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Abstract

Background: Human leukocyte antigen (HLA) class I genes mediate cytotoxic T-lymphocyte responses and natural killer cell
function. In a previous study, several HLA-B and HLA-C alleles and haplotypes were positively or negatively associated with
the occurrence and prognosis of glioblastoma multiforme (GBM).

Methodology/Principal Findings: As an extension of the Upper Midwest Health Study, we have performed HLA genotyping
for 149 GBM patients and 149 healthy control subjects from a non-metropolitan population consisting almost exclusively of
European Americans. Conditional logistic regression models did not reproduce the association of HLA-B*07 or the B*07-Cw*07
haplotype with GBM. Nonetheless, HLA-A*32, which has previously been shown to predispose GBM patients to a favorable
prognosis, was negatively associated with occurrence of GBM (odds ratio = 0.41, p = 0.04 by univariate analysis). Other alleles
(A*29, A*30, A*31 and A*33) within the A19 serology group to which A*32 belongs showed inconsistent trends. Sequencing-
based HLA-A genotyping established that A*3201 was the single A*32 allele underlying the observed association. Additional
evaluation of HLA-A promoter and exon 1 sequences did not detect any unexpected single nucleotide polymorphisms that
could suggest differential allelic expression. Further analyses restricted to female GBM cases and controls revealed a second
association with a specific HLA-B sequence motif corresponding to Bw4-80Ile (odds ratio = 2.71, p = 0.02).

Conclusions/Significance: HLA-A allelic product encoded by A*3201 is likely to be functionally important to GBM. The
novel, sex-specific association will require further confirmation in other representative study populations.
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Introduction

Glioblastoma multiforme (GBM, also known as Grade IV glioma) is

the most common and most severe form of primary brain cancer, with

well-documented molecular heterogeneity and rapid fatality

[1–7]. In the United States, age-adjusted GBM rates are 2.5 times

higher in European Americans than in African Americans and 60%

higher in men than in women [1,2,8,9]. With varying degrees of

certainty, additional factors associated with GBM range from

occupational and dietary hazards to reproductive hormones, infectious

agents, and variations in genes that regulate DNA repair, carcinogen

metabolism, cell cycle, or inflammatory and immune responses [10].

Overall, genetic, developmental and environmental factors are all

likely contributors to the etiology and pathogenesis of GBM.

Genes encoding the highly polymorphic human leukocyte

antigens (HLA) are known to mediate inflammatory diseases,

immune disorders, infectious diseases, and human malignancies

[11,12]. These and other clustered genes form the major

histocompatibility complex (MHC) on the short arm of chromo-

some 6 (6p21.3) and most have dual roles in innate and adaptive

immune responses. Multiple HLA alleles and haplotypes have

been associated with GBM [13–16] as well as other malignancies,

including nasopharyngeal carcinoma [17–19] and cervical cancer

[20–22]. Some of these reported associations have been partially

replicated and/or validated in studies of immune function

[23–25], while most appear to be population- or study-specific

findings with largely dubious pathogenetic implications.

In previous work based on 155 GBM patients and 157 healthy

control subjects recruited from the San Francisco Bay area, several

HLA factors have been associated with GBM occurrence and its

prognosis [16]. Our follow-up study in a different population now

provides further evidence that at least one HLA-A allele known as

A*3201 may well be a favorable allele that deserves further

investigation.
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Results

Overall characteristics of the study population
Nested within the Upper Midwest Health Study (UMHS) [26,27],

149 GBM patients and 149 healthy control subjects (Table 1) were

selected based on 1:1 matching for four criteria, i.e., ethnicity, sex,

age and county of residence. As a result, patients and controls were

highly comparable in ethnic background, age and sex ratio, although

four African American (AA) patients had to be paired with European

Americans (EA) controls. Body mass index, which was not used as a

selection criterion, was also quite similar between GBM patients and

healthy control subjects (p = 0.469). These characteristics formed the

basis for conditional logistic regression analyses of HLA genotypes in

the paired GBM patients and controls.

