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Abstract

Studies on genetic–epigenetic interactions, including

the mapping of methylation quantitative trait loci

(mQTLs) and haplotype-dependent allele-specific DNA

methylation (hap-ASM), have become a major focus in

the post-genome-wide-association-study (GWAS) era.

Such maps can nominate regulatory sequence

variants that underlie GWAS signals for common

diseases, ranging from neuropsychiatric disorders to

cancers. Conversely, mQTLs need to be filtered out

when searching for non-genetic effects in epigenome-

wide association studies (EWAS). Sequence variants in

CCCTC-binding factor (CTCF) and transcription factor

binding sites have been mechanistically linked to

mQTLs and hap-ASM. Identifying these sites can point

to disease-associated transcriptional pathways, with

implications for targeted treatment and prevention.

Introduction
The ongoing debate on “nature versus nurture” in deter-

mining human traits and diseases provides a useful frame-

work for making sense of a growing mass of genomic and

epigenomic data. Although environmental influences such

as nutrition, stress, and chemical exposures (“nurture”) can

alter epigenetic marks, we focus here on genetic influences

(“nature”) in determining epigenetic patterns. With the dis-

covery and mapping of haplotype-dependent allele-specific

DNA methylation (hap-ASM; Table 1) and methylation

quantitative trait loci (mQTLs; also known as meQTLs;

Table 2), studies on cis-acting genetic–epigenetic interac-

tions are proliferating. Furthermore, such studies are
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becoming highly relevant as we move into the post-

genome sequencing and post-genome-wide-association-

study (post-GWAS) era. Mapping of ASM and mQTLs

is being developed as a method for pinpointing DNA

sequence variants that underlie genetic susceptibility to

common diseases, ranging from cardiovascular and

metabolic disorders to neurodegenerative and neuro-

psychiatric diseases, autoimmune conditions, and can-

cers. Such mapping is helping to overcome major

roadblocks in GWAS that arise from the fact that most

GWAS peaks map to non-protein-coding sequences,

where their molecular consequences can be difficult to

evaluate. Conversely, ASM and mQTLs must be identi-

fied and filtered out when searching for (non-genetic)

effects of environment and disease progression in

epigenome-wide association studies (EWAS).

Here, we review recent work on cis-acting genetic–

epigenetic interactions, including the genome-wide

mapping of ASM, mQTLs, and related types of allele-

specific epigenetic marks, such as allele-specific chro-

matin accessibility and allele-specific transcription

factor binding. We also briefly cover the discovery and

mapping of expression quantitative trait loci (eQTLs)

and allele-specific RNA expression (ASE), and we

explain the usefulness of each of these types of allele-

specific maps for extracting maximum biological infor-

mation from GWAS data. We point out useful public

databases, and we discuss bioinformatic approaches,

cross-species comparisons, and functional assays for in-

vestigating the molecular mechanisms that produce

allele-specific epigenetic marks. Emerging from these

studies is a central role for transcription factor binding

site (TFBS) occupancies in shaping allele-specific

epigenetic patterns. We argue that a continued focus

on defining functional genetic variants in such sites will

be crucial for connecting allele-specific epigenomic

data to disease pathogenesis.
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Successes from GWAS and challenges for post-GWAS
GWAS and the “missing heritability” problem

In 2012, Visscher et al. [1] summarized the history of

GWAS, focusing on the discoveries made and what those

discoveries do and do not reveal about the biology of

complex traits and disease susceptibility. From articles by

prominent scientists, they identified negative opinions such

as “GWAS have been disappointing in not explaining more

Table 1 Methods and conclusions from studies of hap-ASM

Tissues or cell types (n) Hap-ASM: primary screening method
and validations

Findings and conclusions Reference

PBL (6), placenta (3), other normal
tissues (7)

MSNP Affy 50 K/250 K; validation by
pre-digestion/PCR assays and bis-seq

58 candidate ASM loci identified; 12/16
selected loci independently validated.
For a given locus, hap-ASM was seen in
95 to 40% of heterozygotes. ASM in
CYP2A7 and VNN1 associated with ASE

[48]

PBL (38) Targeted bis-seq; validation by HpaII
pre-digestion/Seq

ASM found in ~10% of CGIs on Hsa21.
For a given locus, ASM was seen in 95
to 13% of heterozygotes; ASM associated
with ASE in C21orf81

[182]

LCL (13), PBL (3) MSNP Affy 500 K; validation by bis-seq ~10% of queried CpGs showed a cis-effect.
In some cases, there was a short-range effect
of CpG SNPs on methylation at nearby non-
polymorphic CpGs

[183]

hESC (3), fibro (4), fibro-reprogrammed
iPS cells (5), fibro-derived lymphocytes
(3), hESC-fibro hybrid cell (1)

Bis-seq with padlock probes; validation
by targeted bis-seq

Non CpG-SNP ASM DMRs were observed in
3–22% of the queried regions; half of these
DMRs contained both CpG-SNPs and bona
fide ASM. ASM validated in 5/12 selected loci

[59]

PBL (10), buccal cells (10) MSNP Affy 6.0 array; validation by bis-seq
and MS-SNuPE. eQTLs assessed using
Affy U133 chips

~1.5% of CpGs showed ASM; 16.3% of the
ASM were within 5 kb of a gene that was
associated with an eQTL

[184]

PBMC of one individual WGBS, ASE by TA clone sequencing 599 ASM DMRs with an average size of
312 bp were identified; 5/6 selected genes
with haploid DMR(s) within 2 kb of their
TSS were associated with ASE

[60]

PBL (8), LCL (1), hESC (1), kidney (1),
muscle (1)

RRBS; PCR-based bis-seq validation;
RNA-Seq for ASE

~8% of SNPs associated with ASM. ASM
regions depleted in CGIs, located in
intergenic regions with low evolutionary
conservation; enriched in genes with ASE

[61]

PBL (42) MSNP Affy 6.0 array; validation by bis-seq Hap-ASM in ~5% of the CpGs; inter-individual
variation; multiple hap-ASM SNPs found in LD
with GWAS peaks for immune/inflammatory
diseases

[63]

Liver (20), brain (13), placenta (20), PMN
(5), PBL (22), PBMC (15), lung (7), heart (4),
breast epithelial cells (5), sperm (2)

MSNP Affy 250 K and 6.0 arrays; bis-seq
for validation and fine-mapping

Mapping of hap-ASM DMRs in STEAP3 and
CYP2A7 and imprinted ASM in VTRNA2 and
RPN1 showed discrete DMRs precisely
overlapping CTCF-binding sites. STEAP3,
CYP2A7 and RPN1 show ASE

[51]

PBL (96) from parent–child trios Bis-seq with padlock probes; Illumina
550 K arrays; Affy 6.0 arrays

Mid-parent offspring, mQTL and ASM analyses
revealed cis-acting effects on ~5–14% of the
queried CpGs; inter-individual variation in
hap-ASM

[185]

Brain (3), T cells (3), liver (2), placenta
(2), fetal heart (2), fetal lung (1), macaque
PBL and liver (4)

Agilent Methyl-seq, validation by targeted
bis-seq and ox-bis-seq

Hap-ASM in ~2% of informative regions; 188
DMRs located near GWAS signals for immune
or neuropsychiatric disorders. Hap-ASM DMRs
enriched in polymorphic CTCF sites and TFBS.
CTCF- and TF-binding likelihood predicts strength
and direction of hap-ASM

[49]

145 CD4+ T cells (145), VAT (148),
WB (599), monocytes (12), muscle (6)

MCC-seq; WGBS for ASM and mQTL;
validation by Illumina 450 K Methyl,
genotyping by WGS, Illumina Omni2.5 M,
Omni5M; RNA-seq for ASE; ChIP-seq
for ASH

Of ~2.2 M queried CpGs, ~32% showed ASM or
mQTLs, and ~14% of CpGs showing methylation
asymmetry without a genetic basis. 25% and >50%
of the instances of ASM and mQTLs, respectively,
were tissue-specific. ASM and mQTLs were
enriched in enhancers; SNPs linked to ASH were
enriched for association with ASM

[53]
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genetic variation in the population”, and “GWAS have not

delivered meaningful, biologically relevant knowledge or

results of clinical or any other utility”. In fact, after two

decades of work, with substantial funding, GWAS have

uncovered numerous reproducible associations of common

genetic variants, mostly single nucleotide polymorphisms

(SNPs; sometimes called “simple nucleotide polymor-

phisms” to include small insertion or deletion variants), with

human traits and diseases. It is true that the cumulative

effects of disease-associated SNPs have failed to account for

the majority of complex-trait heritability [2], but mature

GWAS data for many diseases now typically account for

more than 10% of such heritability, and this information is

starting to have clinical applications, particularly when

combined into polygenic risk scores. For example, while the

odds ratio (OR) for a given SNP genotype at a GWAS peak

(the “GWAS index SNP”) is often <1.2 and seldom >1.4,

meta-analyses of, for example, cancer GWAS have shown

that the combined effects of a large number of susceptibility

loci may become large enough to be useful for risk predic-

tion and targeted prevention, including the provision of

more frequent screening [3–5]. Similarly, findings from

GWAS have helped to advance the field of pharmacogen-

omics, with implications for individualized therapies [6, 7].

