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Abstract

One major theory in learning and memory posits that the NR2B gene is a universal genetic factor that acts as rate-limiting
molecule in controlling the optimal NMDA receptor’s coincidence-detection property and subsequent learning and memory
function across multiple animal species. If so, can memory function be enhanced via transgenic overexpression of NR2B in
another species other than the previously reported mouse species? To examine these crucial issues, we generated
transgenic rats in which NR2B is overexpressed in the cortex and hippocampus and investigated the role of NR2B gene in
NMDA receptor-mediated synaptic plasticity and memory functions by combining electrophysiological technique with
behavioral measurements. We found that overexpression of the NR2B subunit had no effect on CA1-LTD, but rather resulted
in enhanced CA1-LTP and improved memory performances in novel object recognition test, spatial water maze, and
delayed-to-nonmatch working memory test. Our slices recordings using NR2A- and NR2B-selective antagonists further
demonstrate that the larger LTP in transgenic hippocampal slices was due to contribution from the increased NR2B-
containing NMDARs. Therefore, our genetic experiments suggest that NR2B at CA1 synapses is not designated as a rate-
limiting factor for the induction of long-term synaptic depression, but rather plays a crucial role in initiating the synaptic
potentiation. Moreover, our studies provide strong evidence that the NR2B subunit represents a universal rate-limiting
molecule for gating NMDA receptor’s optimal coincidence-detection property and for enhancing memory function in
adulthood across multiple mammalian species.
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Introduction

The NMDA receptor, the molecular switch for synaptic

plasticity [1,2,3,4] and learning and memory [5,6,7,8], is

composed of NR1 and at least of one of the NR2 (A, B, C, and

D), or NR3 (A and B) subunits [9,10]. The NR2A and NR2B

subunits are predominant subunits in excitatory pyramidal cells of

the cortex and hippocampus to form the receptor complex with

the NR1 subunit and to underlie the receptor’s coincidence-

detection function [11]. Over the time course of postnatal

development there is a dynamic change in the ratio of NR2A

over NR2B, with increased production of NR2A-containing

NMDARs and reduced NR2B-containing NMDARs as the

postnatal brain develops into the adult stage [11,12,13,14]. This

change in the subunit composition has been postulated to be

crucial for underlying the gradual shortening of NMDA currents

and increased threshold for synaptic plasticity induction [7,15]. A

pharmacological experiment using antagonists selectively blocking

NR2A- or NR2B-containing NMDARs reported that the NR2A-

containing NMDARs was designated for the induction of LTP,

whereas NR2B-containing NMDARs was exclusively responsible

for the induction of LTD in the CA1 region of the rat

hippocampus [16]. However, other studies in rat CA1 region

using the similar pharmacological methods reported otherwise

[17,18,19]. One alternative way to examine the validity of this

hypothesis is to overexpress the NR2B subunit or NR2A subunit

and examine its effects on LTP and LTD in the rat hippocampus.

Since the NR2A subunit is known to be much more predominant

in the adult hippocampus than that of the NR2B subunit in the

adult brain, overexpression of the rate-limiting NR2B subunit can

represent a simple and yet crucial test for the ‘‘NR2A-for-LTP/

NR2B-for-LTD’’ hypothesis. Due to the fact that the majority of

those studies were done in rats, we purposely generated the

transgenic rats, instead of mice, and overexpressed the NR2B

subunit in the forebrain regions such as the hippocampus and

cortex. This transgenic rat system has allowed us to test an
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important prediction of the ‘‘NR2A-for-LTP and NR2B-for-

LTD’’ hypothesis: if NR2B-containing NMDARs were specialized

in triggering LTD, overexpression of NR2B should selectively

affect CA1-LTD (producing larger LTD), and has no or only a

small effect on CA1-LTP. In addition, the NR2B rats would also

permit us to examine whether they possess superior learning and

memory functions in comparison to their wild-type littermates.

