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Summary. Historically, control of plant virus disease has involved numerous 

strategies which have often been combined to provide effective durable resistance 

in the field. In recent years, the dramatic advances obtained in plant molecular 

virology have enhanced our understanding of viral genome organizations and 

gene functions. Moreover, genetic engineering of plants for virus resistance has 

recently provided promising additional strategies for control of virus disease. 

At present, the most promising of these has been the expression of coat-protein 

coding sequences in plants transformed with a coat protein gene. Other potential 

methods include the expression of anti-sense viral transcripts in transgenic 

plants, the application of artificial anti-sense mediated gene regulation to viral 

systems, and the expression of viral satellite RNAs, RNAs with endoribonu- 

clease activity, antiviral antibody genes, or human interferon genes :in plants. 

Introduction 

One of the most striking successes in genetic engineering of crop plants has 

been the introduction of synthetic virus-resistance genes. This work epitomizes 

two advantages of genetic engineering: (/) the ability to transfer single genes 

directly without linkage to undesired genes, and (ii) the ability to construct 

novel genes that are unlikely to have existed in nature. In this review, we will 

present several examples of virus resistance introduced by genetic engineering 

methods. This has been possible with little advancement in our knowledge of 

natural mechanisms of resistance. We do not minimize the important problem 

of understanding natural resistance, but simply emphasize the effectiveness of 

genetic engineering. Genetically engineered, or synthetic, resistance has been 

achieved largely because of a relatively good understanding of viruses at the 
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molecular level and the ease with which viral genomes can be manipulated. The 

latter is a most important point because, as will be discussed, our understanding 

of how genetically engineered resistance works is limited. This review will present 

proven approaches for construction of virus-resistance genes as well as a variety 

of new strategies that show promise but have yet to be tested. 

Three major approaches have been developed that employ viral nucleic acid 

sequences: (0 expression of the viral-coat-protein coding sequences in plants 

to confer resistance [16, 48, 52, 66, 69, 88, 115, 125, 130-132]; (i/) expression 

of anti-sense viral transcripts in transgenic plants, which presumably inhibits 

virus gene expression by RNA-RNA hybridization [16, 48, 90, 96]; and (iii) 
production of engineered plants that express nucleic acid sequences encoding 

viral satellite RNAs. These may interfere with efficiency of virus replication 

and result in host resistance to infection [2, 38, 46, 58, 119]. 

Other novel approaches directed toward the genetic engineering of plant 

virus resistance include: (/) the use of artificial anti-sense genes transferred to 

the plant genome [129] or antisense oligodeoxynucleotides ("antimessenger 

oligos") used as potential chemotherapeutic agents [12, 124]; (ii) the intro- 

duction and expression of RNAs with endoribonuclease (ribozyme) activity in 

plants [47, 137]; (iii) the use of anti-idiotypic antibodies as receptor-specific 

anti-viral agents [53, 75, 76] and cloning mouse antiviral antibody genes into 

plants [50]; (iv) the expression in plants of human a- and [3-interferon genes 

and the detection of plant interferon-homologous sequences with antiviral ac- 

tivity [10, 21, 22, 106]. 

Transformation of plants with coat-protein coding sequences: 

coat protein-mediated protection 

One approach to genetically engineering plants for virus resistance is to mimic 

the natural phenomenon of "cross-protection", first observed 60 years ago by 

McKinney [74]. He showed that infection of a host plant with a mild strain 

of tobacco mosaic virus (TMV) protected the plant against subsequent super- 

infection by severe strains of the same virus. Cross-protection is used to control 

some virus diseases of horticultural crops [for reviews see 34, 108]. Although 

cross-protection is well studied, the mechanism(s) responsible is poorly under- 

stood. 

The major hypotheses proposed to explain the molecular basis of cross- 

protection include: (i) encapsidation of the challenging viral RNA by free coat 

protein of the inducing strain [19], or blockage of uncoating [109]; (ii) com- 

petition between the protecting strain and the challenge virus for a factor present 

in the host cell, (e.g., the replicase) [39]; and (iii) annealing of sense and anti- 

sense RNAs of the inducing and challenge virus to prevent replication and/or 

translation of the severe strain [87]. 

Hamilton [43] predicted that cross-protection could be induced by intro- 

ducing cDNAs to various regions of the viral RNA genome into plants. These 
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would be expressed as stable Mendelian traits. At that time, however, gene 

transfer methods had not been developed for plants. 