Nonetheless, the “missing heritability” problem raises

the question of whether there are additional common

DNA variants with smaller effects that are not being

identified because they are yielding sub-threshold

Table 2 Methods and conclusions from studies of cis-acting mQTLs

Tissues or cell types (n) mQTLs: primary screening method
and validations

Findings and conclusions Reference

Cerebellum (153) Illumina 27 K Methyl; Affy 5.0 SNP chips;
validation by Pyroseq; eQTLs:Affy
HGU95Av2

mQTLs detected at ~8% of the CpGs; mQTL CpGs
enriched in CGIs and within 150 kb of the index SNP;
13% of mQTL index SNPs associated with eQTLs

[62]

Brains (150 individuals; 4
brain regions)

Illumina 27 K Methyl; Illumina 550 K SNP
chips; eQTLs: Illumina HumanRef-8

mQTLs detected at ~5% of CpGs. mQTL CpGs were
depleted in CGIs. ~50% of the mQTLs were detected
only in one brain region. ~5% of the index SNPs were
both mQTLs and eQTLs

[108]

Adipose tissue (648), replication
set PBL (200)

Illumina 450 K Methyl; multiple
genotyping arrays, eQTLs: HT-12 V3
BeadChips; validations by WGBS

mQTLs detected at ~28% the CpGs, with tissue-specificity;
22% of eQTLs were in LD with at least one mQTL; ~4%
were in LD with a GWAS SNP; mQTLs associated with
eQTLs and GWAS SNPs were enriched in enhancers

[110]

Cord blood (174), PBL (90), TC
(125), FC (111), pons (106),
cerebellum (105)

Illumina: 27 K Methyl BeadChips;
multiple Illumina and Affy genotyping
arrays

mQTLs detected at ~5% of the CpGs; overlap observed
between ancestral groups, developmental stages, and
tissue types; brain mQTL SNPs enriched in bipolar
disorder GWAS peaks and miRNA-binding sites

[155]

TC (44), neurons (18), glia
(22), T-cells (54), placenta (37)

Illumina 450 K Methyl and 2.5 M
SNP chips; validation by bis-seq and
ox-bis-seq

~3000 strong mQTLs identified; more than half tissue-
restricted and ~900 located near GWAS signals; mQTLs
enriched in polymorphic CTCF-binding sites and TFBS,
and enriched in eQTLs located within 20 kb

[49]

Fetal brain (166), matched
adult PFC, striatum and
cerebellum (83)

Illumina 450 K Methyl; 2.5 M SNP chips Most fetal mQTLs also present in adult brain, but ~1/3
showed differential effects; mQTLs enriched in repressive
and poised histone marks; mQTLs enriched in CTCF motifs,
eQTLs, and schizophrenia-associated GWAS peaks

[112]

PBL (85) Illumina 27 K Methyl; OmniExpress
SNP chips

1287 smoking associated DM CpGs and 770 mQTLs identified.
Among these, 43 CpGs were both smoking DM and mQTL

[150]

Adipose tissue (119) Illumina 450 K Methyl; Omni SNP chips;
eQTL:Affymetrix Human Gene 1.0 ST
array

mQTLs detected in ~3% of the CpGs; enriched in CGI shelves
and shores and depleted in promoter regions and CGI; ~1%
of mQTL SNPs (or proxy) were obesity-associated GWAS SNPs;
2% of the SNPs showed both mQTL and eQTL

[113]

CD4+ T cells (717) Illumina 450 K Methyl; Affy 6.0 SNP
chips

Of ~20,000 heritable CpGs identified by modeling family
structure, 15,133 were cis-mQTLs; 1329 trans-mQTLs and
4113 CpGs showing no evidence of cis or trans mQTL

[54]

Monocytes (197), neutrophils
(197), and CD4+ T cells (132)

Illumina 450 K Methyl; WGS; RNA-seq
for ASE and ChIP-seq for hQTLs

mQTLs affect 10% of CpGs, hQTLs found in 28 and 12%
of H3K4me1 and H3K27ac peaks; 345 GWAS index SNPs
(or SNPs in high LD with a GWAS index SNPs) colocalized
with mQTLs and/or hQTLs

[37]

This list of studies is representative of the historical progression of the field and is not meant to be comprehensive. All experiments include internal statistical

validations of the microarray and sequencing data; secondary validations refer to downstream assays by independent methods. Cells and tissues are of human

origin unless otherwise stated. Abbreviations: ASH allele-specific histone modifications, CGI CpG island, FC frontal cortex, fibro fibroblast cell lines, hESC human

embryonic stem cell, hQTL histone modification QTL, iPS induced pluripotent stem, LCL lymphoblastoid cell line, MCC-seq MethylC-Capture sequencing, MSNP

methylation-sensitive SNP array, PBL peripheral blood leukocyte, PBMC peripheral blood mononuclear cell, PFC prefrontal cortex, PMN polymorphonuclear

leukocyte, RRBS reduced representation bis-seq, TC temporal cortex, TSS transcription start site, VAT visceral adiposis tissue, WB white blood cell, WGS whole

genome sequencing
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signals, or whether there are many rare variants with

stronger effects, which would not be readily detectable

in a GWAS design [8, 9]. The second possibility is being

tested by genome sequencing, with results to date sug-

gesting that rare coding variants will not fully explain

the missing heritability [10–14]. By contrast, Park et al.

[15] examined GWAS index SNPs across 13 traits and

diseases and found that the effect–size distributions sug-

gest the existence of large numbers of disease-associated

variants with decreasingly small effects. Similarly,

Visscher et al. [1] analyzed multiple GWAS across

ethnic groups and found that most of the chromosomal

regions that had GWAS peaks in one group also showed

associations in others, albeit with differences in allele

frequency and linkage disequilibrium (LD) patterns. This

suggests that the common-variant signals are likely to be

the result of widely distributed causal alleles of relatively

high frequency. Findings in other important phenotypes,

such as alcoholism, have been consistent with this

theme, although sometimes the same gene-containing

region can show different peak SNPs in different ethnic

groups [16]. Polygenic scores from GWAS summary sta-

tistics can be used to model the proportion of overall

heritability from common variants [11, 15], and this ap-

proach has provided estimates, for example, that about

25% of the heritability of bipolar disorder can be

explained by common variants [11]. Likewise, coronary

artery disease genetic risk appears to reflect the cumula-

tive effects of multiple common risk alleles, individually

of small effect size [17]. Central to the problem of cap-

turing these common variants, many of the interesting

signals in well-powered GWAS still do not reach the ~

p < 5 × 108 thresholds for genome-wide significance,

and are thus suggestive but not strictly accepted. The

post-GWAS mapping approaches that we outline in the

next sections can be useful for prioritizing these sub-

threshold signals for additional scrutiny.

GWAS and the problem of identifying causal sequence

variants

With regard to the second criticism of GWAS, that these

studies have not delivered biologically relevant knowledge,

there have indeed been frustrations stemming from the

fact that about 90% of peak signals from GWAS localize

to non-coding sequences [18]. Owing to LD between mul-

tiple SNPs in a chromosomal region, GWAS associations

typically highlight broad regions spanning 10 to 100 kb of

DNA, and the lead SNP is not necessarily the functional

source of the association signal. As an example, it took

almost 10 years for an obesity locus identified though

GWAS to be attributed, at least in part, to the disruption

of ARID5B-mediated repression of IRX3 and IRX5, rather

than to an alteration of the function of the FTO gene in

which the original GWAS peak SNP was found [19].

Thus, statistical genetics can point to the vicinity of causal

sequence variants but cannot hone in on these variants

without using additional types of evidence. This limitation

has spurred recent efforts to rank and prioritize candidate

variants using functional annotations [20]. Regulatory se-

quence elements often act in a cell-type-specific manner,

so analysis of purified tissues and cell types, including rela-

tively inaccessible ones that are disease-relevant (neurons,

pancreatic islet cells, and so on) is crucial for the func-

tional investigation of GWAS variants.

When applied to appropriate cells and tissues, the

allele-specific mapping approaches that we describe in the

next sections can help to extract maximum biological in-

formation from GWAS data. These approaches are of two

general types: QTL and allele-specific analyses (Fig. 1). In

quantitative trait locus (QTL) approaches, the functional

effect of a given variant is assessed by correlating the bi-

allelic net effect (e.g., expression, methylation) with separ-

ately generated genotyping data. Such data are most often

array-based, permitting the study of large populations in a

cost-efficient manner, but with the technical issues inher-

ent to arrays, such as variations in probe hybridization,

batch effects, and limited genomic coverage. In more dir-

ect approaches, massively parallel sequencing methods,

including bisulfite sequencing (bis-seq) for CpG methyla-

tion, are used to assess the allele-specific effects of variants

or haplotypes after separating the sequenced DNA frag-

ments by allele. While QTL approaches are based on cor-

relations across individuals, sequencing-based approaches

are based on the direct comparison of alleles in single in-

dividuals. The advantages of allele-specific approaches are

smaller sample size requirements and more complete gen-

omic coverage, but drawbacks can include greater cost per

sample and more complex data processing and analysis.