Results

Production and biochemical characterization of NR2B
Transgenic rats

The forebrain-specific CaMKII promoter was used to drive

NR2B transgene expression in the rat hippocampus and cortex

(Figure 1A), and we injected the linearized transgene construct

into the fertilized embryos of Long Evans female rats. Despite a

certain technical variation associated with microinjection proce-

dures in this rat strain, we were able to produce a transgenic line

with high expression of the NR2B construct. Our in situ

hybridization confirmed the expression of mRNA of the NR2B

transgene in the forebrain (Figure 1B and C). The western blots

also show increased amount of NR2B proteins in the synaptosome

preparation (Figure 1D). The offspring of this line grow normally

(Supporting Figure S1) and exhibit indistinguishable behavior such

as locomotion and exploratory behavior (data not shown).

Enhanced Recognition Memory in NR2B Transgenic Rats
Since overexpression of NR2B is reportedly capable of

enhancing memory function in mice [7,20,21], we wonder

whether overexpression of NR2B would also benefit memory

Figure 1. Production and Basic Characterizations of NR2B Transgenic Rats. A: The construct for making NR2B transgenic rats. An 8.5 kb
alpha-CaMKII promoter was used to drive NR2B overexpression. The small solid bar indicates the probes used for in situ hybridization, (*) indicates the
probe for vector of 265-1 intron, (**) represents the probe within the NR2B encoding sequence. B: in situ hybridization using transgene-specific probe
of 265-1. The transgene mRNA expression showed forebrain-specific expression pattern. No signal was detected in the wild-type brain. C: in situ
hybridization using a probe detecting NR2B mRNA expression. D: Western blots measure the amount of NR2A, NR2B and NR1 expression in the rat
brains. Hippocampus: HIP, Cortex: CX, Cerebellum: CB.
doi:10.1371/journal.pone.0007486.g001

Memory Enhanced Rats
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function in rats. Thus, we conducted a set of behavioral

experiments, namely novel object recognition test, hidden-

platform water maze, and T-maze spatial working memory tests,

to see if the transgenic rats exhibit better memory performances.

In the novel object recognition test, we found that there was no

significant difference in the amount of time spent on exploring the two

objects during the training session, as shown by the exploratory

preference (Figure 2A). This indicates both the transgenic rats and their

wild-type littermates have the same levels of motivation and curiosity

for exploring these two objects. Furthermore, we found that both

transgenic and wild-type rats exhibited the similar levels of preference

toward the novel object at the 1 hour retention test (Figure 2B).

Interestingly, when retention tests were conducted at longer duration,

such as 1 day and 3 days later, the transgenic rats exhibited much

stronger preference for the novel object than wild-type rats (Figure 2B).

A post hoc analysis by using Dunnett’s test reveals a significant

difference between wild-type and transgenic rats at the 1-day (F(1, 26) =

5.25, p,0.05) and 3-day retention tests (F(1, 19) = 19.77, p,0.01).

However, when the retention duration was further increased to 1 week,

the transgenic rats no longer exhibited any preference (Figure 2B),

indicating both types of rats have forgotten the objects they explored

initially. These experiments suggest that the transgenic rats outper-

formed control rats in this recognition memory test.

Enhanced Spatial Reference Memory in NR2B Transgenic
Rats

We then measured the spatial memory function using the hidden-

platform water maze. We first assessed the escape latency during the

water maze training sessions. We found that transgenic rats spent the

significant less time to find the platform during the second and third

training sessions (Figure 3A). At the end of the third training session,

we examined the spatial memory function by measuring the place

preference under the full cue condition. Transgenic and wild-type

rats exhibited equal amount of strong preference for the target

quadrant under full-cue conditions (Figure 3B). Interestingly, when

we increased the task difficulty by using the partial cue condition, we

found that transgenic rats outperformed their wild-type counter-

parts. They spent significantly more time in the target quadrant than

other quadrants, in comparison to that of wild-type rats (Figure 3C),

suggesting that the transgenic rats were better in this spatial memory

test. It is worthy to note that at the end of 5th training session, there is

no longer any difference in place preference under either full cue or

partial cue conditions (Supporting Figure S2).

Enhanced Spatial Working Memory in NR2B Transgenic
Rats

We also tested the working memory function in NR2B transgenic

rats by using the elevated T-maze non-matching-to-place task [22].

Each individual trial of this task is consisted of a sample-run and a

choice-run. On the sample-run, the rats were forced to run down either

the left or right arm (in randomized sequence) to obtain a food reward.