Several studies have suggested that the coat protein (CP) plays a major role 

in cross-protection [19, 20, 109, 134, 143]. To test this, Powell-Abel et al. [88] 

introduced the CP gene of TMV into tobacco plants by constructing a chimeric 

gene containing a cDNA that corresponded to the CP coding sequence of the 

common U1 strain of TMV, flanked by the 35S RNA promoter from cauliflower 

mosaic virus (CaMV) and the polyadenylation signal from the Agrobacterium 

nopaline synthase gene. After introduction of the construct into Nicotiana 

tabacum cv. Xanthi by Agrobacterium transformation, tobacco cells were re- 

generated into plants. Accumulation of TMV CP (up to 0.1% of total soluble 

cell protein) was associated with high resistance to virus infection and a cor- 

responding delay in symptom development in progeny of self-fertilized trans- 

genic plants. The protection was overcome by inoculation of the transgenic 

seedlings with naked viral RNA and was less effective when a high concentration 

of virus was used. Therefore, the expression of the TMV CP gene mimicked 

classical cross-protection. The observation of CP-mediated protection against 

alfalfa mosaic virus (A1MV) in tobacco and tomato was subsequently reported 

[69, 125, 131]. 

As was shown for TMV [81], a dramatic decrease in the number of chlorotic 

and necrotic lesions was observed in transgenic plants expressing A1MV CP 

when inoculated with A1MV. These results are consistent with the hypothesis 

that expression of the CP coding sequence blocks early events of viral infection. 

As with TMV, inoculation of plants with A 1MV RNA partially overcomes 

protection, which suggests that this resistance operates by interfering with stages 

of infection not required for infection by naked viral RNA. 

Indeed, recent experiments demonstrated that CP is responsible for genet- 

ically engineered cross-protection. Transgenic plants that express a chimeric 

gene encoding the TMV CP sequence but do not produce CP are not protected 

against TMV [89]. In contrast, introduction of purified TMV CP into pro- 

toplasts that do not express the CP gene can induce transient protection when 

introduced shortly before or at the same time as the virus [95]. Similarly, tobacco 

plants transformed with a frame-shift mutated CP gene of A1MV [132] ac- 

cumulated viral transcripts, but the coat protein was not produced in detectable 

amounts and plants showed no resistance to infection with A1MV virions, in 

contrast to transgenic plants expressing wild-type A1MV CP. Furthermore, 

Van Dun et al. showed that CPs of both A 1MV [ 131] and tobacco streak virus 

(TSV) [132] (an ilarvirus with a genome organization very similar to that of 

A1MV) that accumulated in transgenic plants are biologically active and result 

in infection by A1MV upon inoculation of plants with a mixture of A1MV 

RNAs 1, 2, and 3. CP-engineered protection against TSV also was obtained in 

tobacco plants transgenic for the CP-gene of TSV [132]. 

Loesch-Fries et al. [69] obtained tobacco plants expressing A1MV CP in 

which viral infection was restricted to the inoculated leaves upon inoculation 
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with either of two strains of A1MV (425 and McKinney). Some of the transgenic 

plants showed systemic infection, although with a delay in the appearance of 

symptoms. 

Coat-protein expression also has conferred resistance to another important 

plant viral pathogen, cucumber mosaic virus (CMV), the type member of the 

cucumovirus group [16]. The subgenomic RNA4, which encodes the coat 

protein, was cloned in both sense and antisense orientations and introduced 

into tobacco plants via Agrobacterium transformation. Transgenic plants ex- 

pressing CP showed protection in both inoculated and systemic leaves with a 

reduction in virus accumulation only in the inoculated leaves. Interestingly, the 

degree of cross-protection was independent of the inoculum concentration, 

which is not consistent with previous reports of other transgenic plants ex- 

pressing viral CP or with classical cross-protection studies. When the antisense 

CP gene was employed, protection was less efficient, in agreement with the 

results shown for PVX [48]. 