Analyses of HLA alleles and haplotypes
PCR-based genotyping for three HLA class I genes (HLA-A, -B

and –C) and one class II locus (HLA-DRB1) was successful for all

149 case-control pairs. Within each locus, the global distribution of

common alleles (frequency $0.01 in any given population) was

similar (p.0.50) between the UMHS population and another

population studied earlier (Table 2), as were the patterns of

pairwise linkage disequilibrium (LD) among alleles from different

loci (data not shown). Minor differences were noted for a few

individual alleles, including A*32, B*14, B*55, and Cw*08

(p#0.025 by univariate Chi-square or Fisher exact tests).

GBM patients and healthy controls were compared for 11 HLA-

A, 14 HLA-B, 10 HLA-C and 11 HLA-DRB1 alleles in a total of 46

univariate models. Three variants, i.e., A*32 (n = 29), B*14

(n = 11), and B*40 (n = 46), were found to be over-represented

among the healthy control group (p = 0.030 to 0.054) (Table 3),

while Cw*05 (n = 50) was more common in GBM patients (22.2%)

than in controls (11.4%) (odds ratio = 2.21, 95% confidence

interval = 1.17–4.17). In contrast, no other alleles highlighted in

earlier studies [13–16] showed any appreciable trend for positive

or negative associations with the occurrence of GBM. Further

analyses of local and extended haplotypes in this study population

also failed to detect any notable relationships.

Multivariable analyses dismissed B*14 and B*40 as independent

factors (adjusted p = 0.070 and 0.118, respectively). In the reduced

multivariable model, A*32 retained its negative association with

GBM (adjusted OR = 0.39, 95% CI = 0.16–0.91, and p = 0.024),

with Cw*05 being the only variant showing positive association

(adjusted OR = 2.48, 95% CI = 1.24–4.97, and p = 0.011). Sequenc-

ing of HLA-A exons 2 to 4 revealed that A*3201 was the only A*32

allele in the study population. Similar sequencing strategy confirmed

that Cw*0501 was the only allele representing Cw*05.

Insights gained from HLA-A promoter and exon 1
sequences

Selective sequencing of a 1000-bp fragment of HLA-A detected 51

SNPs at frequency $0.02 (Figure 1a); five had no known reference

sequence (rs) number in the dbSNP database (version 126). Strong

pairwise LD among some SNPs produced four apparent haplotype

blocks, each having 3–23 SNPs (Figure S1). Regardless of DNA

source (GBM patients or control subjects), A*3201 had six unique

SNPs (Figure 1b), one of which (rs2230954) is nonsynonymous

(Ser to Leu substitution) in the first exon. The other five (rs9260090,

rs9260100, rs9260102, rs9260105 and rs2735113) are around the

core promoter sequences, without any known or predictable

functional attributes. DNA sequencing also allowed the assembly

of homozygous sequences for 10 common HLA-A alleles

(Figure 1b). A neighbor-joining tree (Figure S2) revealed

topologies that were identical to known taxonomic hierarchy for

their entire open reading frames [28].

Analyses of HLA class I sequence motifs
HLA-A, -B, and –C sequence motifs were defined by 43, 66, and

28 specific probes in the respective SSO assays. Most (81% to 89%)

of them had enough inter-individual variations to be suitable for

comparative analyses. The presence of the HLA-A motif defined by

SSO probe 34 was negatively associated with GBM (OR = 0.50,

95% CI = 0.27–0.91, and p = 0.024) (Table 4). Common allele

groups known to carry this motif include A*23, A*29, A*31, A*32

and A*33 (A*74 was not detected). With the exception of A*23,

these allele groups all belong to the A19 serology group [29].