On the choice-run which starts 15 seconds after the sample run, the

rats were placed at the end of the start arm and allowed a free choice of

either goal arm (the correct arm should be non-matching to the

sample-run arm). The NR2B transgenic rats exhibited the similar

learning curve in comparison to that of the controls (Figure 4A). Upon

the completion of the training trials, we increased the difficulty of the

tasks by systematically varying the time interval between the sample-

and the choice-run (ranging from 1 minute to 3- or 5-minutes).

Interestingly, NR2B transgenic rats exhibited superior performances in

comparison to those of their control littermates when the interval

between sample-run and test-run was delayed 3 minutes (Figure 4B)

(F(1, 25) = 10.97, p,0.01). For the 5-minute-delay interval, although

there seems to be a tendency that Tg rats performed better than the

wild-type littermates, there was no statistically significant difference.

Enhanced LTP of Hippocampus in Transgenic Rats
To investigate the effects of NR2B overexpression on the

hippocampal synaptic transmission and plasticity in the transgenic

NR2B rats, we used slice recording techniques and measured synaptic

properties in the Schaffer collateral-CA1 path of adult rats (2–3 months

old). We found that there was no significant difference in basal synaptic

transmission (Figure 5A. WT, n = 6 slices/3 rats; Tg, n = 8 slices/4 rats)

and paired-pulse facilitation (Figure 5B. WT, n = 9 slices/3 rats; Tg,

n = 14 slices/5 rats) between transgenic and wild-type hippocampal

slices. This suggests that the overexpression of the NR2B transgene did

not change presynaptic function and basic synaptic transmission.

However, we found that a single tetanic stimulus evoked significantly

larger long-term potentiation (LTP) in transgenic slices than that in the

wild-type slices (Figure 5C; Tg, n = 9 slices/7 rats, 209616.82%; WT,

n = 9 slices/6 rats, 16668.67%; p,0.05 in comparison to transgenic

rats). This form of enhanced LTP was NMDA receptor-dependent

because application of 100 mM AP-5 in the perfusion solution

completely blocked LTP in transgenic slices (data not shown).

Figure 2. Enhancement of Novel Object Recognition Memory in
Transgenic Rats. A: Similar exploratory preference between trans-
genic and wild-type rats during training session of the novel object
recognition tests. B: Enhanced exploratory preference in transgenic rats
in 1-day and 3-day retention tests.
doi:10.1371/journal.pone.0007486.g002
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We next investigated long-term depotentiation (LTD) by using

the 1-Hz low-stimulation frequency protocol. No significant

difference in LTD was observed between wild-type (Figure 5D,

8662.42%; n = 12 slices/5 rats) and transgenic slices (8562.56%;

n = 12 slices/4 rats, t-test, p = 0.869 vs. wild-type).

Involvement of NR2A Subunits in LTP in Transgenic and
Wt Rats

To assess the relative contribution of the NR2A and NR2B

subunits to LTP, we added pharmacological antagonists to our

hippocampal preparations. We first used NR2A selective antago-

nist, NVP-AAM077. We found that LTP in wild-type slices was

significantly reduced but not completely blocked by 0.4 mM NVP-

AAM077 (Figure 6A, no drug, n = 9 slices/6 wt rats, 16668.67%;

with drug, 12267.64%; n = 6 slices/5 rats, t-test, p,0.05).

Similarly, NVP-AAM077 also reduced the level of LTP in the

transgenic slices (Figure 6B. 209616.82% without the drug,

16169.86% with the drug). It is important to note that even after

treatment with NVP-AAM077, LTP in Tg slices (16169.86%,

n = 6 slices/5 rats) was still significantly larger than that of WT slices

(12267.64%, n = 7 slices/5 rats; p,0.05) (Figure 6C).