CP-mediated protection also has been extended to the tobravirus group 

[130]. Transgenic tobacco plants that expressed the CP gene of tobacco rattle 

virus (TRV), strain TCM, were resistant to infection with TRV-TCM, whereas 

a severe disease syndrome developed when plants were infected with TRV strain 

PLB. A possible explanation for this phenomenon may be that the low sequence 

homology between the CPs of the two strains (39%) is insufficient to give 

protection. Significant resistance was obtained, however, against pea early 

browning virus (PEBV), another tobravirus, in plants expressing CP of TRV- 

TCM. Plants expressing nonstructural genes of TRV were not resistant to the 

infection by TRV [ 1]. Therefore, protection only occurred in plants expressing 

the TRV CP structural gene. 

A better understanding of the mechanism by which CP-mediated protection 

operates has been obtained by recent experiments suggesting that endogenous 

CP is more likely to prevent capsid disassembly or interfere with events of late 

virus replication rather than with repackaging the uncoated viral RNA. Tobacco 

plants and protoplasts transgenic for CP have been reported to be resistant to 

infection with TMV but not to inoculation with TMV RNA or TMV that has 

been incubated briefly at pH 8.0 to destabilize virus particles [94]. Furthermore, 

tobacco plants transgenic for both TMV CP and the TMV origin-of-assembly 

(OAS) sequence retained resistance to infection by TMV [85]. 

CP-mediated protection has been successfully applied to commercial culti- 

vars of potato, a crop affected by a large number of serious viral pathogens 

[48, 52, 66, 128]. Major potato cultivars have no resistance to many of these 

viruses. The most important viruses are potato virus Y (PVY), potato leafroll 

virus (PLRV) and potato virus X (PVX). Hemenway et al. [48] inserted a 

cDNA to the CP coding sequence of PVX, the type member of the potexvirus 

group, into an expression vector in both sense and antisense orientations between 

a CaMV 35S promoter and the pea rbc SE gene termination signal. Transgenic 

tobacco plants expressing CP in the sense orientation were protected from PVX 
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infection. In contrast to the previous examples of CP-mediated viral resistance 

in transgenic plants, protection was not overcome by inoculation of plants 

expressing high levels of PVX CP with PVX RNA. These data suggest that 

protection of plants by PVX-encoded CP, or its correspondent transcript, may 

function in a manner different from that described in previous examples. The 

protection against naked RNA may be explained by the location of the PVX 

OAS. In PVX, the OAS is located near the 5' end of the RNA. Thus, even 

small amounts of CP binding could inhibit initial translational events in cells 

infected by naked RNA or intact virus. In contrast, the OAS in TMV is located 

near the 3' terminus, and translation of the first protein expressed in TMV 

infection would not be inhibited by a CP OAS near the 3' end of the genome. 

Hoekema and colleagues [52] also genetically engineered the susceptible 

potato cultivars Escort and Bintje to express the CP gene of PVX. One or two 

copies of the PVX CP cistron were successfully integrated per tetraploJid genome 

of potato plants. Plants transgenic for CP showed a delay in disease symptom 

development, along with a reduction of virus accumulation, when inoculated 

with challenge virus. 

Lawson et al. [66] introduced both PVX and PVY CP genes into potato 

plants. PVY, the type member of the potyvirus group, is a member of the largest 

and most significant group of plant viruses. Its genome has been cloned and 

partially sequenced [98, 122, 133-]. Transgenic plants that expressed the double 

construct were protected from infection by both PVX and PVY; however, the 

resistance to either PVX or PVY was greater in transgenic plants expressing 

the homologous CP gene. More recently, additional approaches have been used 

to introduce resistance to PVY. Transgenic plants have been obtained that 

express either a fragment carrying AUG start codons upstream from the CP 

gene or the nuclear inclusion NIa (protease) gene in conjunction with the CP 

gene to produce N-terminally modified PVY CP. Tests for resistance to PVY 

are in progress (W. Rhode, pers. comm.). 

Molecular cloning of cDNA to potato leafroll virus (PLRV), a luteovirus 

that causes significant yield loss worldwide in potato, has been reported recently 

[72, 91, 114]. A fragment carrying the PLRV CP gene has been cloned and 

sequenced [116], and 13 independent transformant potato lines have been 

obtained that express the CP gene in a stable manner. The resistance test is in 

progress (W. Rhode, pers. comm.). 