Post-GWAS mapping methods: eQTLs and ASE
Efforts to extract maximum information from GWAS data

can benefit from a multi-pronged approach that uses

several mapping strategies to query the functional effects of

non-coding sequence variants. Among these methods, the

first to be developed utilized eQTLs, that is, SNPs at which

the genotype correlates with expression of one or more

nearby genes. Mapping of eQTLs within haplotype blocks

that are implicated by GWAS can provide links to genes

whose genetically regulated expression may be involved in

the phenotype [21, 22]. Initial studies were performed on

lymphoblastoid cell lines (LCLs), including samples from

the Centre d'Etude du Polymorphisme Humain (CEPH)/

HapMap projects [23–28]. Microarray data were utilized to

probe the relationships between genetic polymorphisms

and mRNA expression levels, and the results uncovered a

pervasive cis-acting influence of SNPs (and thus haplotypes)

on gene expression. Schadt et al. [27] estimated the

heritability of the gene expression phenotypes in CEPH

Do et al. Genome Biology  (2017) 18:120 Page 4 of 22



Fig. 1 (See legend on next page.)
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pedigrees and concluded that about 25% of genes had herit-

able variation, whereas a study from the Pastinen lab com-

paring SNPs in cDNAs to paired genomic DNA samples

found that about 10% of expressed genes in LCLs show

genotype-linked ASE [29]. Stranger et al. [24] showed that

both SNPs and, at a lesser frequency, copy number variants

(CNVs) are implicated in this phenomenon. Searching for

trans-acting eQTLs can present computational challenges,

but so far it appears that cis-acting eQTLs are more

common than those that act in trans [30, 31].

Cell type-specific and disease-specific eQTL or ASE

mapping

Early on, Pastinen and Hudson [32] pointed out that

eQTLs are likely to be cell-type-specific. With more

recent studies on T lymphocytes, monocytes, skeletal

muscle, liver, brain, and other tissues and cell types, we

now have a clear picture of the tissue-specificity and fre-

quencies of eQTLs or ASE. The earlier studies relied on

microarray data, whereas the more recent studies have

mostly utilized RNA-seq, combined with genomic

sequencing or array-based SNP genotyping. In their ana-

lysis of human T cells in a small series, Heap et al. [33]

found that about 5% of genes showed an allelic expres-

sion bias passing their numerical criteria, while in a

larger study of total peripheral blood (PBL) samples, Bat-

tle et al. [34] detected SNPs that, using their statistical

cutoffs, influenced the ASE of over 10,000 genes. A simi-

larly designed study of brain frontal cortex found that

approximately 9% of the transcripts showed a genome-

wide significant correlation with the genotypes of nearby

SNPs [35], and analyses of human monocytes showed

that approximately 20% of genes are influenced by

eQTLs [30, 36]. The number of loci scored as positive

for eQTLs or ASE depends on the stringency of the cut-

offs that are used to define a significant allelic bias, and

for practical applications, the stronger eQTLs are of

most interest. Useful in this regard is a recent large-scale

study from the International Human Epigenome

Consortium (IHEC), which applied RNA-seq to several

immune cell types from approximately 200 individuals

and found a greater than two-fold allele-specific bias

(strong ASE) in about 3% of transcripts [37].

While eQTLs or ASE can be adequately analyzed using

sufficiently powered sets of non-diseased samples, because

of differences in allele frequencies in cases versus controls,

some eQTLs that are relevant to a given disease are more

likely to be discovered if the sample set includes disease

cases. The activation state of a given cell type in response

to signaling ligands can also matter: Fairfax et al. [38]

found that in vitro stimulation of primary human mono-

cytes can abrogate and induce specific eQTLs, and Peters

et al. [39] performed eQTL mapping in five primary im-

mune cell types from patients with inflammatory diseases

and found a small but interesting subgroup of eQTLs that

were present only in those with active disease. These

technical considerations are also important in designing

studies of mQTLs and hap-ASM, which we discuss below.

(See figure on previous page.)

Fig. 1 Approaches for mapping mQTLs and hap-ASM DMRs. Haplotype-dependent allelic methylation asymmetry (hap-ASM) can be assessed

using two different approaches, methylation quantitative trait locus (mQTL) and hap-ASM analysis. The mQTL approach is based on correlations

of (biallelic) net methylation to genotypes across individuals, whereas sequencing-based approaches are based on direct comparisons between

alleles in single (heterozygous) individuals. a To identify mQTLs, correlations between single nucleotide polymorphism (SNP) genotypes and net

methylation at nearby CpGs are measured in groups of samples. Methylation and genotyping data are generated in separate assays, which are

usually array-based, and correlations are computed using linear regression or Spearman’s rank correlation. The mQTLs are defined using q value

(false discovery rate [FDR]-corrected p value), effect size (β value), and goodness of fit of the linear model (R square). An example of a mQTL in

the S100A gene cluster [49] is shown. The genotype of the index SNP, rs9330298, correlates with the methylation at cg08477332 by stringent

criteria (β > 0.1, R2 > 0.5, q value <0.05). Lack of correlations between the index SNP and more distant CpGs corresponds to a discrete hap-ASM

region spanning approximately 1 kb. b Hap-ASM is analyzed directly, using targeted bis-seq or whole genome bisulfite sequencing (WGBS) in

single individuals. Deep long-read sequencing is desirable to generate reads mapping both CpG sites and common SNPs because the statistical

power depends on the number of reads per allele. Alignment is performed against bisulfite-converted reference genomes, which can be done,

for example, using Bismark [169], BSMAP [170], or Bison [171]. Alignment against personalized diploid genomes (constructed using additional

genotyping data) or SNP-masked reference genomes, can decrease alignment bias toward the reference allele. Quality control (QC) filtering is

based on Phred score, read length, duplicates, number of mismatches, ambiguous mapping, and number of reads per allele. CpG SNPs can be

tagged or filtered out by intersecting CpG and common SNP coordinates. After alignment and quality control of the bis-seq data, SNP calling is

performed, for example, using BisSNP [172]. For C/T and G/A SNPs, the distinction between the alternative allele and bisulfite conversion is

possible only on one of the DNA strands (the G/A strand). Methylation levels are determined separately for the two alleles, both for individual

CpGs and for groups of CpGs in genomic windows, and compared using, for example, Fisher’s exact test or Wilcoxon test, respectively. Both p

value (and corrected p value) and effect size metrics (number of significant CpGs in the DMR and methylation difference across all covered CpGs)

are used to define hap-ASM regions. c Example of a hap-ASM DMR, located downstream of the KBTBD11 gene [49]. The hap-ASM region in T cells

overlaps a CTCF ChIP-Seq peak. The index SNP (rs117902864) disrupts a canonical CTCF motif as reflected by a lower position weight matrix

(PWM) score associated with allele B. This result implicates CTCF allele-specific binding as a mechanism for hap-ASM at this locus. Consistent with

this hypothesis, the NHP (Rhesus macaque) sequence differs from the human reference allele (allele A) by one nucleotide (bold and underlined)

which does not affect the binding affinity, and the observed methylation levels are very low in the macaque blood samples, similar to allele A in

the human T cells. PWM position weight matrix

Do et al. Genome Biology  (2017) 18:120 Page 6 of 22



Co-localization of eQTLs and GWAS peaks

How effective has eQTL/ASE mapping been in extracting

biological information from GWAS data? As found by Nica

et al. [40] in LCLs and substantiated by Zhang et al. [31] in

their meta-analysis of multiple eQTL studies which they

overlapped with human GWAS, eQTLs are enriched near

positive GWAS statistical signals. In an early example of

the use of eQTLs as a post-GWAS modality, Zhong et al.

[41] focused on type 2 diabetes mellitus (T2D) and inte-

grated GWAS data with eQTLs from liver and fat, which

led them to a collection of GWAS peaks (index SNPs) and

associated eQTLs that were enriched for genes acting in

relevant signaling pathways. An important limitation in the

identification of disease-associated genes is that cis-eQTLs

occur quite frequently, leading to very dense maps, as

shown for a typical genomic region in Fig. 2. Consequently,

it remains challenging to identify the specific functional

SNPs by this method [42], and statistical approaches are

required to test formally for co-localization of an eQTL

and a disease-associated SNP [43, 44]. Importantly for this

type of application, eQTL and GWAS results have now

been made available as community resources (Box 1).