Requirement of NR2B Subunits for LTP in Transgenic and
Wt Rats

We then examined the role of NR2B-containing NMDARs in

CA1-LTP using NR2B-selective antagonist, Ro 25-6981. We

found that 3 mM Ro 25-6981 mildly reduced LTP on the wild-

type slices (Figure 6D, 13968.58% drug treated; n = 8slices/6 rats,

t-test, p,0.05), whereas the same drug treatment greatly

Figure 3. Enhanced Performance in the Hidden-platform Water
Maze Task by NR2B Transgenic Rats. A: Escape latency in water
maze training. Transgenic rats spent the significant less time to find the
platform during the second and third training sessions. B: At the end of
the third training session, spatial memory function was tested under full
cue condition. Transgenic and Wt rats exhibited equal amount of strong
preference for the target quadrant under full-cue conditions (Student’s
t-test, *P,0.05). C: Place preference was further tested at the end of the
third training session under the partial cue condition. Transgenic rats
spent more time in the target quadrant than other quadrants, in
comparison to that of wild-type rats.
doi:10.1371/journal.pone.0007486.g003

Figure 4. Enhancement of Spatial Working Memory in Trans-
genic Rats. A: NR2B transgenic rats exhibited the similar learning curve in
comparison to that of controls during the T-maze spatial working memory
test. The delay interval between the sample-run and trial-run is
15 seconds. B: Spatial working memories were tested using various
intervals. Better performance in the transgenic rats was noted in the 3-min
delay non-matching to place test. Data are expressed as mean6SEM.
Asterisk, p,0.05; double asterisk, p,0.01; post hoc analysis.
doi:10.1371/journal.pone.0007486.g004
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decreased LTP in the transgenic slices (Figure 6E, 14866.38%

drug treated; n = 9 slices/5 rats, compared to the untreated

209616.82%, p,0.01). Importantly, under the Ro25-6981

treatment LTP level in Wt slices was statistically similar to that

of Ro25-6981-treated Tg slices (Figure 6F; wild-type, 13968.59%;

n = 8 slices/6 rats; transgenic, 14866.38%; n = 9 slices/5 rats;

p = 0.405).

Finally, we conducted the LTP recording experiments using

combined NVP-AAM077 and Ro25-6981 protocols. The com-

bined application of NVP-AAM077 and Ro25-6981 produced

additive effects and together these two drugs were able to

completely block LTP induction in the wild-type slices

(Figure 6G, 9966.87%; n = 8 slices/3 rats.) as well as in the

transgenic slices (Figure 6H, 10563.53%; n = 7 slices/3 Rats).

Statistical analyses show there was no significant difference

between the genotypes (Figure 6I, p.0.05).

Discussion

Using genetic approach, we have examined two major

hypotheses: 1) subunit composition of the NMDA receptor controls

the direction of synaptic plasticity, specifically, NR2A-containing

NMDARs triggers CA1-LTP, whereas NR2B-containing

NMDARs triggers CA1-LTD [16]. 2) the NR2B gene is a universal

genetic factor that acts as rate-limiting molecule in controlling

memory function across multiple animal species. As to the first

hypothesis, one crucial prediction of this ‘‘NR2A triggering LTP/

NR2B triggering LTD’’ hypothesis would be that overexpression of

NR2B in rat hippocampus should lead to more robust LTD and no

change in LTP. In contrast to the prediction for enhancement of

CA1-LTD, our results demonstrate that overexpression of the

NR2B subunit in the rat hippocampus had no observable effect on

CA1-LTD, but rather resulted in enhanced CA1-LTP. Again, the

selective enhancement of LTP but not LTD is similar to what was

previously described in NR2B transgenic mice [7,21].

More importantly, by making transgenic rats instead of

transgenic mice, we can avoid the argument of species difference

[23,24] and make our measurements more directly comparable to

the results using rat preparations. It should be noted that our

present study focused on NR2B overexpression. It would be useful

to embark on similar efforts in examining the effect of NR2A

overexpression in near future.

Our detailed analyses using NR2A- and NR2B-selective

antagonists reveal that the larger LTP in transgenic hippocampal

slices was due to contribution from the increased NR2B-

containing NMDARs. Taken together, our experiments clearly

demonstrate that NR2B is not designated specifically for triggering

LTD, but rather plays a crucial role in controlling the LTP

process. This basically nullifies ‘‘NR2A triggering LTP/NR2B

triggering LTD’’ hypothesis.