However, individuals whose DNA bound to SSO probe 34 in the

absence of A*32 (A*3201) were no less likely to be cases than

controls (OR = 0.59, 95% CI = 0.27–1.29, and p = 0.183), because

modest trends seen with A*23 (8 patients versus 4 controls), A*31 (6

versus 4) and A*33 (3 versus 0) was reversed by A*29 (6 versus 9).

Likewise, a common HLA-B motif defined by SSO probe 62 had a

positive association (OR = 1.87, 95% CI = 1.13–3.10, and

p = 0.015). Multiple HLA-B alleles (e.g., B*14, B*15, B*35, B*44,

B*45, B*49, B*50, B*51, B*53, and B*57) are known to have this

motif, but none of these alleles were individually associated with

GBM (p.0.15 in all tests).

Despite reduced statistical power, separate analyses of males

and females revealed three more sequence motifs that appeared to

be associated with GBM in females only (Table 4). The HLA-A

sequence motif defined by SSO probe 42 showed a negative

association (OR = 0.35, 95% CI = 0.15–0.83, and p = 0.017).

Relatively common alleles with this motif include A*01, A*11,

A*25, and A*26. HLA-B probes 30 and 34 had identical positive

association (OR = 2.71, 95% CI = 1.14–6.46, and p = 0.024)

because they were in exclusive (100%) LD (r2 = 1.0). Probe 34

corresponds to a subset of alleles having the Bw4 serological

specificity, including B*15 (B*1510 and B*1517), B*39, B*49,

B*51, B*53, and B*57. Multivariable analyses supported the

independent associations of HLA-A and HLA-B motifs captured by

probes 42 and 34, respectively (adjusted p#0.017) (Table 4).

Among the specific sequence motifs of interest, HLA-A probes

34 and 42 corresponds to four codons, 149-GCG, 151-CGT, 152-

GTG and 153-GCG, and three codons, 161-SAG (where S is

either G or C), 163-CGG and 165-GTG, respectively. HLA-B

probe 30 detects four codons (75-CGA, 77-AAC, 78-CTG and 80-

Table 1. Characteristics of glioblastoma multiforme (GBM)
patients and healthy control subjects selected from the Upper
Midwest Health Study.

GBM patients Healthy controls p

Number of subjects 149 149 _

Sex ratio: F/M 61/88 (0.69) 61/88 (0.69) _

Age (year)

Mean6SE 51.761.1 52.661.1 0.557

Range 18–76 21–77 _

Ethnicity: EA/other 145/4 149/0 0.122

Body mass index (kg/m2)

Mean6SD 25.664.1 26.064.2 0.469

Range 18.3–39.2 18.8–41.7 _

P values $0.75 are omitted (–); EA = European American, F = female, M = male,
SD = standard deviation, SE = standard error of the mean.
doi:10.1371/journal.pone.0007157.t001

HLA and Glioblastoma
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ATC), which have partial overlap with three codons (80-ATC, 81-

GCG and 83-CGC) detected by HLA-B probe 34. Thus, HLA-B

probes 30 and 34 share specificity for HLA-B codon 80-ATC

(AUC in RNA, for Ile). Four more codons defined by the HLA-B

probe 62 are 161-GAG (for Glu), 162-GGC (Gly), 163-CTG (Leu)

and 164-TGC (Cys).

Genotypes of two SNPs with broad implications for
human malignancies

Consistent with results from the CEPH DNA samples analyzed

by the International HapMap Project, SNPs rs401681 and

rs2736098 in our study population had the minor allele as T

and A, respectively. The frequency of rs401681[T] was 0.409 in

healthy controls versus 0.440 in GBM cases (p.0.65). The

rs401681[C] allele has been positively associated with multiple

cancers (OR ,1.2) but negatively associated with melanoma

(OR = 0.88) [30]. Here, rs401681[C] was slightly less frequent in

GBM cases than healthy controls (OR = 0.88 in test of allele

frequency). For SNP rs2736098, the frequency of its minor allele A

was 0.338 in healthy controls versus 0.288 in GBM cases (p.0.35),

in contrast with its positive association with other cancers [30].

