectively. Notice that the PCSK9 estimates
were only available on the natural logarithmic scale.
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Outcome
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Fig. 6 A pQTL based drug target MR phenome wide scan. Results are presented as odds ratios with 95% confidence intervals (horizontal lines),
positioned in the protein increasing direction. The total number of events and sample size are provided in the forest plot.
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enhancers, and outliers using heterogeneity statistics. We further
introduce an exploratory analysis to determine the influence of
horizontal pleiotropy, pruning variants that associate with other
genes around a locus encoding a drug target (see Methods section
and Supplementary Information). Finally, we illustrate the gen-
eralisability of our approach by presenting findings from a pQTL
drug target phenome-wide scan across 35 clinically relevant
outcomes.

Due to our focus on four positive control examples, we were
able to perform exhaustive analyses on the robustness of drug
target MR findings based on regulatory versus coding variants
showing that robust causal inferences could be drawn from reg-
ulatory variants despite a widely held view that functional var-
iants should be naturally preferred in (drug target) MR. Instead
we showed that applying a straightforward clumping algorithm,
agnostic of the type of variants, resulted in the same OR, com-
pared with selecting functional variants, with greater precision
(increased power) by including larger numbers of (partially
dependent) variants. Similarly, we showed the limited influence of
LD-reference panels used in LD-modelling with non-European
ancestry panels resulting in comparable estimates. While pro-
mising, these findings should be replicated and above all extended
to a larger set of drug targets, for example to analyse targets
outside of the lipids-cardiovascular domain presented here.

While there are an impressive number of estimator functions
(see methods), there has been limited advice on instrument
selection for drug target MR, with sparse attention given to
empirically exploring the influence on MR estimates. This
manuscript addresses both issues and introduces a generic fra-
mework (Fig. 7) for obtaining robust inference of a drug target’
effect on disease, irrespective of the type of MR estimator method
preferred. In this framework we suggest that for each exposure
outcome pair grid-searches are employed to select the optimal LD
threshold and genetic region, while at the same time exploring the

robustness of MR estimates to LD-reference panel, the influence
of functional and regulatory variants, as well as assessing the
influence of outlying instruments.

MR of protein exposure have been conducted before, some-
times selecting both cis and trans and sometimes selecting only
trans variants. However, the use of cis instruments for MR ana-
lysis of proteins is less prone to violation of the horizontal
pleiotropy assumption than the use of trans instruments (see
Supplementary Methods) and is amply illustrated by the example
of C-reactive protein (CRP). Circulating CRP concentration is
associated with CHD risk in nonrandomized observational stu-
dies. In 2011, in a paradigm example, a cis-MR analysis of CRP in
CHD35 showed the nonrandomized association is non-causal.
Consistent findings were obtained by others36. Subsequent
GWAS of CRP have been conducted37 and have identified var-
iants in genes outside CRP (acting in trans) that associate with
CRP concentration, including in genes encoding the receptor for
the inflammatory cytokine IL-6 and APOC1, involved in lipid
metabolism. Variants in IL6R that are associated with lower CRP
concentration are associated with lower risk of CHD2,3 and
variants in APOC1 that are associated with higher concentration
of CRP are associated with increased risk of CHD38. However, it
would be erroneous to suppose that a trans-MR analysis of CRP
instrumented using APOC1 variants provides evidence of a causal
role of CRP in CHD38 since the same variants are also associated
with LDL-C. Clearly, leveraging variants in APOC1 (or IL6R)
acting in trans to probe the causal relevance of CRP for CHD
would introduce bias through horizontal pleiotropy. The same
argument applies to the use of variants in IL6R for the same
purpose. Signalling through the interleukin-6 receptor encoded
by IL6R influences many inflammatory molecules beyond CRP
that are the likely mediators of its effect on CHD.