The genome of another potyvirus, soybean mosaic virus (SMV), has been 

partially cloned and studied at the molecular level [23, 24, 35, 42, 70]. SMV 

CP-mediated resistance to tobacco etch virus (TEV) and PVY, two potyviruses 

with relatively low CP amino-acid-sequence homology to SMV CP (58% and 

61% for TEV and PVY, respectively), has been obtained recently in tobacco 

[115], which is not a host of SMV. This is the first demonstration that a viral 

CP expressed in a non-host plant can give protection against infection by 

heterologous viruses. 

Plant genetic-engineering techniques are also being used to obtain resistance 
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in sugar beet to beet necrotic yellow vein virus (BNYVV), the type member of 

the furovirus group. The 5' terminal CP gene has been cloned and inserted into 

a plant-expression vector, and transformation of sugarbeet is in progress (J. 

Brunsted, pets. comm.). 

Viral pathogens of vegetable crops are being considered as potential targets 

of the CP-mediated protection approach. The CP of artichoke mottled crinkle 

virus (AMCV), a tombusvirus, has been cloned and sequenced [118]. Efforts 

are in progress to produce transgenic artichoke (E. Benvenuto, pers. comm.). 

An interesting alternative strategy to the CP-mediated protection has been 

described recently for TMV. A full-length cDNA copy of the genomic RNA 

of a mildly virulent tomato strain of TMV (TMV-LllA) has been introduced 

into tobacco plants by using a disarmed Ti plasmid vector [135, 136]. The mild 

isolate used was obtained from the parental, highly virulent, TMV-L and has 

been used as a classical cross-protecting agent in greenhouse-grown tomatoes 

in Japan [86]. When challenged with purified TMV-L, transgenic plants con- 

taining the TMV-LI~A cDNA did not develop symptoms of TMV-L for up to 

6 weeks after inoculation, whereas typical mosaic and wrinkling was present 

on plants expressing the genome of the severe strain L. Moreover, engineered 

cross-protection was not overcome by inoculation with TMV-L RNA. The 

protection obtained by this approach was more efficient than CP-mediated 

protection, presumably because of the high cellular concentration of the mild 

TMV strain gene products obtained by the expression as well as replication of 

biologically active viral RNA in the transgenic plants. But the described system 

may present major disadvantages due to possible yield and quality losses from 

the mild isolate and the possible occurrence of virulent back-mutants. No such 

mutations have occurred, however, after years of greenhouse applications. 

The previous illustrations have dealt with gene transfer mediated by Agro- 

bacterium transformation. In the future, direct gene transfer (DGT) [for a 

review, see 36] may be possible for induction of virus resistance. One approach 

to DGT is implementation of treatments to permeabilize cell membranes. These 

have included etectroporation [33, 65, 111], the use of polyethylene glycol [105], 

or a combination of these treatments. The most important limitation of direct 

DNA uptake is the requirement for cell wall removal; regeneration from pro- 

toplasts remains unreliable and difficult for cereal crops. However, transformed 

calli [33] and, in some instances, sterile plants, have been regenerated from 

electroporated maize protoplasts [97]. Recently, regeneration of fertile maize 

plants [92, 110] and transgenic plants from rice protoplasts has been obtained 

[123, 142]. 

A second approach to DGT has been recently developed for general trans- 

formation of intact tissue. The process involves use of a particle bombardment 

accelerator ("particle gun") [102], in which tungsten particles carrying biolog- 

ical molecules (DNA, RNA, etc.) are accelerated to the appropriate velocity 

and shot into the cell to induce transformation. The most significant advantage 

of this method is its potential for wide applicability. Tobacco, soybean, and 
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maize have been successfully transformed by this method [11, 26, 62, 63, 73]. 

Other transformation methods involve the use of microinjection [15] and viral 

vectors [4, 32]. 

Field testing of transgenic plants expressing viral CP 

Field testing of genetically engineered plants [ 17, 29] is necessary to determine 

if the level of gene activity obtained in the laboratory and greenhouse is main- 

tained under variable environmental conditions that occur in the field. Fur- 

thermore, the genetic transformation must not induce detrimental alterations 

in agronomic traits (e.g., yield, quality, growth). Field tests are currently con- 

ducted under strict control of regulatory agencies and are subject to restrictions 

directed toward preventing adverse environmental effects. 