These user-friendly databases include the National

Heart, Lung and Blood Institute (NHLBI)-GRASP v2.0

(https://grasp.nhlbi.nih.gov/Overview.aspx), which con-

tains approximately 8.9 million SNP–phenotype associ-

ations from more than 2000 GWAS, with annotation

sources including eQTLs from liver, adipose tissues,

various brain tissues, and blood lineage cells, including

PBL, lymphocytes, monocytes, osteoblasts, fibroblasts,

and LCLs, as well as growing collections of mQTLs,

protein QTLs, and microRNA QTLs [31, 45, 46]. The

Genotype-Tissue Expression (GTEx) project is another

important database that contains information for both

eQTLs/ASE and allele-specific transcription factor

(ASTF) binding from multiple human tissues [47].

Post-GWAS mapping methods: mQTLs and ASM
Because there are typically many common SNPs in LD

within a haplotype block, maps of eQTLs can suggest

which genes are implicated by a given GWAS peak, but

cannot pinpoint the underlying DNA sequence variants. To

hone in on a causal regulatory SNP (rSNP) variant,

additional types of evidence are needed—preferably from

Box 1 Resources for mapping and analyzing allelespecific epigenetic marks

Analytical
software

Applications URL Reference

Bismark Bis-seq aligner and methylation caller http://www.bioinformatics.babraham.ac.uk/projects/bismark/ [169]

BSMAP Bis-seq aligner http://lilab.research.bcm.edu/dldcc-web/lilab/yxi/bsmap/bsmap-2.90.tgz [170]

Bison Bis-seq aligner and methylation caller https://github.com/dpryan79/bison [171]

Bis-SNP Bis-seq SNP caller http://people.csail.mit.edu/dnaase/bissnp2011/ [172]

BS-SNPer Bis-seq SNP caller https://github.com/hellbelly/BS-Snper [173]

SNPsplit Allele-specific alignment sorting http://www.bioinformatics.babraham.ac.uk/projects/SNPsplit/ [174]

amrfinder ASM inference from bis-seq http://smithlabresearch.org/software/amrfinder/ [175]

R package
epiG

ASM inference from bis-seq and NOMe-seq data https://github.com/vincent-dk/epiG [176]

R package
atSNP

Allele-specific transcription factor binding
affinity testing

https://github.com/chandlerzuo/atSNP [177]

Database Data class URL Reference

mQTLdb mQTL http://www.mqtldb.org/ [111]

Essex mQTL http://epigenetics.essex.ac.uk/mQTL/ [112]

SCAN mQTL, eQTL http://www.scandb.org/newinterface/about.html [178]

SZDB GWAS, mQTL, eQTL, DM, DE http://www.szdb.org/index.html [179]

AlleleDB ASTF, ASE in LCLs http://alleledb.gersteinlab.org/ [47]

GRASP GWAS SNPs, eQTLs, mQTLs, pQTLs, mirQTL https://grasp.nhlbi.nih.gov/Overview.aspx [46]

GTEX eQTLs multiple tissues https://gtexportal.org/home/ [180]

RegulomeDB SNP functional annotation (chromatin, TF
peaks and binding affinity, DNAse, eQTLs)

http://regulomedb.org/ [20]

SNP2TFBS SNPs affecting predicted TF binding affinity http://ccg.vital-it.ch/snp2tfbs/ [181]

Central web sites for human epigenome projects

NIH Roadmap Epigenomics Project http://www.roadmapepigenomics.org/

International Human Epigenome Consortium (IHEC) http://ihec-epigenomes.org/
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mapping methods that score physical (and thus potentially

biologically functional) differences between two alleles. One

approach stems for the discovery of mQTLs and hap-ASM.

The terms mQTL (strictly speaking, cis-mQTL) and hap-

ASM both describe the same class of allelic asymmetry, in

which the DNA methylation on each allele depends on the

local DNA sequence (i.e., the haplotype). However, as

shown in Fig. 1, they are mapped by different strategies:

mQTLs by searching for correlations of net methylation at

individual CpGs with the genotypes of nearby SNPs in large

sets of samples, and ASM by directly measuring differences

in the methylation levels of CpGs on the two different

alleles in individual heterozygous DNA samples, using bis-

seq. Although the methods for their discovery differ, the

physical basis of mQTL and hap-ASM is identical, so when

assessed by appropriate assays, all bona fide mQTLs should

turn out to correspond to allele-specific differentially meth-

ylated regions (DMRs) and vice versa.

Examples of genome-wide studies of ASM and mQTLs,

along with the profiling platforms, cell types, and tissues ex-

amined, and summaries of the main findings are listed in

Tables 1 and 2. The first genome-wide scans for ASM were

done by the methylation-sensitive SNP array (MSNP)

method. In this approach, genomic DNAs are pre-digested

with methylation-sensitive restriction enzyme(s) as well as

standard non-methylation-sensitive enzymes, and duplicate

samples are digested only with the non-methylation-

sensitive enzymes. This step is followed by probe synthesis

and hybridization to SNP chips, and the readouts are allele-

specific hybridization intensities. In our early MSNP study

of several normal human tissues, we found many examples

of ASM, which mostly showed strong correlations with

local SNP genotypes, indicating cis-regulation [48]. Other

laboratories applied MSNP to other types of cells and

tissues and obtained similar findings of widespread cis-reg-

ulated ASM (examples in Table 1). Analogously to the

situation for eQTLs, the ASM phenomenon shows tissue-

specificity, with some loci having pan-tissue ASM and

others having strong ASM only in one tissue or cell type.

For SNP-tagged loci in which ASM is detected in groups

of heterozygous individuals, binomial or Fisher exact tests

can be used to ask whether the relatively hypermethylated

allele tracks with one SNP genotype, a sign of hap-ASM.

Importantly, for loci in which a positive but not absolute

correlation is seen with the closest “ASM index SNP”, ex-

tended genotyping over multiple SNPs can sometimes

reveal a perfect association of the hypermethylated allele

with a specific haplotype [49]. By contrast, genomic

imprinting, which affects about 100 human genes [50], is

associated with ASM that is parent-of-origin-dependent,

not haplotype-dependent. Therefore, in all studies of

ASM, it is important to identify known imprinted loci and

to exclude them from downstream analyses. The distinc-

tion can also be made empirically using trios of maternal,

paternal, and offspring samples, asking whether the hyper-

methylation is consistently found on an allele marked by

the same SNP genotype or, alternatively, whether it is

random with respect to SNP genotypes across the series

but tracks reliably with the maternally or paternally trans-

mitted allele [48, 49]. In fact, MSNP and reduced

(See figure on previous page.)

Fig. 2 Integrative “post-GWAS” mapping of allele-specific marks for identifying disease-associated regulatory sequence variants. Genome-wide association

studies (GWAS) typically implicate a haplotype block spanning tens to hundreds of kilobases, with resolution limited by the fact that all single nucleotide

polymorphisms (SNPs) that are in strong linkage disequilibrium (LD) with the index SNP will show a similar disease association. A combination of

post-GWAS modalities using maps of allele-specific marks can help to localize the causal genes and the underlying regulatory sequences. a The S100A*-

ILF2 region exemplifies this approach. The map shows the index SNPs for expression quantitative trait loci (eQTLs), methylation quantitative trait loci

(mQTLs), haplotype-dependent allele-specific DNA methylation (hap-ASM), and allele-specific transcription factors (ASTF). The suggestive (sub-threshold)

GWAS signal for multiple myeloma susceptibility (rs7536700, p= 4 × 10−6) tags a haplotype block of 95 kb, which was defined using 1000 Genome data

[186] with an algorithm that emphasizes D-prime values [187, 188]. The GWAS SNP overlaps no known regulatory element or transcription factor (TF)

binding site. Numerous cis-eQTL SNPs correlating with several genes within 1 MB have been identified in this haplotype block (eQTL-tagged genes

indicated in red), so identifying the causal regulatory SNP(s) is not possible solely from eQTL data. However, several SNPs in the block identify mQTLs, all

correlating with the same CpG site, cg08477332. Fine mapping using targeted bis-seq [49] confirmed a discrete hap-ASM differentially methylated region

(DMR; orange) spanning ~1 kb. The hap-ASM index SNP rs9330298 is in strong LD with rs7536700 (D′= 1), is the closest SNP to the DMR, and is an eQTL

correlating with S100A13 expression. In addition, this DMR coincides with a CTCF peak that shows allele-specific binding in chromatin

immunoprecipitation-sequencing (ChIP-Seq) data, nominating the disruption of CTCF binding by rs9330298 as a candidate mechanism

underlying susceptibility to multiple myeloma, either by direct effects in B cells or via effects on immune surveillance by T cells. The eQTL

and ASTF data are from the Genotype-Tissue Expression project (GTEx) and alleleDB, respectively [47, 180]. RNA-seq data in GM12878 cell

lines were downloaded from ENCODE. The mQTL and hap-ASM data are from [49], and the CTCF ChIP-seq data (GM12878 LCL) from