Over 90% of drug targets are proteins, therefore weighting by
protein expression in a disease-relevant tissue would provide the

Drug target MR

Genetically linked exposure
and outcome data

Grid-search to optimize
parameter choice

Genetic
region

LD 
clumping

Sensitivity analyses

Functional+
regulatory
variants 

LD
Reference

panel

Outlier +
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Drug target viability 

Fig. 7 A proposed drug target MR analysis framework. The influence of LD and genetic region can be explored (and optimized) through simple grid-
searching. Robustness of model choices in LD reference panel, the selection of functional or regulatory variants, and outlying or influential (high leverage)
variants can be explored thorugh sensitivity analyses showcased here and in the supplementary analyses.
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most informative cis-MR analysis for drug target validation.
Many of the circulating proteins measured by the currently
available proteomics platforms (e.g. from Somalogic [2036
druggable proteins] or O-link [973 druggable proteins]) are the
actual biological efficacy targets of many licensed or develop-
mental therapeutics. Thus, the available data on the circulating
proteome already provide a step change in the ability to apply
genetic target validation. We have illustrated the potential of this
approach by conducting a cis-MR and PheWAS for five such
targets.

Where drugs bind membrane bound or intracellular proteins,
which subsequently affect non-protein constituents of the circu-
lating blood, drug target MR studies might fruitfully employ
genetic associations with downstream proxies of protein level and
concentration. We illustrated this with reference to four drug
targets for lipid-lowering (HMGCR, NPC1L1, PCSK9 and CETP).
For two of these targets (PCSK9 and CETP) it was also possible to
compare the findings of cis-MR analyses weighted by the level of
the circulating protein with cis-MR analyses weighted by the
relevant lipid fraction.

However, for many drugs or drug targets, for example, those
used in, or being developed for, the treatment of neurological,
myocardial, or musculoskeletal conditions, a circulating bio-
marker may be unavailable or may not represent a strong proxy
for the drug target. Tissue-specific pQTL data have yet to be
generated at any scale and, until such data become available, we
investigated tissue-specific eQTLs as a potentially relevant alter-
native exposure that might closely proxy pQTL effects. We found
that eQTL-based MR estimates may differ both in magnitude as
well as direction across tissues, as demonstrated by exhaustive
analyses of the HMGCR, NPC1L1, PCSK9 and CETP loci. This
tissue-dependent heterogeneity was independently reported by
the GTEx consortium for PCSK939. We extend those observations
to demonstrate their potential to undermine reliable causal
inference when using mRNA expression as a weighting variable
in MR analysis. Possibly, the observed heterogeneity may relate to
the inclusion of non-European ancestries in the GTEx database,
or due to the post-mortem collection of samples40. For example,
GTEx previously reported that gene expression changed post-
mortem in a tissue-specific manner, which they attempted to
ameliorate through multiple regression40.

This tissue-specific heterogeneity likely reflects actual biology
which might also extend to tissue-specific pQTL data. A key
uncertainty is identifying the ‘relevant’ tissue for a drug target
validation MR analysis. This would be informed by greater
knowledge of the protein expression profiles of all human drug
targets, an area that has so far received limited attention. When
these data become available, it will become important to evaluate
tissue dependency and the underlying mechanisms in more
detail. Where it is relevant, and possible, to use circulating
proteins or biomarkers such as lipids as exposure variables in
two-stage drug target MR analysis this may help mitigate the
complexity of weighting based on tissue-specific eQTL or
pQTL data.

In this current manuscript we have exclusively focussed on MR
as a tool for drug target validation, however many complimentary
methods exist, often utilising non-genetic cell, tissue and animal
experiments. A key challenge to further improve (early) drug
development will be to incorporate these different sources of
evidence to accurately predict in-human efficacy.

In conclusion, we expect that combining the discussed con-
cepts with the ever-increasing magnitude of genetic and other
‘omics’ data will move drug target MR from manually curated,
often proof of concept-like analyses, to more automated and
scalable projects able to systematically guide and enrich the entire
drug development process.