In 1987, the Monsanto Company and Washington University (St. Louis, 

MO, U.S.A.) obtained permission from the United States Department of Ag- 

riculture to test, in the field, tomato plants expressing the CP gene from TMV 

[82]. Tomato lines expressing TMV CP showed nearly complete protection 

against TMV in the field. Yields were comparable to control plants that were 

not infected with the virus. This suggested that the transformation did not affect 

normal agronomic traits. Interestingly, the plants also were protected against 

three strains of tomato mosaic virus, a tobamovirus closely related to TMV. 

Two of the virus strains (2 and 22 ) normally overcome the natural resistance 

present in many commercial tomato cultivars. 

Antisense nucleic acid technology against viral infection 

Antisense RNA has been shown to play an important role in prokaryotic gene 

regulation by functioning as a highly specific inhibitor of gene expresson [for 

reviews, see 41, 57]. Natural antisense RNA was first discovered in E. coli [78] 

and designated "micRNA" (mRNA-interfering complementary RNA) because 

it was found to inhibit translation by hybridizing to mRNA, probably by 

blocking the ribosome binding site and the start codon. Because this regulatory 

RNA is complementary to the target mRNA, it has been named "antisense" 

RNA. The genes directing its synthesis are called "antisense" genes. 

The existence of naturally occurring antisense genes has not been demon- 

strated in eukaryotic cells, but artifical antisense regulation of gene expression 

has been obtained in animal systems [reviewed in 41, 57] as well as in plants 

[for a review, see 128]. Inhibition of gene expression in eukaryotes can occur 

by one or both of the following mechanisms: (/) hybridization may occur in 

the nucleus and prevent processing and/or transport of the target message or, 

(it') antisense RNA may hybridize to the sense message in the cytoplasm, causing 

blockage of translation of specific mRNAs. The construction of an artificial 

antisense RNA gene can be obtained easily by positioning a DNA fragment 

coding for the target mRNA in reverse orientation between a strong promoter 

and a termination signal. 
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The application of antisense-mediated gene regulation in viral systems rep- 

resents a new and promising approach toward genetically engineered control 

of viral infections as well as to anti-viral therapy. In several instances, the 

development of heritable antisense antiviral genes has induced protection from 

viral infection by interfering with virus translation and/or replication [13, 51, 

117]. 

There have been several applications of this technology to the control of 

plant viral disease. A CMV antisense CP was introduced into tobacco plants 

via Agrobacterium transformation. Transgenic plants expressing the antisense 

transcript showed protection against CMV infection only at low inoculum 

concentrations, suggesting that antisense CP RNA is much less effective than 

the CP for preventing viral infection [16]. Low-level antisense-mediated pro- 

tection also has been obtained against PVX and TMV [48, 90]. The lack of 

protection at greater inoculum concentrations may be caused by insufficient 

expression of the antisense transcript, because a clear gene dosage effect has 

been shown to occur in antisense RNA regulation. In addition, the antisense 

RNA used in this study was against the CP gene that directs synthesis of 

significant amounts of CP late in the infection cycle. Use of antisense RNA to 

stop the initial translation and replication events of the infection cycle may be 

more effective. The efficiency of the inhibitory reactions also may be increased 

by repeating copies of the same antisense gene in tandem under single or multiple 

strong promoters. 

The effectiveness of some other antisense constructions for inhibition of 

CMV genes has been tested [96]. Tobacco plants were transformed with three 

different antisense genes corresponding to genomic regions of the putative 

replicase, movement protein and the 3' site of replication initiation. Only one 

tobacco line expressing a relatively low amount of one of the antisense constructs 

(corresponding to the putative replicase) showed resistance to CMV infection. 

Other tobacco lines expressing the same gene supported CMV replication as 

much as the non-transgenic plants. 

The mechanism of action of viral antisense RNA in eukaryotes is not well 

understood at present, but several hypotheses can be proposed: (i) inhibition 

of CP synthesis by formation of an antisense-sense RNA hybrid, when antisense 

CP genes are used; (ii) prevention of replication by binding of the antisense 

RNA to the origin of replication; (iii) competition with the viral negative strand 

for viral or host components needed for replication. 