ENCODE. The dashed line represents a genomic region lacking defined LD structure. b Map showing three-dimensional chromatin interactions in the

S100A* gene cluster. The hap-ASM region coincides with a CTCF-mediated chromatin anchor site, as suggested by chromatin interaction analysis by

paired-end tag sequencing (ChIA-PET) data (K562 cell line) [122]. This evidence suggests that disruption of the CTCF-binding site by the candidate

regulatory SNP (rSNP), rs9330298, might abrogate the formation of one or more chromatin loops. c Bis-seq (closed circles, methylated CpGs; open circles,

unmethylated CpGs) confirms that the hap-ASM DMR overlaps a CTCF-binding site (amplicon 2) and the lower position weight matrix (PWM) score for

allele B of rs9330298 predicts allele-specific disruption of CTCF binding, consistent with the allele-specific binding seen in the ChIP-seq data. The

disruption of this CTCF-mediated chromatin anchor site could account for eQTLs in this region, where the S100A cluster genes are no longer insulated

from the active enhancers of neighboring genes, such as ILF2 or CHTOP, which have higher expression levels in blood
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representation bis-seq (RRBS) approaches uncovered not

only hap-ASM loci, but also novel examples of imprinted

genes [51, 52]. An interesting and unexpected interaction

between imprinting and hap-ASM is highlighted by our

recent observation that the ZFP57 gene, which codes for a

transcription factor that functions as a trans-acting modi-

fier of DNA methylation at certain imprinted loci, is in

turn regulated by hap-ASM [49].

The number of scans for ASM using Agilent Methyl-

seq and other genome-wide bis-seq methods has grown

with the increasing availability of those technologies,

and is matched by the proliferation of array-based

mQTL mapping studies (Tables 1 and 2) [37, 53–58]. An

advantage of directly mapping ASM is that, unlike

mQTL analyses, which require large numbers of

samples, bis-seq for ASM can be informative in single

heterozygous individuals. Shoemaker et al. [59] used

padlock probes with bis-seq in a panel of 16 human cell

lines including induced pluripotent stem cells and, using

lenient statistical criteria for allelic bias, concluded that

ASM is present in the vicinity of around 20% of hetero-

zygous SNPs. Li et al. [60] reported genome-wide bis-

seq data from one sample of human peripheral blood

mononuclear cells and found 599 haploid DMRs cover-

ing 287 genes. We recently applied array-based methyla-

tion and SNP genotyping and Agilent Methyl-seq with a

mean depth of coverage ranging from 50× to 94× as

complementary approaches and, in a panel of tissues,

identified 795 strong hap-ASM DMRs that were detect-

able in one or more tissue types [49] (examples in

Table 3). Encouragingly, ASM data from independent

laboratories are converging: Cheung et al. [28] mapped

ASM and mQTLs using MethylC-Capture Sequencing

(MCC-seq) in 869 samples, including whole blood,

monocytes, T cells, muscle, and visceral adipose tissue,

and whole genome bisulfite sequencing (WGBS) for a

subset of 41 samples, with a mean coverage ranging

from 13× to 24× for MCC-seq and 8× to 22× for WGBS.

After pooling bis-seq reads across individuals according

to genotype and cell type, they identified a large number

of ASM CpGs in one or more cell types, which largely

encompass the group of ASM CpGs from our study.

Although the number of loci identified depends on

sample sizes, depths of coverage for ASM analysis, and

numerical cut-offs and p values, the yield of mQTL/

ASM loci in these studies suggests that approximately

10% of all human genes are associated with strong hap-

ASM DMRs. Among the consistently noted features of

hap-ASM is its tendency to be located outside of CpG

islands and further away from genes [61, 62]. This fea-

ture may indicate that ASM events occur in regions that

are subject to less stringent selective constraints in evo-

lution. Nevertheless, a substantial minority of hap-ASM

DMRs are located in crucial regulatory sequences,

including enhancers and insulators [49, 51, 53, 61, 63],

and are therefore likely to have important effects on

gene expression.

Most studies on cis-acting genetic effects in human cells

and tissues have focused on epigenome-wide statistics,

which are crucial for testing mechanistic hypotheses. Pre-

senting the data in this way can, however, make it difficult

to appreciate the patterns and strength of allele-specific

epigenetic asymmetries at specific loci. To fill this gap, we

have taken pains to illustrate bis-seq of individual loci with

ASM, using SNPs in the sequence reads to separate the

two alleles [49, 51]. Examples of diagrams of ASM from

this procedure (Figs. 1 and 2) show that the allelic bias in

CpG methylation can be quite strong [48, 49, 51]. Fine-

mapping of ASM DMRs using targeted bis-seq can define

the boundaries of these regions, which is a crucial step in

testing the candidate biological mechanisms that we

discuss in the next section.

Cis-acting mechanisms: involvement of CCCTC-
binding factor (CTCF) and transcription factors
The challenge of understanding the mechanisms that

lead to mQTLs and hap-ASM is related to the more

general question of how CpG methylation patterns are

established in mammalian cells. In addition to the in-

volvement of epigenetic “reader and writer” enzymes,

multiple lines of evidence are starting to imply roles for

sequence-specific DNA-binding proteins, including clas-

sic transcription factors (TFs) and insulator binding pro-

teins that regulate three-dimensional (3D) chromatin

architecture. The binding of some proteins to DNA pro-

tects their binding sites in the DNA from CpG methyla-

tion; such proteins include zinc-finger CxxC-domain-

containing proteins, such as CFP1 and KDM2A, the

insulator binding factor CTCF, which anchors chroma-

tin loops and thereby regulates promoter–enhancer

interactions [51, 64–69], and TFs including ETS-family

DNA-binding proteins and SP1. Some of the implicated

proteins show methylation-sensitive DNA binding [70–73],

but another working hypothesis is that simple site

occupancy may be sufficient to exclude methylation

from that site.

Cross-talk between DNA methylation and sequence-specific

binding proteins

There may be a “chicken or egg” problem in determining

whether binding site occupancy or site methylation status

is primary, but the fact is that binding sites tend to be hypo-

methylated when occupied. Stadler et al. [74] profiled

genome-wide patterns of CTCF binding sites in mouse em-

bryonic stem cells (ES) and ES-derived neuron progenitors

and found an average CpG methylation of 20% in CTCF-

binding sites, with increasing methylation adjacent to these

sites, leading to “methylation well” patterns. Xu et al. [75]
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extended this principle in a survey involving multiple cell

lines, TFs, and methylation types, which revealed intimate

relationships between occupancies of TFBS and methyla-

tion levels in and around these sites. Likewise, chromatin-

immunoprecipitation (ChIP) against CTCF in ES, followed

by bis-seq of the immunoprecipitated DNA, led to the ob-

servation that the frequency of CTCF binding correlates

with the likelihood of a demethylated state [76]. Our data

from Agilent Methyl-seq of Tcells and brain DNAs, aligned

with ENCODE CTCF ChIP sequencing (ChIP-Seq), are in

line with these findings [49].

Conversely, a group of zinc-finger TFs, including the

BTB/POZ family proteins KAISO, ZTB4, and ZBTB38, as

well as the Krüppel-associated box (KRAB)-domain TF

family member ZFP57, all recognize methylated CpGs

within DNA sequence motifs and can act as repressors by

perpetuating local CpG hypermethylation [77]. A protein

microarray-based approach for surveying purified human

TFs revealed numerous examples, typified by the Krüppel-

like zinc-finger domain protein KLF4, which showed meth-

ylated CpG-dependent DNA-binding activities [78]. Very

recently, Yin et al. [79] showed that most major classes of

TFs, including bHLH, bZIP, and ETS, bind preferentially to

unmethylated DNA, whereas other TFs, such as homeodo-

main, POU, and NFAT, bind preferentially to methylated

DNA. Last, methyltransferase enzymes themselves can

show some DNA-sequence preferences [80, 81], and

members of the methyl-binding proteins family (e.g.,

MeCP2 and MBD2), while lacking sequence-specificity,

participate in protein complexes that bind highly meth-

ylated CpG-rich sequences and can help to maintain

repressive chromatin [82].