Overall, none of the differences in SNP alleles and genotypes

(diplotypes) was close to statistical significance.

Discussion

In several ways, our study of GBM patients and healthy controls

from the Upper Midwest Health Study (UMHS) refined and

extended findings based on another cohort from the San Francisco

Bay area [16]. First, most HLA factors (e.g., B*07, B*13, and

Cw*01) revealed by the previous study could not be confirmed here,

so their role in the origins of GBM, if any, is unlikely to be

generalizable. Second, HLA-A*32 (A*3201) was the only allele that

was favorable in both the San Francisco population (prolonged

survival) and the Midwest population (protection from disease).

Third, specific motifs in the HLA-A and HLA-B open reading frames

appeared to be prominent factors in the Midwest cohort, especially

in females. Statistically, age was the most significant difference

(p,0.0001) between the San Francisco population (mean6standard

deviation = 58612) and the Midwest population (52613), which

might have contributed to inconsistent findings from these cohorts.

Environmental factors, including those related to farming [26,31],

could further distinguish the Midwest cohort from the San

Table 2. Distribution of relatively common HLA-A, -B, -C, and -DRB1 variants in similar case-control populations studied here (this
study, N = 298) and elsewhere (N = 312).

HLA-A allele frequency HLA-B allele frequency HLA-C allele frequency HLA-DRB1 allele frequency

Alleles Elsewhere This study Alleles Elsewhere This study Alleles Elsewhere This study Alleles Elsewhere This study

A*01 0.172 0.171 B*07 0.130 0.128 Cw*01 0.032 0.022 *01 0.104 0.106

A*02 0.289 0.310 B*08 0.096 0.111 Cw*02 0.045 0.052 *03 0.131 0.114

A*03 0.111 0.141 B*13 0.019 0.032 Cw*03 0.131 0.153 *04 0.149 0.161

A*11 0.069 0.057 B*14 0.042 0.018 Cw*04 0.112 0.111 *07 0.117 0.134

A*23 0.034 0.020 B*15 0.074 0.081 Cw*05 0.080 0.086 *08 0.035 0.040

A*24 0.083 0.079 B*18 0.055 0.052 Cw*06 0.088 0.109 *09 0.010 0.008

A*25 0.022 0.025 B*27 0.037 0.042 Cw*07 0.293 0.310 *10 0.013 0.012

A*26 0.034 0.022 B*35 0.093 0.087 Cw*08 0.050 0.017 *11 0.103 0.092

A*29 0.039 0.025 B*37 0.018 0.027 Cw*12 0.066 0.070 *12 0.018 0.018

A*30 0.030 0.022 B*38 0.018 0.013 Cw*14 0.016 0.008 *13 0.141 0.121

A*31 0.018 0.017 B*40 0.067 0.082 Cw*15 0.040 0.022 *14 0.026 0.027

A*32 0.026 0.050 B*44 0.130 0.153 Cw*16 0.034 0.030 *15 0.135 0.149

A*33 0.018 0.005 B*49 0.021 0.008 Cw*17 0.011 0.010 *16 0.019 0.017

A*68 0.050 0.045 B*51 0.058 0.042 Others 0.002 0

Others 0.008 0.011 B*52 0.016 0.020

B*55 0.037 0.010

B*57 0.027 0.042

Others 0.064 0.049

Previously studied population consists of European Americans from the San Francisco Bay area [16]. Rare alleles at each locus are grouped together (others), with
number of chromosomes (2N) used as the denominator in all tabulations. Between study populations, statistically significant differences (p#0.025) are seen with A*32,
B*14, B*55, and Cw*08.
doi:10.1371/journal.pone.0007157.t002

Table 3. Univariate analyses of HLA variants showing clear
trend for association with occurrence of glioblastoma
multiforme (GBM) in the Upper Midwest Health Study.