A different strategy, called "sense RNA", is being attempted to interfere 

with the replication in vivo of turnip yellow mosaic virus (TYMV) [79]. The 

strategy is the use of small "sense" viral RNAs, containing the 3'-terminal 

region of the TYMV genome, which comprises the recognition site of the 

replicase, to act essentially as a defective-interfering (D.I.) RNA. Such "sense" 

RNAs have been shown to act as competitive inhibitors of replication of TYMV 

genome in vitro and are currently being tested for in vivo activity in Brassica 

napus [ 127]. 
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Application of the antisense RNA technology to plant-virus disease control 

may open new and exciting possibilities for "gene therapy" in plants, despite 

initial poor efficiency. Synthetic oligodeoxyribonucleotides ("oligos") comple- 

mentary to viral RNAs have been shown to function as antivirat compounds 

in animals and humans, specifically inhibiting or controlling viral gene ex- 

pression by interfering with the replication, transcription, and translation ma- 

chinery [12, 124]. The efficiency of synthetic antimessengers can be increased 

by chemical modifications designed to: (/) allow delivery to the cell [67], (ii) 
improve resistance against cellular nuclease attack, or (iii) enhance the affinity 

for the target RNA [40]. Specific antiviral activity of antisense oligomers has 

been observed in mammalian cell cultures against influenza virus [1411, human 

immunodeficiency virus [40, 71,138], Rous sarcoma virus [ 139], herpes simplex 

virus type 1 E113], and encephalomyocarditis virus [103]. 

The difficulty of effective passage of antisense oligomers from blood into 

tissues and penetration into cells represents the major disadvantage of using 

this approach in animals. However, possible insertion of antiviral sequences 

into the plant genome makes these compounds possible candidates for large- 

scale use as antiviral agents in plants. 

Expression in plants of viral satellite RNAs 

Genes encoding virus satellite RNA have conferred tolerance to plant viral 

infection. A satellite RNA is a small RNA that requires a helper virus to replicate 

in host plants [30]. With the exception of satellite C of turnip crinkle virus, 

which seems to be a molecular hybrid between a D.I. particle and a satellite 

RNA E112], the satellite RNA contains no nucleic acid sequences homologous 

to that of the helper virus. Satellite RNAs are encapsidated in the coat protein 

of the helper virus; other satellites, called satellite viruses, differ from satellite 

RNAs by encoding their own CP gene. 

Resistance to CMV has been induced by introduction of a DNA copy of 

CMV satellite RNA into tobacco by using Agrobacterium-mediated transfor- 

mation [3, 97]. The constructs contained either 1.3 or 2.3 tandem copies of 

satellite sequences, under the control of the CaMV 35 S promoter. Transgenic 

tobacco plants contained small amounts of transcribed RNA, which was am- 

plified upon inoculation with CMV. Presence of the satellite RNA decreased 

CMV replication and largely suppressed symptom development. When the 

transgenic plants were inoculated with the closely related tomato aspermy virus, 

the satellite RNA was replicated and symptoms were suppressed. However, 

virus yield was not reduced. The data suggest that symptom suppression does 

not necessarily depend on a decrease in virus replication. This study demon- 

strated that, although mechanisms are unclear, protection by virus satellite- 

nucleotide sequences can be a viable strategy. 

In a similar approach, Gerlach et al. [38] introduced multiple DNA copies 

of tobacco ringspot virus (ToRSV; nepovirus group) satellite RNA (STobRV) 
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into tobacco. Both the negative and positive sense strand concatamers undergo 

self-cleavage at unique sites in vitro. The DNA copies were placed under the 

transcriptional control of the CaMV 35 S promoter in such an orientation that 

either the positive or negative sense strand was transcribed. After infection with 

TobRSV, no alteration in levels of satellite RNA occurred in transgenic plants 

expressing a permuted monomer of the satellite RNA compared with untrans- 

formed plants. However, the level of monomeric satellite RNA increased to 

relatively high levels in plants that contained multimeric DNA copies of satellite 

RNA that resulted in positive or minus strand satellite RNAs. This indicates 

replication of the satellite RNA. Inhibition of disease development in plants 

producing the positive strand satellite RNAs was more immediate than in plants 

producing minus strand satellite RNAs. Transgenic plants containing multi- 

meric copies of satellite RNA showed resistance to infection by TobRSV that 

correlated with amplification of the satellite RNA to high levels during virus 

infection. 