One of the major interests in cognitive neuroscience community

is whether it is possible to enhance memory function in the normal

brain. Ten years ago, we reported the successful generation of

transgenic mice with enhanced learning and memory via

enhancing the NMDA receptor’s coincidence-detection function

[7]. However, one of the major questions followed after our initial

work in mice is whether the NR2B gene is a universal molecule

that represents the rate-limiting molecular switch for controlling

synaptic plasticity and memory function across multiple animal

species. Although the extrapolation of the scientific conclusions

from one species to another is logical given the overwhelming

similarity in the molecular composition, expression distribution,

Figure 5. Synaptic Transmission and Plasticity in the Transgenic Rat Hippocampus. A: Normal CA3-CA1 input/output curve in Tg
hippocampal slices. B: Normal paired-pulse facilitation at CA3-CA1 in Tg hippocampal slice. C: Tetanic stimulation induced larger LTP in transgenic
slices than that of control. D: Low-frequency stimulation evoked the similar LTD between Tg and WT slices. Data were presented as the mean6SEM.
Student’s t-test was used for statistical analysis.
doi:10.1371/journal.pone.0007486.g005

Memory Enhanced Rats
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and physiological properties of the NMDA receptors ranging from

mice to rats and from monkeys to humans, it should not serve as a

complete substitute for actual experiments. Thus, it is crucial to

perform the experiments to test and extend those crucial findings

in multiple mammalian species. The rat strain that we used is the

Long Evans rats which are known to exhibit most robust learning

performances in all laboratory rodent species and they are the

favorite strain for many neuroscientists who conduct in vivo

recording experiments. Also, successful making of transgenic rats

for the neuroscience studies should also further enhance the

experimental value of the rat model system from which a vast

amount of neuropharmacological and behavioral data have been

accumulated historically and facilitate the multi-level data

comparisons [25,26,27,28]. In addition, the large size of the rats

(200–500 grams of body weight in comparison to the typical 20–30

grams of body eight for mice) also provides certain advantages in

terms of large-scale in vivo neural recordings by using the existing

electrode microdrive and head stage designs.

Our analyses reveal that the NR2B transgenic rats indeed exhibit

superior memory function in comparison to the wild-type

littermates. Conceivably, our demonstration of genetic enhance-

ment in both mice and rats via NR2B overexpression greatly

strengthens the notion that the NR2B gene is a valid drug target for

improving memory function in both normal brains and patients

with Alzheimer’ disease or mild cognitive impairment [21,29]. In

the literature, some researchers suggest that optimal concentration

of brain magnesium, which contributes to the voltage-gated opening

of the NMDA channel, may increase the expression of NR2B

subunit in cultured hippocampal neurons and lead to the juvenile

form of the receptor [30], which may be one of the primary

mechanisms for improved cognition in aged animals or brain injury

models [31–34]. The up-regulation of NR2B by increased

magnesium concentration seems to reflect a previous unrecognized

mechanism by which the neurons deals with background calcium

noise and opt for the efficient transmission of the NMDA receptor

signals [30]. Thus, from this perspective, the optimal brain

Figure 6. The Role of NR2B Subunit in Enhanced CA1-LTP in Transgenic Hippomcampal Slices. A: Effects of NR2A-selective antagonist,
NVP-AAM077, on wild-type slices. B: NVP-AAM077 also significantly reduced, but not completely blocked, CA1 LTP in transgenic slices. C: Statistical
analysis shows the effects of NVP-AAM077 on LTP in both Tg and Wt slice. It indicates a significant involvement of NR2A-containing NMDARs in CA1-
LTP induction in both Tg and WT slices. D: There was a significant, but small, effect of NR2B-selective antagonist, Ro25-6981, on CA1-LTP in wild-type
slices. E: Ro25-6981 had much larger effect on CA1-LTP in transgenic slices, but it did not completely block LTP in transgenic slices. F: Summarized
effects of Ro25-6981 on CA1-LTP in both Tg and Wt slice. G: Combination of NVP-AAM077 and Ro25-6981 completely blocked the formation of CA3-
CA1 LTP completely in the wild-type slices. H: Complete blockage of CA1-LTP in transgenic slices by combined application of NVP-AAM077 and Ro25-
6981. I: Statistical analysis shows the combined effects of NVP-AAM077 and Ro25-6981 on CA1-LTP. (Data were presented as the mean6SEM.
Student’s t-test was used for statistical analysis).
doi:10.1371/journal.pone.0007486.g006
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magnesium level should be systematically explored as a dietary

means for its possible effects on improving memory via up-

regulation of NR2B. This can be especially interesting in

consideration of the reported magnesium deficiency in certain

population including old people [35]. However, magnesium loading

via diet should be carefully monitored to avoid side effects.