Methods
Mendelian randomisation for protein exposures. There are reasons for con-
sidering MR analysis of a protein drug target to be a distinct category of MR
analysis. First, an analysis of this type induces a natural dichotomy in the genetic
instruments that might be used: those that are located in and around the encoding
gene (‘cis-MR’) vs those located elsewhere in the genome (trans-MR)41. Second,
aside from mRNA expression, differences in protein expression or function are the
most proximal consequence of natural genetic variation. This has two consequences:
frequently, variants located in and around the encoding gene can be identified with
a very substantial effect on protein expression in comparison to other traits;
moreover such instruments may also be less prone to violating the ‘no horizontal
pleiotropy’ assumption than variants located elsewhere in the genome (discussed
below and in ref. 41). Third, in the case of MR analysis of proteins, Crick’s ‘Central
Dogma’42 imposes an order on the direction of information flow from gene to
mRNA to encoded protein, which does not extend beyond this to other biological
traits that lie more distally in the causal chain that connects genetic variation to
disease risk. Finally, cis-MR of a protein risk factor greatly reduces the risk of reverse
causation, because Crick’s dogma indicates that the pathway gene → encoded
protein → disease would always be favoured over the pathway gene → disease →
encoded protein, especially given that the gene → encoded protein association is
typically derived from population-based (disease-free) samples. Thus, from an MR
perspective, proteins are in a privileged position compared with other categories of
risk factor and the use of cis-MR represents an optimal approach to instrument their
causal effect for disease (See Supplementary Methods and Supplementary Figs. 7, 8).

The key to realising this potential is the development of a robust conceptual and
mathematical framework for cis-MR analysis of proteins. Since cis-MR analysis
restricts selection of genetic instruments to those located in, or near the encoding
gene, new questions emerge as how to optimise the selection of such variants.
These include how best to select and define the loci of interest, the physical distance
around each gene from which instruments might be drawn; how to select genetic
variants as instruments with options including ‘no selection’, ‘selection by strength
of association’, or ‘according to functional annotation’. Regulatory, non-coding
variants act through the level of the encoded protein which is what high-
throughput assays detect. Coding-variants might influence protein activity but may
also alter the detected rather than actual protein level by protein epitope changes,
resulting in a technical artefact. Further questions include whether to weight such
instruments in an MR analysis by the level of protein expression or activity, where
the relevant assays are available; or, where they are not, by the level of mRNA
expression (and, if so, in which tissue), or by some downstream consequence of
protein action, e.g. differences in the level of a metabolite known to be influenced
by the protein such as LDL-C for a lipid-lowering drug target.

Alternative exposures in cis-MR analysis of proteins. Drug target MR is con-
cerned with obtaining inference on the effect direction of perturbation of a (pro-
tein) drug target, where the effect estimate can be defined as ω= ϕP+ μθ (Fig. 1
and Supplementary Fig. 7). It is important to note that a protein can remain the
inferential target in an MR analysis even if it is not measured directly. For example,
in cardiovascular disease large sample size GWAS are available on lipids which are
often intermediate biomarkers, positioned downstream between the drug target P
and disease, D (Fig. 1). In our recent drug target MR analysis of PCSK914,43 we
used instruments selected from the encoding locus and divided the variant to
coronary heart disease (CHD) estimates, not by the effect on PCSK9 level (which
was unavailable), but by LDL-C, a variable known to be altered by perturbation of
the PCSK9 protein. Thus, using the same notation as above, and assuming ϕG= 0:

ωbw ¼
~δ ϕP þ μθ
� �

~δμ
¼ ϕP þ μθ

μ
;

¼ 1
μ
´ω;

with bw indicating ‘biomarker weighted’. Clearly because the denominator contains
~δμ, instead of ~δ;ωbw does not equal ω. However, ωbw may still provide a valid null-
hypothesis test of ω= 0, because ωbw ≠ 0 implies ω ≠ 0. Notice that if the protein
has a direct effect on the disease, that is not mediated by the downstream bio-
marker, ωbw ≠ 0 does not provide evidence for the biomarker itself to causally effect
disease; i.e, ωbw ≠ 0 does not imply θ≠0. The only additional requirement for using
a ‘biomarker-weighted’ MR for drug target validation is that the protein is strongly
correlated with the downstream biomarker, for example when μ ≠ 0; which is a
(slightly) different version of IV assumption (i).