HLA
variant

In GBM
patients

In healthy
controls p OR 95% CI

A*32 9 (6.0) 20 (13.4) 0.040 0.41 0.18–0.94

B*14 2 (1.3) 9 (6.0) 0.054 0.21 0.05–0.99

B*40 16 (10.7) 30 (20.1) 0.030 0.48 0.25–0.92

Cw*05 33 (22.2) 17 (11.4) 0.014 2.21 1.17–4.17

Numbers below each group correspond to n (%) and p values are based on
maximum likelihood Chi-square test or Fisher exact test (for B*14 only) for 149
GBM patients and 149 healthy controls. OR = odds ratio, CI = confidence
interval.
doi:10.1371/journal.pone.0007157.t003

HLA and Glioblastoma
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Figure 1. DNA polymorphisms within HLA-A promoter and exon 1 sequences. A 1000-bp region (Panel a) has been sequenced for select
population samples. Upper case letters are cDNA sequences (part of the open reading frame); the translation start codon (ATG) is indicated by a
horizontal arrow. STR denotes a short tandem repeat sequence that has either three or four AAC repeats. Five transcription factor-bindings sites
(TFBS) are also indicated. Within this fragment, 69 single nucleotide polymorphisms (SNPs) (bold and underlined) have already been reported in the
literature. Those (n = 19) not confirmed in this work are shaded grey. The five novel SNPs are designated as ‘‘New’’ (underlined nucleotides below
vertical lines). The SNPs unique to A*3201 are marked by vertical arrows before their respective reference sequence (rs) numbers (from dbSNP
database, version 126). In panel b, 53 informative SNPs (minor allele frequency $0.02) are linked to 11 HLA alleles found in homozygous state.
doi:10.1371/journal.pone.0007157.g001

HLA and Glioblastoma
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Francisco cohort. Minor genetic heterogeneity can also offer some

alternative explanations, because the frequencies of several HLA-B

and HLA-C alleles differed between the two study populations

(Table 2). Overall, discordant observations were apparent between

the two cohorts despite their close similarity in ethnic background

and sample size (statistical power), suggesting that other aspects of

study design and population characteristics can be critical to

epidemiological analyses.

Aside from the question about relative impact of specific HLA

alleles or motifs on GBM in European Americans, our study here

and previous work [16] both indicated that the association signals

primarily came from the HLA class I region, which, if real, would

imply the involvement of cytotoxic T-lymphocyte (CTL) and/or

natural killer (NK) cell responses. In that regard, the Bw4 sequence

motif (Bw4-80Ile, defined by HLA-B probe 34) associated with

increased risk for GBM in females is of particular interest, due to

its direct role in NK cell activities. Evaluation of two killer

immunoglobulin-like receptor (KIR) genes, KIR3DS1 and

KIR3DL1, could shed further light on the Bw4 association because

these receptors directly or indirectly interact with the Bw4 motif to

activate or inhibit NK cell function [32–34]. Meanwhile, analyses

presented here and elsewhere [16] did not provide any corrobo-

ration of positive findings on HLA-DRB1 genotypes reported in

small cohorts [15,35]. Therefore, HLA class II alleles that dictate T-

helper cell function lacked appreciable impact on GBM.

The importance of HLA class I molecules to cancer immunol-

ogy has been well recognized in experimental studies [12]. In brain

cancer, low expression of classical HLA class I genes (HLA-A, -B,

and –C) [36] coupled with up-regulation of nonclassical genes (e.g.,

HLA-E and HLA-G) likely contributes to immune escape by tumor

cells with various somatic mutations [37–39]. On the other hand, a

study of long-term survivors of anaplastic astrocytoma, which is

closely related to GBM [7], has suggested that protective CTLs

can effectively respond to glioma-associated antigens [40]. CTLs

have indeed been detected in the peripheral blood of GBM

patients [41] and antigenic epitopes derived from the alpha 2

chain of interleukin-13 receptor can be presented by HLA-A*02

(A*0201) and A*24 [42–44]. It remains to be seen if HLA-A*3201

is advantageous in presenting oncogenic antigens commonly seen

in glioma cells [45–49]. Patients of African ancestry can be

particularly informative as HLA-A alleles in the A19 serology

group are most common in African Americans [50,51]. Epidemi-

ological study of patients with other major forms of brain cancer

(e.g., anaplastic astrocytoma) should also help identify favorable

HLA factors, which can lead to critical information about the

underlying protective mechanisms.