Allele-specific TFBS occupancy as a mechanism for ASM

Early on, we proposed that ASTF binding site occupancy

(sometimes abbreviated as ASB, for allele-specific binding)

Table 3 Examples of hap-ASM DMRs associated with eQTLs and GWAS peaks

Hap-ASM DMR index
SNP in haplotype block 5

Regulome-DB
score

Genes in 150-kb window Genes with cis-eQTLs
in haplotype block

GWAS index SNPs and disease
associations in haplotype block

rs9535274 1b RCBTB1; ARL11; EBPL RCBTB1; ARL11; EBPL rs9568281: multiple sclerosis

rs9330298 2a S100A* cluster; CHTOP; SNAPIN;
ILF2; NPR1; MIR8083

S100A1, S100A13 rs7536700: multiple myelomab

rs12789117 5 JAM3; NCAPD3; VPS26B JAM3; NCAPD3; VPS26B rs1267813: schizophrenia
rs11223731: memory performance
rs1031381: neuropsychological test
rs478881: fasting blood insulin

rs2517646 1b TRIM* cluster TRIM10 rs2523989: type I diabetes
rs2021722: schizophrenia, bipolar
disorder

rs994379 1f HIST1H* cluster; BTN3A2 HIST1H* cluster; BTN3A2 rs61747867: schizophreniab

rs8176749 5 OBP2B; ABO; SURF6 ABO, SURF6 rs633862: ovarian cancerb

rs495828: thromboembolism
rs8176722, rs8176719: malaria
rs579459: coronary heart disease

rs861855 1b UBE2L3; YDJC; CCDC116; SDF2L1;
MIR301B; MIR130B; PPIL2; YPEL1

CCDC116; YDJC; UBE2L3 rs181359, rs2256609: Crohn’s disease
rs131654: systemic lupus erythematosus
rs2266961: inflammatory bowel disorder
rs2256609: Crohn’s disease
rs4821116: hepatitis B infection
rs2298428: celiac diseaseb

rs1627982 4 HLA-H; HCG4B; HLA-A; HCG9;
ZNRD1-AS1

HLA-A; HCG9; HCG4;
ZNRD1; HLA-H

rs2523809: serum IgE
rs2860580: nasopharyngeal cancer
rs2524005: schizophrenia, bipolar
disorder
rs189370103: smoking behavior

rs62396301a 4 UNC5CL; TSPO2; APOBEC2; OARD1; NFYA;
ADCY10P1; TREML1; TREM2

NFYA; APOBEC2 rs75932628: Alzheimer’s disease
rs2294693: gastric cancerb

The hap-ASM data are from our published study [49], with confirmation by additional unpublished Methyl-seq data (CD and BT; unpublished data). Of these nine loci, six

were also covered and found to have ASM or mQTLs in one or more cell types by Cheung et al. [53]. Regulome-DB scores for the hap-ASM index SNPs are from RegulomeDB

(http://www.regulomedb.org/). The scores ranged from 1a to 6, with 1 assigned to putative regulatory SNPs with the highest level of confidence, supported by multiple data

types, including eQTLs, TF binding, TF motifs, DNAse footprints, and DNAse hypersensitivity peaks [20]. Cis-eQTLs were downloaded from National Heart, Lung and Blood

Institute (NHLBI)-GRASP Build 2.0 [46], only genes with eQTL p value <10−05 are listed. Haplotype blocks were defined using 1000 Genomes project (phase 3) [182] and PLINK

(Gabriel’s approach) data [183, 184]. The S100A* cluster includes: S100A4; S100A3; S100A2; S100A16; S100A14; S100A13; and S100A1. The HIST1H* cluster includes: HIST1H1D;

HIST1H4F; HIST1H4G; HIST1H3F; HIST1H2BH; HIST1H3G; HIST1H2BI; and HIST1H4H. The TRIM* cluster includes: TRIM10; TRIM15; and TRIM26. Multiple eQTLs have been identified

in the haplotype blocks; in the eight first examples, at least one of the eQTLs was also an ASM index SNP, suggesting that these SNPs are regulatory SNPs
aIndex eQTL reported in NHLBI-GRASP is rs6926079, in the same haplotype block as rs62396301 (R2 = 0.975, D′ = 1)
bSub-threshold GWAS peaks (5 × 10–6 < p value < 5 × 10–8)
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resulting from the presence of sequence variants in en-

hancer and insulator elements could lead to ASM [83]. In

fact, ASTF was documented as a pervasive phenomenon

in human cells at around the same time that hap-ASM

was first being characterized: allele-specific ChIP-on-chip

assays using antibodies to RNA polymerase II and post-

translationally modified forms of histone H3, together

with SNP genotyping, revealed evidence of widespread

allele-specific chromatin states [84–86]. With the advent

of ChIP-seq, experiments with denser genomic coverage

have confirmed these findings, and have added assays for

the binding of specific TFs that highlighted ASTF for

CTCF, NF-kappaB, ETS1, ELF1, PAX5 and RUNX pro-

teins, among others [87–93]. In a parallel line of work,

Butter et al. [94] used SILAC (Stable Isotope Labeling by

Amino acids in Cell culture), in which double-stranded

oligonucleotides of the two alleles for many TFBSs were

incubated with either light or heavy isotopically labeled

nuclear extracts, and subsequently mass spectrometry to

detect altered TF binding to the SNP-containing se-

quences. Using this method, they found allele-specific

binding of the TFs RUNX1, LEF1, CREB, and TFAP4 to

polymorphic SNP-containing TFBSs. AlleleDB (http://

alleledb.gersteinlab.org/) is a useful public resource for

querying and analyzing ASTF [47]. Although the current

database is skewed toward cell lines, it is expected to

include multiple primary cell types in the near future.

In testing ASTF as a mechanism underlying hap-ASM,

it is crucial to know which TFs bind to each ASM DMR,

and hence it is necessary to determine the sizes and

boundaries of these DMRs. An initial fine-mapping study

of several strong examples of hap-ASM DMRs showed

allelic asymmetries in methylation over multiple CpG

dinucleotides, with discrete DMRs of 1–2 kb in size that

in some cases showed a precise overlap with CTCF ChIP-

seq peaks [51]. As a next step in testing mechanisms, we

and others carried out bioinformatic enrichment analyses

of epigenome-wide ASM and mQTL mapping data, in

which the frequencies of specific sequence motifs,

ChIP-seq peaks, and chromatin states in and around

the identified ASM DMRs and mQTLs are compared

with the overall representation of such motifs and

states in the informative fraction of the genome. In

their study of LCLs, Banovich et al. [95] found that

SNPs in TFBSs that change the predicted binding of

cognate TFs are enriched for associations with nearby

mQTLs. They used available DNase-seq data to infer

sites that are putatively bound by TFs, and then identified

SNPs disrupting these putative binding sites. On the basis

of known binding motifs, they calculated a position weight

matrix (PWM) score for each allele and found that alleles

with lower predicted TF-binding affinity (lower PWM

scores) tend to be associated with increased DNA methy-

lation in 1-kb windows centered on the binding sites.

These data suggested that TFBS occupancies by CTCF,

PAX9, ESE1, STAT5, and ZNF274 play a role in shaping

CpG methylation patterns in LCLs. In our recent Methyl-

seq study, we found that hap-ASM DMRs are enriched in

strong CTCF-binding peaks that are restricted to one or

multiple cell types, but not in “constitutive” CTCF peaks

that are identified in almost all cell types [49]. We found

significant enrichment in polymorphic but not invariant

CTCF motifs, supporting allele-specific CTCF binding as

a mechanism that underlies a subset of hap-ASM loci

[49]. To assess the involvement of classic TFs, we over-

lapped our ASM and mQTL data with all TF canonical

motif occurrences in the ENCODE data and found that

hap-ASM loci are significantly enriched in polymorphic

TF-binding motifs, supporting a role for allele-specific TF-

binding site occupancies in creating and/or propagating

the ASM [49].

Cross-species comparisons for testing mechanisms
of ASM
Cross-species designs comparing methylomes in humans

and other animals, such as mice and non-human pri-

mates (NHPs), are proving to be informative. Genetically

influenced ASM has been demonstrated in mouse

crosses [96], which offers the possibility of doing ma-

nipulative genetic experiments. However, a key advan-

tage of comparing humans to NHPs, rather than mice, is

that chimpanzees and monkeys are “almost human”,

both in their anatomy and physiology and in their ge-

nomes. This fact should be especially important for traits

related to brain function. Although there are many

insertion-deletion polymorphisms and structural rear-

rangements in each primate species, yielding an overall

sequence divergence of about 5%, many orthologous

portions of the genomes differ by only approximately

1.5% [97–99]. This situation allows comparison of CpG

methylation patterns in and around regulatory sequences

that are either identical in humans and the NHP species

or differ by only one or two nucleotide substitutions.

Thus, by expanding the range of evaluable alleles beyond

those found in human populations, the NHP methy-

lomes add power to studies that seek to use maps of

ASM to hone in on functional variants in TFBS.

Kasowski et al. [87] compared PolII binding in human

LCLs and a chimpanzee blood sample using ChIP-seq

and found divergence at a substantial subset of ortholo-

gous genes between the two species. Similarly, methy-

lome mapping studies have highlighted genes that are

perfectly conserved in their protein-coding sequences,

yet show significant differences in CpG methylation

levels in their regulatory sequences between humans and

chimpanzees [100, 101]. Relevant to hap-ASM, in our

recent work, we used cross-species comparisons of DNA

sequences and methylation patterns to test variation in
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CTCF-binding sites as an underlying mechanism. We

carried out targeted bis-seq in PBL and liver from ma-

caque monkeys at five ASM loci orthologous to human

loci with CTCF motifs, selecting these DMRs so that the

macaque sequences diverged from the human sequences

at only one or two critical base pairs in these motifs. As

shown for an example in Fig. 1, the results for each of

these DMRs confirmed the expected negative correlation

between their CpG methylation levels and CTCF-

binding likelihood, as indicated by the PWM scores,

when comparing the human and monkey alleles [49].