The data are consistent with the observations of Jacquemond et al. [58] 

that a monomeric copy of the CMV satellite RNA induced tolerance. Moreover, 

the tolerance occurred whether transgenic plants were inoculated mechanically 

or by aphid vectors. In all instances, tolerance in transgenic plants containing 

genes for satellite RNA has been independent of virus strain, inoculum con- 

centration, the use of intact virus or viral RNA, and the level of satellite RNA 

gene transcription. Although this method of inducing virus resistance has been 

quite successful, its potential is limited to the few plant viruses possessing a 

satellite RNA that can limit virus replication. Also, as illustrated with CMV 

satellite RNA, only a few base changes are required to change a symptom- 

reducing strain into one that increases disease symptoms [-2, 18, 59, 64, 119]. 

This also may limit its potential for induction of virus-disease resistance. 

Ribozymes 

RNA molecules have been found to act as enzymes in catalyzing specific RNA 

cleavage in a variety of living systems [reviewed in 7, 8, 9]. These RNA enzymes 

are termed ribozymes [140]. The smallest known ribozyme structures are those 

involved in cleavage of some plant-virus satellite RNAs. Multimeric and circular 

forms of these RNAs are generated during replication [55]. They can self-cleave 

at a specific site into linear monomers in a protein-free reaction that requires 

only a divalent metal cation and a pH of 7 to 10 [56, 93]. Each of these RNAs 

has a similar structure called a "hammerhead" (Fig. 1), containing conserved 

bases flanking the self-cleavage site [28]. These hammerhead structures are 

found in the satellite RNAs of TobRSV, the sobemoviruses (virusoids [28]), 

and barley yellow dwarf virus (BYDV) [77]. They are also found in avocado 

sunblotch viroid [56] and transcripts of repetitive DNA in newt [25]. 

Uhlenbeck [126] showed that the hammerhead structure can be separated 

into enzyme and substrate components that function in a bimolecular reaction. 
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Fig. 1. Model for design of ribozymes (from Haseloff and Gerlach [47]; reprinted by 
permission from Nature vol. 334. Copyright© 1988 Macmillan Magazines Ltd. Substrate 
RNA can have any sequence ( x ) flanking GUC at the cleavage site, as long as base pairing 
forms with the ribozyme as shown. Arrow indicates cleavage site. Conserved bases in 
ribozymes are boxed. In naturally occurring hammerheads, the substrate and ribozyme 

portions are connected by a loop, resulting in an intramolecular cleavage 

Haseloff and Gerlach [47] then showed that the only sequence conserved in 

the substrate RNA is a GUC adjacent to the cleavage site. All the other con- 

served sequences are in the enzyme portion of the cleavage structure. They 

exploited this to construct ribozymes that contained the conserved primary 

sequence in the enzyme fragment, flanked by sequences that could base-pair 

with the desired (nonsatellite) RNA sequence (Fig. 1). They constructed three 

different ribozymes that specifically cleaved chloramphenicol acetyl transferase 

(CAT) mRNA in vitro at three predicted different sites that have only the GUC 

sequence in common. The ribozymes behaved as true enzymes (i.e., they re- 

mained unchanged and performed several rounds of RNA cleavage). 

Work is under way to optimize the cleavage reaction and understand the 

limiting parameters. Gene-specific ribozymes vary widely in cleavage efficiency, 

due to unpredictable secondary structural and perhaps other unknown param- 

eters [27]. Ribozymes can be designed to cleave at sites other than GUC [14]. 

In fact, the minus sense strands of lucerne transient streak virus satellite cleaves 

at GUA [28], and the plus strand of BYDV satellite cleaves at AUA [77]. 

Gerlach et al. [37] have found that increasing the length of the "arms" that 

base pair with the substrate to a hundred or more nucleotides increased cleavage 

efficiency. They created "catalytic antisense" RNA consisting of several ribo- 

zyme moieties incorporated in a long antisense RNA and showed that it ef- 

fectively cleaved CAT mRNA in vitro and in vivo. 

Hammerhead-derived ribozymes have been shown to work in vivo in ver- 

tebrate cells [6, 14]. Of most importance to this review, ribozymes seem to be 

effective inhibitors of human immunodeficiency virus in human celts [ 104]. 

A ribozyme with a completely different structure also may prove to be 
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effective as a gene-specific nuclease. The "hairpin" structure of the self-cleaving 

minus strain of STobRV [5], which bears no structural similarity to hammer- 

heads, cleaves at the 5' side of the G of a GUC sequence [44]. It has been 

modified to work as a sequence-specific ribozyme that can function more ef- 

ficiently than hammerheads under physiological conditions in vitro [45]. These 

results, combined with the recent demonstration that the Tetrahymena ribozyme 

can be modified to cleave a variety of substrates [80], including DNA [49, 99], 

suggest that a battery of structurally unrelated ribozymes may soon be available 

for use as antiviral agents. 