While the NMDA receptor is the primary receptor in gating the

memory processes, other neurotransmitter systems can be also

important for the regulation and modulation of various aspects of

memory function, including motivation, attention, emotion, etc

[36–38]. For example, the enhanced working memory in the

transgenic rats raises an interesting question as what the role of

dopamine in the prefrontal cortex might be. It would be also useful

to investigate how those aspects are altered in the transgenic rats

by carrying out various types of memory tasks requiring stronger

attention, emotion, and motivation. Also in future experiments, it

will be necessary to further dissect out various engaged neural

circuits for memory enhancement [39–42].

In conclusion, our production and analysis of NR2B transgenic rats

shows that the NR2B subunit is indeed a graded switch for the control

of LTP but not for LTD in the CA1 region of the rat hippocampus.

Moreover, the superior memory function in NR2B transgenic rats,

together with the previously reported memory enhancement effects in

NR2B transgenic mice [7,20,21], provides clear and consistent

evidence that the NR2B subunit represents a rate-limiting genetic

factor in gating NMDA receptor’s optimal coincidence-detection and

memory formation in the adult brains of multiple mammalian species.

Genetic up-regulation of NR2B expression in the adult cortex and

hippocampus is an effective means for rejuvenating synaptic plasticity

and improving learning and memory.

Materials and Methods

Production and Biochemical Characterization of
Transgenic Rats

The transgenic founders were produced by pronuclear injection

of the linearized DNA into zygotes collected from Long Evans

female rats. The genotypes of all offspring were analyzed by

preparing tail DNAs, initially using southern blots and subsequently

using PCR. The 59 and 39 primers for detecting NR2B transgene

SV40 poly(A) sequence (505 bp) were 59-AGAGGATCTTTGT-

GAAGGAAC-39 and 59-AAGTAAAACCTCTACAAATG-39, re-

spectively. Rat tail DNAs (about 1 mg) were amplified 30 cycles

(1 min, 94uC; 45 sec, 55uC; 1 min, 72uC) on a thermal cycler. For

detecting transgene mRNA, a SV40 poly(A) tail fragment was used

for Northern blot. For Western blot, the antibodies against NR1,

NR2A, and NR2B were purchased from Upstate Biotechnology.

Synaptic membrane proteins were prepared from the rat forebrain.

The samples were resolved on 7.5% SDS-polyacrylamide gels

followed by immunoblotting with the above antibodies respectively,

detected by peroxidase-labeled secondary antibodies and the ECL

detection system (NEN Life Science products).

For in situ hybridization, rat brains were dissected and rapidly

frozen. Crytostat sections (20 mm) were prepared and postfixed for

5 min in 4% PFA in PBS buffer (pH 7.5). The slices were

hybridized to the [35S] oligonucleotide probe (59-GCAG-

GATCCGCTTGGGCTGCAGTTGG ACCT-39), which hybrid-

izes to sequences present in the 59 untranslated artificial intron

region unique to the transgene.

Electrophysiological Recordings on Hippocampal Slice
Preparation

Rats (2–3 months old) were anaesthetized with sodium

pentobarbital and sacrificed by decapitation. Transverse slices of

the hippocampus (400 mm ) were cut by a tissue chopper and

transferred to an chamber with artificial cerebrospinal fluid

(ACSF) consisting of the following composition (in mM): NaCl,

120; CaCl2, 2; MgSO4, 25; NaHCO3, 1.0; Na2HPO4, 1.0;

Glucose, 10, saturated with 95% O2 and 5% CO2. A bipolar

tungsten stimulating electrode was place in the stratum radiatum

to activate the Schaffer-collateral pathway projecting to CA1. A

glass microelectrode (3–12 MV, filled with ACSF) was positioned

also in the stratum radiatum to record presynaptic fiber volley and

followed extracellular field potentials (fEPSP). Test responses were

elicited at 0.03 Hz. After obtaining a stable baseline response for

at least 15 min, LTP was induced by applying high frequency

stimulation (100 Hz stimulation for 1 s). For inducing LTD, the

standard 1 Hz protocol was used. Data were presented as the

mean6SEM. Student’s t-test was used for the statistical analysis.