Such cross-species studies can now be performed using

combinations of whole genome and whole methylome

sequencing, which are expected to yield additional im-

portant clues to functional DNA regulatory variants and

the TFs that recognize them.

Some ASM DMRs remain mechanistically
unexplained
Despite this progress in explaining some examples of

hap-ASM, a substantial subset of hap-ASM loci are not

accounted for by SNPs in known TFBS or CTCF sites

([49] and CD and BT unpublished data). The same is

true for other allele-specific chromatin marks. Farh et al.

[102] carried out a study of human monocytes, B cells,

and resting and stimulated T cell subsets utilizing SNP

genotyping combined with genome-wide profiles of his-

tone modifications, RNA-seq, and additional chromatin

and TFBS annotations. They found that genetic poly-

morphisms underlying GWAS peaks for autoimmune

disorders tend to occur near TFBS for master regulators

of immune differentiation and stimulus-dependent gene

activation, but that only 10–20% of presumptive causal

genetic variants mapped within recognizable TFBS mo-

tifs. One scenario that might explain the “epigenomic

dark matter” is long-range chromatin looping. The 3D

looping of chromatin into large and complex topologic-

ally associating domains (TADs), with loops anchored by

CTCF or cohesin complexes [65, 103], is so extensive

that a crucial genetically polymorphic CTCF- or TF-

binding site may lie at a large linear distance (several

megabases or more) from an ASM DMR. Thus, there

would be no apparent local explanation for the ASM,

even though the binding sites are in fact brought into

close proximity to the DMR by chromatin looping

(Figs. 2 and 3). Another possibility is a role for long

non-coding RNAs (lncRNAs), which are also involved in

chromatin looping and transcriptional regulation over

long linear distances, via their roles in tethering key pro-

tein complexes that regulate epigenetic states. Future

experiments that seek to connect hap-ASM to long-

range chromatin architecture may eventually explain the

epigenomic dark matter.

Mapping allele-specific epigenetic marks for
identifying disease-associated regulatory
sequences
Mapping of mQTLs and hap-ASM can be useful for nom-

inating specific polymorphic regulatory DNA sequences as

candidates that can account for statistical signals from

GWAS. The logic here is that a bona fide regulatory DNA

sequence can declare its presence by conferring a physical

asymmetry between the two alleles in heterozygotes. Thus,

when an SNP association for a given disease or trait is lo-

cated near an ASM DMR, within the same haplotype

block, that signal may be driven, at least in part, by

polymorphic regulatory DNA sequences in the DMR

[104–107]. In this regard, mQTL/hap-ASM mapping, and

related approaches such as the mapping of ASTF, allele-

specific histone modifications, and allele-specific chroma-

tin accessibility, are complementary to and non-redundant

with eQTL mapping.

As illustrated by the example of the S100A* gene cluster

in Fig. 2, and diagrammatically for a generic chromosome

region in Fig. 3, some haplotype blocks with GWAS peaks

also contain multiple eQTLs and mQTLs. As mentioned

above, eQTLs can point to relevant genes, but not necessar-

ily to the relevant DNA sequence elements. Some studies

have found only a small overlap (approximately 10%) be-

tween the SNPs that tag cis-acting mQTLs and eQTLs,

which is another rationale for carrying out both types of

mapping [49, 108–114]. Dermitzakis and colleagues [115]

found that DNA methylation sites that are associated with

expression levels are enriched in enhancers, gene bodies,

and CpG island shores, but not in promoter regions. These

findings are consistent with the fact that eQTLs tend to be

found in promoter regions, whereas mQTLs and hap-ASM

DMRs tend to occur in non-promoter regulatory sequences

such as enhancers and insulators. Despite the relatively low

frequency of precise physical overlap, there are many in-

stances in which mQTLs and hap-ASM DMRs map within

the same haplotype blocks as eQTLs, and these situations

can be informative for understanding disease associations,

which may reflect the combined effects of more than one

polymorphic regulatory element. With these considerations

in mind, an increasing number of recent studies, including

ours, have started to catalogue ASM DMRs and mQTLs

near GWAS peaks [48, 49, 59] or dictated by GWAS SNPs

[37, 116]. Selected examples in which a hap-ASM DMR or

mQTL and a GWAS peak are found in a single haplotype

block are listed in Table 3.

Other types of allele-specific marks, such as allele-

specific histone modifications, have been used for this

same purpose [102], and maps of allele-specific chromatin

accessibility, scored by the Assay for Transposase-

Accessible Chromatin (ATAC) with the high-throughput

ATAC-sequencing (ATAC-seq) method, are also starting

to be produced [117, 118]. In their study, Scott et al. [118]
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used RNA-seq plus SNP genotyping to analyze skeletal

muscle biopsies from 271 individuals. They integrated the

eQTL data with transcriptional regulatory data, including

ATAC-seq data, in diverse tissues and found that the

tissue-specific regulatory architecture of skeletal muscle is

enriched in muscle-specific enhancers, including some

that overlap T2D GWAS variants. This finding is biologic-

ally relevant since glucose disposal in skeletal muscle is

impaired in insulin-resistant states [119]. In addition,

FAIRE-seq (formaldehyde-assisted isolation of regulatory

elements sequencing) and FAIRE-enriched genotyping are

being pursued for identifying allele-specific chromatin ac-

cessibility [120, 121]. Another allele-specific mark is allele-

specific chromatin topology: using ChIA-PET (chromatin

interaction analysis by paired-end tag sequencing) in dif-

ferent cell lines, Tang et al. [122] demonstrated that ASTF

of CTCF at TAD anchor sites was associated with allele-

specific chromatin interaction and looping, as well as with

ASE in lymphoblastoid cells and several cancer cell lines.

Among the 32 SNPs disrupting a CTCF motif, they found

eight SNPs in LD with GWAS SNPs, supporting allele-

specific chromatin topology as a mechanism for disease

susceptibility. Follow-up studies will be necessary to ex-

tend this result to relevant normal primary cell types.

The overall conclusion is that a multi-modal ap-

proach will work best: epigenomic mapping can com-

plement eQTL analysis for identifying the genes, DNA

regulatory sequences, and biological pathways that

underlie human traits and diseases. Supporting this

approach is recent work by investigators in the IHEC,

who have integrated genetic, epigenetic, and transcrip-

tomic profiling across three immune cell types from

nearly 200 people [37, 123]. As we know from the

ENCODE project, the value of such data can be best

realized with the creation of searchable databases of

allele-specific epigenetic marks, preferably visualized

on sequence tracks such as those in the UCSC

Genome Browser [124]. As mQTLs/hap-ASM can be

highly tissue-specific, separate tracks for each tissue and

cell type are needed. The first steps toward creating these

types of web-based resources are being taken (Box 1).

Last, even high-resolution post-GWAS mapping cannot

prove causality, so functional assays are needed to evaluate

candidate sequences. For a given candidate regulatory

(See figure on previous page.)

Fig. 3 Cis-acting genetic–epigenetic interactions can lead to inter-individual differences in DNA looping, gene expression, and disease susceptibility.

Simplified representations of three-dimensional chromatin structure in haplotype blocks containing genome wide association study (GWAS) peaks,

highlighting the potential effects of regulatory sequence variants (rSNPs) on DNA methylation, interactions between regulatory elements (insulators,

enhancers and promoters), topologically associating domain (TAD) structures, gene expression, and disease susceptibility. a CTCF-mediated chromatin

looping leading to formation of “active” and “inactive” TADs. Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) and Hi-C have

mapped chromatin interactions and have identified TADs as large-scale chromatin structures, with CTCF or cohesin enriched at the TAD boundaries

[103]. The chromatin loops promote intra-domain interactions between regulatory elements, such as enhancers and gene promoters (which induce

gene expression), while preventing inter-domain contacts in order to minimize promiscuous gene expression. In this model, regulatory variants at TAD

boundaries or intra-domain contacts (sub-TAD boundaries) can induce high- or low-order chromatin configuration changes that disrupt the insulated

neighborhoods formed by the looping, thereby causing either the abolition of enhancer–promoter interactions (in active TADs) or the formation of

ectopic enhancer–promoter interactions (in inactive TADs). Additionally, regulatory variants at active transcription factor (TF)-bound enhancers can

directly affect enhancer–promoter interactions. Variants that affect the integrity of TAD structures and chromatin interactions are more likely to have

functional effects and to be rSNPs, which can sometimes lead to disease susceptibility. b Chromatin looping leads to active or inactive insulated

chromatin neighborhoods, which can vary between individuals because of haplotype-dependent allele-specific DNA methylation (hap-ASM) rSNPs and

can therefore influence DNA methylation patterns and disease susceptibility. In this genomic configuration (AA alleles at the enhancer SNP of gene X,