In the absence of available measures of the protein of interest, a similar argument
can be made for using mRNA expression (this time as an upstream variable) that
proxies the effect of genetic variation on the level of the encoded protein again
within the framework of a cis-MR analysis (see Supplementary Fig. 7):

ωew ¼
~δGE~δEP ϕP þ μθ

� �

~δGE
¼ ~δEP ϕP þ μθ

� �
;

¼ ~δEP ´ω:

Here the weighting is done by the association with of mRNA expression and the
~δ effect has been decomposed into the variant effect on expression ~δGE and the
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expression effect on protein level ~δEP . Similar as for ωbw, the expression weighted
(‘ew’) drug target effect provides a valid test of ω= 0 conditional on the absence of
any pre-translational pleiotropy; that is, a necessary assumption ϕG= ϕE= 0 (with
index E for expression). It should be noted that, similar as for protein expression,
mRNA expression level (eQTL) is tissue-specific and utilising eQTLs for drug
target MRs necessitates a decision on the tissue(s) relevant for (de novo) drug
development.

Exploring horizontal pleiotropy. To address the possibility of horizontal pleio-
tropy in genome-wide MR analyses of risk factors, it has been common to select
independent instruments from multiple locations across the genome. In doing so,
the average horizontal pleiotropy may reduce to zero (so-called balanced pleio-
tropy). As noted above, drug target MR is often performed using cis variants,
selected form within and around a drug target encoding locus. While this
diminishes the likelihood of horizontal pleiotropy (Supplementary Methods),
should horizontal pleiotropy nevertheless occur, due to the proximity of variants, it
is more likely to be directional in nature. In such cases estimators such as MR-
Egger44 might recover the causal effect contingent on the Instrument Strength is
Independent of the Direct Effect (INSIDE) assumption44; i.e. that the strength of
the genetic association with the risk factor does not correlated with the magnitude
of horizontal pleiotropy. Additionally, an individual variants’ contribution to the
degree of horizontal pleiotropy (and excluded from analysis) can be explored using
straightforward metrics for outlier detection such as the Q-statistic (the squared
distance from the average estimate), or through leverage statistics (the estimate
change after removing a variant).

Due to the cis focus of most drug target MRs it is essential to ensure that pre-
translational horizontal pleiotropy is absent. For example, a variant associated with
PCSK9 expression may also associate (e.g. through LD) with the expression of
other genes. Here we introduce a novel empirical method to exclude LD-based
horizontal pleiotropy by sequentially pruning eQTL data for an association with
the expression of a ‘non-target’ gene within a certain flanking region (here ±1MB)
of the encoding locus (using p value threshold of {10−8,…,1 × 10−3};
Supplementary Fig. 9). This screening step is showcased using the eQTL weighted
MR analyses discussed in detail in the Supplementary Data section. We note that
the type of screening can however be applied irrespective of the intended exposure,
for example it could also be used in drug target MR analyses using pQTL
exposures.

In general, across the four positive control loci we did not see much influence of
LD-based horizontal pleiotropy; and within a single tissue we did not observe much
directional discordance. For each drug-target we did observe a few tissue-specific
associations that only obtain significance after pruning potential pleiotropic
variants to a very low p value threshold. For example, CETP expression in the colon
is only associated with CHD after removing variants that had a p value < 1 × 10−3

with neighbouring genes.

Null-variants and weak instrument bias. In the current manuscript we propose
to implement drug target MR through LD clumping of variants and modelling
residual correlation using external reference data45. A perceived drawback of this
approach is the possible inclusion of ‘null variants’, that do not affect the inter-
mediate risk factor. In a conservative attempt at excluding null-variants researchers
often focus on genome-wide significance (e.g. a p value < 5 × 10−8). Dudbridge46

and many others have shown, however, that such an approach excludes many
useful variants, harming power/precision, and lower thresholds (e.g. 10−5) often
result in improved performance. Clearly such lower threshold could result in the
inclusion of (many) null-variants. However, by employing the two-sample MR
paradigm (using genetic risk factor and outcome estimates from different samples),
any possible weak-instrument bias will attenuate results towards the null47.