HLA allelic diversity is earmarked by the dominance of

nonsynonymous SNPs in the open reading frames, often as a

consequence of balancing selection by a variety of human

infectious diseases [52]. Such allelic diversity may be equally

advantageous in the battle with cancerous cells that frequently

switch antigenic repertoire [53]. Thus, in addition to examining

the A*3201 open reading frame using routine HLA typing

methods, we also partially surveyed regulatory sequences because

allele-specific immune surveillance can further depend on allelic

expression profile. Our work did reveal five SNP variants in the

HLA-A promoter region that are likely specific to the A*3201

allele, but none of these is within known transcription factor-

binding sites. Expanded analyses of other non-coding sequences

around the HLA-A locus may help determine whether regulatory

sequences beyond the promoter region can separate favorable

from unfavorable or neutral alleles, especially when closely related

alleles (e.g., A*3201 and others in the A19 serology group) differ in

their impact on disease.

In other brain tumor studies that have dealt with candidate

genes outside the HLA system (reviewed in ref. 10), the

magnitudes of genetic associations (usually with SNP genotypes)

have generally been modest. Further evidence from SNP-based

genome-wide association studies has been equally unremarkable

(less than 2-fold difference), including the recent implication of two

SNPs (rs401681 and rs2736098) consistently but weakly associated

with a variety of human malignancies [30], as well as other SNP

genotypes detected in genome-wide association studies of glioma

[54,55]. Indeed, our analyses of rs401681 and rs2736098

produced only minimal evidence that allele C of the intronic

SNP rs401681 (at the CLPTM1L locus) is probably unfavorable in

brain cancer.

In summary, case-control studies described here and earlier [16]

have yielded clues to potential involvement of HLA class I alleles

and motifs in GBM. The findings are still difficult to interpret

because none of them can be immediately related to other reports

on solid tumors. Of note, HLA-A*3201 (A19 or A32 by serology) is

a relatively infrequent allele, with an overall carriage (‘‘pheno-

type’’) frequency less than 10% (allele frequency ,0.05) in most

populations [29,50,56]. Lack of information about this allele is not

surprising, because even studies of adequate sample size (i.e.,

hundreds to thousands of cases and controls) can have limited

statistical power if the association is weak or obscured by other

factors. Bw4-80Ile, on the other hand, is a common variant;

hypothesis about Bw4-80Ile can be readily tested. Large

collaborative efforts, as promoted by the Brain Tumor Epidemi-

ology Consortium [10], are expected to expedite confirmatory

studies of HLA alleles and motifs in other well-defined cohorts,

especially those of diverse ethnic backgrounds as well as wide

geographic coverage. Recognition of GBM as a molecularly

heterogeneous cancer [4,7] also calls for the separate analyses of

primary and secondary glioblastoma, as the latter is closely related

to anaplastic astrocytoma (Grade III glioma) [7].

Materials and Methods

Study population
We studied unrelated subjects in the Upper Midwest Health

Study [26,27], which enrolled cancer patients and frequency-

Table 4. Individual HLA class I sequence motifs associated
with the occurrence of glioblasotma multiforme (GBM) in the
Upper Midwest Health Study population (N = 298 subjects) or
in the female subset (61 GBM patients and 61 healthy
controls).