Anfi-idiotypic antibodies as receptor-specific antiviral agents 

In 1974, Jerne proposed the Immune Network Theory to describe the regulation 

of the immune response in an antigenicatly stimulated animal. The theory 

suggested that an antigen can be regulated by a series of anti-idiotypic reactions 

that can either enhance or suppress the immune response to a particular antigen 

[60]. Antigen binding sites (paratopes) on antibody molecules are located in 

the idiotypic region of the molecule. Antibodies directed against the idiotypic 

region of other antibody molecules are called anti-idiotypic antibodies (anti- 

ids). If the anti-id recognizes the paratope and inhibits its recognition for an 

antigenic site (epitope) on the antigen, the anti-id may possess a structure similar 

to the epitope of the antigen. In this situation, both the epitope of the antigen 

and the anti-id can bind to an antibody molecule at the same site (Fig. 2). Such 

anti-iris are called internal image anti-iris. The idiotope represents (mimics) the 

three-dimensional configuration of the antigen. 

Speculation concerning the exploitation of anti-ids for vaccine development 

[83, 100] (reviewed by Thanavala [,-120]) has resulted in development of several 

examples. The most successful of these systems involve Trypanosoma surface 

glycoprotein [101], hepatitis B surface antigen [,-61, 121], and the reovirus 

hemagglutinin [107]. 

Although vaccine development probably is not applicable to plant viruses, 

there have been three reports of the production of anti-ids [31, 53, 75, 76]. in 

a futuristic application of anti-ids to induction of resistance to plant viruses, 

Mernaugh et al. [75] suggested that the gene encoding the variable light chain 

Ag 

Ab 2 
Ab 1 

Fig. 2. Diagrammatic representation of interactions that may occur in an antigenically 
stimulated animal.- Ag antigen, • epitope, Ab t antigen-specific antibody, Ab 2 antigen- 

mimicking antibody 
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of an anti-id representing an epitope of the coat protein of one strain of a plant 

virus could be introduced into and expressed in plants to provide cross-pro- 

tection. This would be intended to act as CP-mediated protection in transgenic 

plants expressing the CP of a virus strain. Expression of active antibodies in 

transgenic tobacco plant has been demonstrated recently [50]. 

Expression of human interferon genes in plants 

Human (t- and 13-interferon (a-and 13-IFN) activity in plants has been investi- 

gated by several groups [54, 68, 84, 106], although its inhibitory effect on plant 

single strand positive-sense RNA virus infection remains controversial. Re- 

cently, transgenic tobacco plants expressing the a-INF gene have been obtained 

via Agrobacterium transformation [10]. However, high-level expression of 

a-IFN gene in turnip plants did not inhibit replication of turnip yellow mosaic 

virus [21]. Monoclonal antibodies to human 13-INF have been used to purify 

two plant proteins by immunoaffinity chromatography. These proteins signif- 

icantly inhibited TMV multiplication, but no sequence homology was found 

to any known protein, including interferon [22]. 

Conclusions 

Historically, plant virus disease has been controlled by naturally occurring 

resistance or other kinds of evasive procedures. These measures have included 

resistance to and control of virus vectors such as insects, nematodes, and fungi; 

heat therapy; meristem culture; quarantine; eradication; maintenance of virus- 

free planting stock; sanitation; cross protection; and, depending upon the crop, 

various cultural practices. Opportunities now exist for development of addi- 

tional novel control procedures. These developments will depend upon adap- 

tation of technology developed by molecular biology to control virus disease. 

As illustrated by this review, numerous opportunities exist. At present, CP- 

mediated protection has been most widely examined and seems to be an effective 

control measure for disease caused by viruses in several different plant virus 

groups. It is apparent, however, that numerous other opportunities exist for 

effective development of additional strategies. The genetic stability of these 

novel forms of resistance will largely determine their effectiveness in the envi- 

ronment. Use of combined approaches may provide an effective way to enhance 

the durability of resistance in the field. The challenge to effectively deploy 

enhanced virus disease resistance will continue for numerous decades in the 

future! 
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