False positive rate. Throughout this manuscript we use a type I of error rate of
0.05 (or 95% confidence interval) and do not correct for multiple testing. While
appropriate multiplicity protection is important, by focussing on four thoroughly
studied drug targets (NPC1L1, HMGCR, PCSK9, and CETP) there is an abundance
of prior evidence on the expected CHD effect, making analytical control of the false
positive rate less relevant. In other settings, for example gene-based MR analysis of
all druggable genes, appropriate control of false discovery rates is clearly essential.
It could be argued that applying a genome-wide association p value threshold (e.g.
5 × 10−8) would be needlessly conservative. Instead one could control for the
number of druggable proteins (about 5000; resulting in a 1 × 10−5 threshold).
However, (early) drug development is not performed in isolation, and genetic
evidence will be evaluated alongside evidence from cells, tissues, and animal
experiments. As such, appropriate false discovery control will depend on the
position of drug target MR within this pre-existing evidence framework. A p value
threshold of 1 × 10−5 might be applied when drug target MR is used as a screening
tool, before validating promising leads in further experiments. Positioning drug
target MR after successful in vivo experimentation, for example, to check for
possible unknown side effects in human subjects, will likely call for a less-stringent
multiplicity correction considering the more extensive prior knowledge and the
aim of early detection of possible safety concerns. We also emphasise that the range
of druggable proteins is not fixed. Indeed, our own previous paper expanded the

druggable genome from around 2000 to over 4000 proteins11. Moreover, new
therapeutic modalities e.g. RNA silencing, are extending the range of therapeutic
targets from those that are currently amenable to the action of small molecules,
peptides and monoclonal antibody therapeutics that target proteins, and which
remain the mainstay of drug development.

MR estimators. In the current manuscript we pursued drug target MR by applying
a generalised least squares (GLS) solution45, modelling residual LD, to genetic cis-
regions known to encode protein drug targets. This GLS method is by no means
the only relevant estimator function, and one can ‘repurpose’ many general MR
methods for use in drug target MR. For example, the MR-base platform clumps
variants to such a low level (e.g. R-squared of 0.001) that one can apply weighted
regression solutions (e.g. IVW), foregoing LD correction. Generalised Summary-
data-based Mendelian Randomisation (GSMR)48 provides similar LD-modelling
MR functionality as the GLS method applied here, which GSMR extents by
allowing for automated outlier removal through HEIDI, as well as providing a solid
integration with the Genome-wide Complex Trait Analysis suite. Similar outlier
removal steps can be readily implemented using the Q-statistic, and standard
leverage or Cook’s statistics. Automated outlier removal does however make an
implicit assumption that the outlying observations are incorrect, and not the sta-
tistical model; which is unlikely to be generally true. Nevertheless, outlier removal
is an important step in assessing the robustness of results.

Clearly, if for any given locus one could perfectly distinguish the causal variants
from null-variants, simply selecting the causal set of variants for MR will result in
the most precise/powerful analysis. However, such ‘oracle’ selection is unlikely in
practice and difficult to scale. As such the proposed LD modelling approach will
not in general select the perfect (i.e. the causal) set of variants, but instead it
suggests a robust set, which uses variants in LD with (unknown) causal variants as
sentinels. Combining LD modelling with clumping requires limited human input
and is therefore highly scalable. Finally, we note, the analyses presented in Figs. 2
and 5 are intended as an illustration of LD modelling, not as proof. The proof
follows from straightforward statistical argument and simulation studies conducted
by Burgess et al.45, and the seminal work from Yang et al.49 on COJO.

Statistical analysis. MR was conducted using the ‘Inverse Variance Weighted’
(IVW) and ‘MR-Egger’ methods for correlated variants as detailed in Burges et al.18.
Here we note that these methods are specific parametrizations of GLS technique and
simply refer to IVW as GLS, and MR-Egger as GLS with Egger correction.