HLA motif
In GBM
cases

In healthy
controls p ORc 95% CIc

In all subjects

HLA-A, probe 34 26 (17.5) 42 (28.2) 0.024 0.50 0.27–0.91

HLA-B, probe 62 114 (76.5) 94 (63.1) 0.015 1.87 1.13–3.10

In females only

HLA-A, probe 42 24 (39.3) 37 (60.7) 0.017 0.35 0.15–0.83

HLA-B, probe 30 21 (34.4) 9 (14.8) 0.024 2.71 1.14–6.46

HLA-B, probe 34 21 (34.4) 9 (14.8) 0.024 2.71 1.14–6.46

As described in the text, HLA motifs are defined by individual sequence-specific
oligonucleotide (SSO) probes, including HLA-B probes 30 and 34 that are in
exclusive linkage disequilibrium (r2 = 1.0). The p values correspond to maximum
likelihood estimates. OR = odds ratio, CI = confidence interval.
doi:10.1371/journal.pone.0007157.t004
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matched, population-based controls from non-metropolitan areas

in four Midwest states (Iowa, Michigan, Minnesota and Wiscon-

sin). All patients with glioblastoma multiforme (GBM = Grade IV

glioma, as classified by the World Health Organization) were

included if they were 18 years or older at time of GBM diagnosis

and blood sampling. Healthy control subjects drawn from this

study had no self-reported cancer of any type and were matched to

GBM patients at a 1:1 ratio by sex, state of residence and at least

two of three additional criteria, i.e., age (63 yr), race/ethnicity

(self-identified), and county of residence (or adjacent county). The

final study population consisted of 149 pairs of GBM patients and

healthy controls (Table 1). The original research and this

substudy conformed to the US Department of Health and Human

Services guidelines for protection of human subjects. All patients

and healthy controls provided written informed consent. The

procedures for obtaining written informed consent, blood sample,

clinical information, data management and data analysis were

approved by institutional review board (IRB) at the National

Institute for Occupational Safety and Health (NIOSH, Protocol

HSRB 94-DSHEFS-08). Work related to this substudy was further

approved by IRBs at NIOSH and University of Alabama at

Birmingham (Protocol X071005007).

HLA Genotyping
Genomic DNA samples, prepared from whole blood either using

the QIAamp blood kit (QIAGEN Inc., Chatsworth, Calif., USA) or

by sodium-perchlorate chloroform extraction [27], were used for

molecular typing of three HLA class I genes (HLA-A, HLA-B, and

HLA-C), along with the most polymorphic HLA class II gene, HLA-

DRB1. Genotyping relied on a combination of PCR-based

techniques commonly used in population-based studies [57,58].

Briefly, alleles (4-digit designations) and allele groups (2-digit

designations) from the three HLA class I genes were first amplified

by locus-specific primer mixes and then classified after automated

hybridization to sequence-specific oligonucleotide (SSO) probes

(Innogenetics, Alpharetta, Georgia, USA). Ambiguous HLA class I

genotypes were resolved by sequencing-based typing (SBT), which

covered three exons (2–4) in six sequencing reactions (three forward

and three reverse) (Abbott Molecular, Inc., Des Plaines, Illinois,

USA). Capillary electrophoresis and allele assignments in SBT were

done using the ABI 3130xl DNA Analyzer (Applied Biosystems,

Foster City, Calif., USA). HLA-DRB1 alleles in the HLA class II

region were directly resolved by sequencing exon 2 in three

reactions (forward, reverse, and codon 86) (Abbott Molecular, Inc.).

For quality control purposes, randomly selected samples (n = 39, or

13% of the total) were genotyped in duplicate.

Confirmatory sequencing of HLA-A promoter and exon 1
sequences

To enhance the interpretation of findings on HLA-A alleles, a

1000-bp region (Figure 1a) not targeted in routine genotyping was

sequenced using a commercial, high-throughput platform (Poly-

morphic DNA Technologies, Alameda, Calif., USA). The fragment

has the core promoter [59–61] and exon 1 sequences, with .60

single nucleotide polymorphisms (SNPs). Eight PCR primers and

eight internal sequencing primers (sequences available from JT

upon request) were used for bidirectional sequencing in subjects

who carried homozygous genotypes or common alleles of interest.