Novel Object Recognition Test
The protocol is similar to that published previously [7]. Rats

were individually handled for 3 days and then habituated to an

open-field box (40*40*20 cm) for 3 days. The object recognition

task consisted of training and retention sessions. During the

training session, two objects were placed equidistant from the

center of the box and each rat was given 5 min to explore the box.

The amount of time spent exploring each object was recorded.

The rat was then returned to its home cage. During retention tests

(retention for 1-hour, 1-day, 3-day, and 7-days), the trained rats

were again placed individually in the box, in which one of the

familiar objects was replaced by a novel object, and the rat was

given 5 min to explore. The ratio of the amount of time spent

exploring the novel object over the total time spent exploring both

objects (preference index) was calculated to evaluate the

recognition memory for each rat.

Hidden-platform Water Maze
The protocol is as described previously [7]. Briefly, a circular

pool (1.5 m in diameter) was filled with opaque liquid (constant

temperature 25uC) made by addition of white powder. The hidden

platform was 2 cm below the surface of the liquid and placed in

the middle of one quadrant. The navigation of the rat, the escape

latency and swimming length to the hidden platform were

automatically recorded by Track Video Analysis System (Coul-

bourn instrument, USA). Three days before training, rats were

handled and habituated to swim in the pool 60 seconds per day

without the hidden platform. One training session (four trials) was

conducted daily. During the training sessions, rats were required to

locate the hidden platform by using visual cues surrounding the

maze. The time taken to find the platform is measured. The

experimenter would guide the rat to the platform if it failed during

60 seconds. Two transfer tests were carried out at the end of the

third and fifth session respectively, in which the platform was

removed and rats were allowed to swim for 60 seconds. The time

spent in each quadrant was recorded. The behavioral perfor-

mances were analyzed by Student’s t-test.

T-maze Spatial Working Memory Test
The protocol is as described previously [22]. The T-maze was

made of black plexiglass and composed of a start arm (length

70 cm, width 20 cm and height 20 cm) with a start box (the first

20 cm of the start arm) and two identical goal arms (length 70 cm,

width 20 cm and height 20 cm) with a food cup located 5 cm from

the end of each goal arm. Before the training session, rats were

housed individually with freely accessible drinking water, but

maintained on a restricted food-pellet feeding schedule at

approximately 85% of their pre-experimental body weight. They
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were habituated to the maze environment and were accustomed to

reward foods (a small sugar pellet). Each trial consisted of a

sample-run and a choice-run. On the sample-run, the rat was

forced to enter either the left or right arm to get food (a small sugar

pellet) while the other arm was blocked by a door. The direction of

the forced run was random but no more than 2 times allowed in

the same direction consecutively. On the choice-run, the blocked

door was removed and the rat was allowed to choose either arm

freely. The time interval between the sample- and the choice- run

was 15 seconds during training. If rats enter the previously

unvisited arm, the rats were rewarded before being placed back in

the cage. Between each run the arms were quickly cleaned with

75% alcohol to remove the effect of olfactory. The training session

lasted until the correct performance was stabilized at 85%. The

delayed alternation was systematically prolonged to 1, 3, and

5 minutes. Four trials were conducted each day for two

consecutive days. Behavioral performance was analyzed by a

one-way ANOVA.

Supporting Information

Figure S1 A NR2B Transgenic rat is shown, next to a NR2B

transgenic mouse. The transgenic rats grow normally. The rats on

Long Evans strain are ten to twenty times bigger than mice in

body weight. Because of the large body size, the transgenic rats can

be useful for conducting large-scale in vivo neural ensemble

recordings during the freely behaving state.

Found at: doi:10.1371/journal.pone.0007486.s001 (4.86 MB TIF)

Figure S2 The transgenic NR2B rats and wild-type littermates

showed the comparable performances at the end of 5th training

session. There is no longer any difference in place preference

under either full cue or partial cue conditions.

Found at: doi:10.1371/journal.pone.0007486.s002 (0.72 MB TIF)
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