In the context of MR, a GLS without an Egger correct, regresses the genetic
association with an outcome (CHD in our case) on the genetic association with an
exposure (here lipids, protein level or expression level), forcing the intercept
through zero; reflecting the no-pleiotropy assumption when a zero-exposure effect
should be matched by a zero outcome effect. Here the slope estimate equates to a
causal estimate of the exposure to outcome effect. GLS with Egger correction refers
to a similar linear model without forcing the intercept through the origin. Here the
intercept estimate reflects the amount of horizontal pleiotropy, while the slope
estimates reflects the causal estimate of the exposure on the outcome corrected for
(potential) horizontal pleiotropy. Estimates are presented as fixed effects (with a
regression standard error of unity), or as random effects (where the regression
standard error is equal or larger than 1).

The drug target phenome-wide analysis was conducted by mapping the
INTERVAL pQTL GWAS to the druggable genome11 and selecting the five most
significant proteins with sufficient cis variants to conduct further analyses. Variants
were selected from a 2 kB window around the gene, excluding variants with a MAF
of 0.05 or lower. The final set of instruments were selected based a LD-clumping
algorithm where the LD-threshold is selected through comparison of the point
estimates of threshold l to l− 1; overinfluential (high leverage) or outlying variants
were removed. Due to INTERVAL’s modest sample size the number of available
variants were often limited, forcing us to use the IVW estimator and forgoing
any eQTL screening for possible LD-related horizontal pleiotropy.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data are publicly available. Information on the four positive control loci (HMGCR,
PCSK9, CETP, and NPC1L1) were sourced from the druggable genome (defined in
ref. 11). Specifically, for the current analyses we identified variants within a megabase
upstream or downstream from each of the four loci. Outcome data were extracted from
CARDIOGRAMplusC4D50 including the genetic association (log odds ratio) with CHD,
as well as their standard errors. Exposure data were leveraged from GLGC16 (lipids), Pott
et al.28 (PCSK9 protein level), Blauw et al.27 (CETP protein level), and GTEx51 version 7
(expression level).

The 1000 genomes52 data were used as a source of LD. Enhancer data were derived
from the Human ACtive Enhancer to interpret Regular variants (HACER53) resource. All
information was curated and normalised to genetic build 37 as described in detail in
Finan et al.11 A ±2.5 kB subset of the data is provided in Supplementary Tables 1–4, with
the remainder easily extracted from cited publicly available sources.
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The phenome-wide scan utilised INTERVAL pQTL4 data from 5 drug targets and
evaluated the protein effects on 35 outcomes using following publicly available resources:
UK biobank data (nealelab.is/uk-biobank) were used for lipids (LDL-C, HDL-C,
triglycerides [TG], lipoprotein A [LPa], Apolipoprotein B [ApoB], Apolipoprotein A1
[ApoA1]), glucose and HbA1c, leucocytes, lymphocytes, monocytes, and neutrophils
counts. Blood pressure (systolic and diastolic [SBP, DBP]) data were used from
Evangelou et al.54, which includes the UKB as well. CKDGen consortium data provided
information on blood urea nitrogen (BUN), estimated glomerular filtration rate (eGFR),
and chronic kidney disease (CKD)55. Bone mineral density (BMD)56 and fracture57 data
were obtained from GEFOS Consortium. Genetic associations with ‘general cognitive
function’ were obtained from a meta-analysis of CHARGE, COGENT and UK biobank58.
Data on CHD were available from CardiogramplusC4D50, any stroke, large artery stroke,
cardioembolic stroke, and small vessel stroke from the MEGASTROKE consortium59,
Heart Failure (HF) from the HERMES60, atrial fibrillation (AF) from the AFgen
consortium61, and finally non-ischaemic cardiomyopathy (CM) from GRADE
investigators62. Additional non-CVD phenotype data was extracted for type 2 diabetes
(T2DM)63, Asthma64, inflammatory bowel disease (IBD)65, Chron’s disease (CD)66,
ulcerative colitis (UC)67, multiple sclerosis (MS)68 and Alzheimer’s disease69.

Code availability
All analyses were conducted using the R programming language70, with packages dplyr71,
ggplot272, gridExtra73, openxlsx74, and wesanderson75. Diagrams were programmed in
TikZ76, and the Supplementary written in LaTeX and knitr77. The grid search can be
readily implemented with a generic statistical programming language and irrespective of
the desired MR estimator.
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