Individual SNP genotypes were analyzed for pairwise linkage

disequilibrium (LD) using the HaploView program (http://www.

broad.mit.edu/haploview/haploview-downloads). Homozygous se-

quences were also tested for phylogenetic relationships (Figure S2)

that could be directly compared with known taxonomic hierarchy

for protein-coding sequences (open reading frames) [28].

Selective genoyping of two SNPs with broad implications
for human malignancies

For exploratory analyses, two SNPs (rs401681 and rs2736098)

recently associated with multiple human cancers [30] were typed for

all GBM cases and healthy controls using pre-designed TaqMan (59

nuclease) assays (assay-on demand IDs C_1150767_20 and

C_26414916_20, respectively) (Applied Biosystems, Foster City,

CA). Based on procedures recommended by the manufacturer, the

SNP assays were run in 6-mL PCR reactions in 96-well plates, with

each reaction having 10 ng total genomic DNA mixed with 26
TaqMan Universal PCR Master Mix (Applied Biosystems). Allelic

discrimination relied on end-point fluorescence intensity after 35

cycles of PCR (denaturing at 95uC for 15 sec and annealing/

extending at 60uC for 60 sec) in an ABI 7500 FAST system (Applied

Biosystems). Each plate had four wells for negative controls (no

template DNA added) and 3% of all DNA samples were tested in

random duplicates for quality control.

Statistical analyses
Statistical Analysis Software (SAS), version 9.2 (SAS Institute,

Cary, North Carolina, USA) was used for all descriptive statistics

and comparative analyses. Serial analytical strategies were similar

to those reported in prior work [16], with a starting focus on 2-digit

allele groups (often equivalent to serological specificities) and

linkage disequilibrium (LD) between HLA factors. Only common

variants found in at least 10 individuals (,3.4% of the study

population) were formally tested. In all hypothesis testing, a

nominal P value #0.05 was considered statistically significant.

Multivariable and conditional logistic regression models with

backward or step-wise selection procedure were used to generate

the parsimonious models with all independent factors (adjusted

multivariable P value #0.05). Novel associations were reported as

such if the univariate P value was ,0.05 in conditional logistic

regression models. As homozygosity with any given HLA allele or

motif (defined by individual SSO probes) was rare, statistical

models only tested dominant effects. Analyses of individual SNP

genotypes were modeled for recessive effects (homozygosity or two

copies of the minor allele), dominant effects (homo- and

heterozygosity combined), and additive effects (0, 1 and 2 copies

of the minor allele). Estimates of odds ratio (OR) and 95%

confidence interval (CI) were the main summary statistics from

these analyses.

Supporting Information

Figure S1 Patterns of linkage disequilibrium (LD) among

informative SNPs within HLA-A promoter and exon 1 sequences.

Novel SNPs without the official reference sequence (rs) numbers

are designated as ‘‘New.’’ Among the 51 SNPs with minor allele

frequencies $0.02 (Figure 1), one (rs9260109) is excluded from

this analysis because of three different alleles (i.e., not dimorphic)

at this site. Strong pairwise LD (shown in red) leads to the

identification of four haplotype blocks (framed), which consist of

13, 23, 6 and 3 SNPs, respectively.

Found at: doi:10.1371/journal.pone.0007157.s001 (0.27 MB

DOC)

Figure S2 Neighbor-joining tree illustrating the phylogenetic

relationships of HLA-A promoter and exon 1 sequences repre-

senting 11 alleles found in homozygous state. Two alleles

(A*260101 and A*320101) have the full, 6-digit designations.

Scale of genetic distance is shown at the bottom.

Found at: doi:10.1371/journal.pone.0007157.s002 (0.05 MB

DOC)
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