AA alleles at the CTCF-binding site SNP of the gene-X-containing loop, and AA alleles at the CTCF-binding site SNP of the gene-Y-containing loop),

both of the TAD anchor sites have a high affinity for CTCF. In the chromatin loop associated with gene X, the formation of the loop brings the

enhancer and promoter into close proximity. The active enhancer is bound by TFs and RNA polymerase interacts with the gene X promoter to induce

transcription [122, 189]. Conversely, the chromatin loop containing gene Y enforces gene silencing by isolating the promoter away from neighboring

enhancers. CTCF and TF occupancy is associated with low methylation at the TAD anchor sites and in enhancer sequences, expression of gene X,

silencing of gene Y, and no disease susceptibility. c In this configuration (BB at the enhancer SNP of gene X, AA at the CTCF-binding site SNP of the

gene-X-containing loop, and AA at the CTCF-binding site SNP of the gene-Y-containing loop), the anchor sites bind CTCF with high affinity. Although

the CTCF-anchored loops are not altered, the rSNP at the enhancer of gene X disrupts the binding of the TF and RNAPII complex, resulting in a high

methylation level at the enhancer and gene silencing. In this scenario, the silencing of gene X leads to disease susceptibility, associated with the GWAS

index SNP allele BB, which is in linkage disequilibrium (LD) with the functional rSNP allele BB at the enhancer of gene X. d In this configuration (AA at

the enhancer SNP of gene X, BB at the CTCF-binding site SNP of the gene-X-containing loop, and AA at the CTCF-binding site SNP of the gene-Y-

containing loop), allele BB at the CTCF-dependent TAD anchor site associated with gene X leads to a low affinity for CTCF. The loss of CTCF binding

disrupts the higher-order chromatin loop, and the promoter–enhancer interaction of gene X is no longer facilitated, although TF binding is

not altered at the enhancer. e In this configuration (AA at the enhancer SNP of gene X, AA at the CTCF-binding site SNP of the gene-X-

containing loop, BB at the CTCF-binding site SNP of the gene-Y-containing loop), allele BB at the CTCF-mediated TAD anchor site of the

gene-Y-containing loop has a low affinity for CTCF. The loss of CTCF binding disrupts the chromatin loop, such that the promoter of gene Y

is no longer isolated from the active enhancer of the neighboring expressed gene, which induces an ectopic enhancer–promoter interaction.

This loss of CTCF occupancy is associated with a high methylation level at one of the anchor sites of gene-Y-containing TAD, and expression

of gene Y. In this scenario, the expression of gene Y leads to a disease phenotype associated with the GWAS peak SNP allele BB, which is in

LD with the causal rSNP allele BB at the CTCF-binding site
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sequence identified by post-GWAS approaches, it has

now become feasible to use gene-editing approaches,

notably CRISPR technology, to create targeted deletions

and mutations in a relevant cell type and to assay the

effects of such edits on gene expression [125–127]. For ex-

ample, if the candidate sequence element is a polymorphic

TFBS or CTCF-binding site, then the key experiment will

be to mutate that site and assay for the predicted changes

both in CpG methylation and in the levels of expression

of the candidate gene(s) in the haplotype block.

Relevance of mQTLs and hap-ASM for interpreting
EWAS data
EWAS seek to use case-control or cohort designs to detect

changes in DNA methylation that result from disease path-

ology (i.e., from disease progression, rather than genetic

susceptibility) and/or environmental factors, such as dietary

influences, including over- or under-nutrition, exposures to

environmental toxins, and substance abuse, including com-

mon situations such as alcohol consumption and cigarette

smoking [128, 129]. Issues of experimental design and ca-

veats for EWAS have been discussed in several papers, in-

cluding some from us [130, 131], but the number of studies

completed to date is smaller than for GWAS, and the cri-

teria for calling true-positive “hits” have yet to be standard-

ized. Among the phenotypes that have been investigated

are body mass index (BMI) and T2D [132–134], cardiovas-

cular phenotypes [135–137], cigarette smoking [138–140],

Alzheimer’s disease (AD) [141–143], autoimmune and in-

flammatory diseases [144, 145], and neuropsychiatric disor-

ders, including addictive behavior [116, 146]. As pointed

out by us and others, because EWAS specifically seek to

identify epigenetic changes that are attributable to non-

genetic effects, differences in DNA methylation that are

produced by inborn genetic factors, that is, mQTLs and

hap-ASM, can complicate the interpretation of the results

and need to be controlled for [131, 147]. To put it another

way, Barfield et al. [148] noted that as the scale of EWAS

approaches that of GWAS, population stratification will

need to be addressed. This issue boils down to controlling

for mQTLs, and Barfield et al. [148] laid out statistical

methods to accomplish this task. Similarly, Pan et al. [149]

created an R package, called GEM, that can analyze and

control for mQTLs and the interaction of genotype and

environment (GxE) in EWAS.

To what extent do EWAS hits actually consist of

mQTLs? Although most of the EWAS that we have

surveyed have not controlled for mQTLs, the recommen-

dations have not been entirely ignored. For example, in

their EWAS for BMI, Dick et al. [134] discussed an

mQTL-like effect, namely a significant correlation of two

SNPs with methylation at a particular CpG dinucleotide

without a significant correlation with BMI. In their com-

bined EWAS-mQTL study of cigarette smoking, Qiu et al.

[150] identified 43 DM CpGs overlapping with mQTLs.

Hedman et al. [135] identified significant cis-mQTLs at

64% of the 193 CpGs associated with lipid traits in blood.

Likewise, in an EWAS using blood samples, Hannon et al.

[116] identified 27 schizophrenia GWAS peaks that had

nearby DMRs in schizophrenia versus controls, which co-

localized with mQTLs.

To address this question quantitatively, we compiled

findings of DM CpGs from multiple EWAS for three im-

portant phenotypes: BMI/T2D, AD, and tobacco smoking

[132, 133, 138–143, 151–154]. Using the authors’ criteria

for statistical significance, we overlapped these EWAS “hits”

with mQTL data [49, 54, 62, 108, 110, 112, 113, 150, 155].

We selected the mQTL studies (all included in Table 2) to

match the cell types or tissues studied in the EWAS.

Among the four EWAS of BMI/T2D that we examined,

two utilized PBL samples and two utilized adipose tissue

[132, 133, 151, 154]. Of the large number (42,360) of DM

CpGs associated with BMI or weight loss in adipose tissue

in females, the median differences in methylation were

1.6% per 10 kg.m2 BMI and 11.7% per 10 kg.m2 BMI before

and after weight loss, respectively. Only 2% of these DM

CpGs, corresponding to 496 genes, were replicated between

the two adipose tissue datasets, which might be partly ex-

plained by differences in study design and statistical power.

Among these genes, the largest case–control differences

were seen for CpGs in CDR2 and SEC14L1, both with

differences in methylation of 27% before and after weight

loss. In PBL, 400 CpGs were associated with BMI or waist

circumference, including 38 CpGs in 27 genes replicated in

the two studies. The replicated genes include LGALS3BP

and ABCG1. To assess the proportion of BMI EWAS hits

that are mQTLs, we overlapped the BMI DM CpGs in PBL

[132] and adipose tissue [133, 151] with blood and adipose

tissue mQTL CpGs, respectively. In PBL, we found 48

blood mQTL–EWAS DM overlaps, and 10 SNP-

containing CpGs among 400 EWAS DM CpGs, including

HIF3A. In adipose tissue, we observed a similar percentage

of mQTLs among the EWAS DM loci (12.8%, with 4303

EWAS DM CpGs overlapping with mQTLs). Among the

100 top-ranked replicated EWAS DM CpGs (based on

difference in methylation), we found that mQTLs could

account for 18 of these CpGs, located in ten genes. These

genes, including HIF3A, IGFR2, and ADSSL1, will need to

be evaluated for their status as bona fide EWAS hits by

controlling for the cis-acting effects of local haplotypes.

Among the three EWAS of AD that we have reviewed

[141–143], none of the 2659 EWAS DM CpGs were

reproduced in all datasets. Nevertheless, 0.7% of these

DM CpGs, corresponding to 13 genes, were replicated

in at least two datasets, including CpGs in ANK1,

CDH23, SLC44A2, and PCNT. Among these genes, the

differences in DNA methylation between cases and con-

trols were small, ranging from 4 to 0.03% [141, 143].
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Overall, we observed 85 EWAS DM CpGs that over-

lapped with brain mQTLs. Thus, at least 5% of the DM

CpGs in these AD EWAS might be explained by cis-act-

ing genetic effects. These findings are consistent with a

recent study that showed that about 5% overlap between

schizophrenia DM CpGs and brain mQTLs [156]. How-

ever, none of the replicated DM CpGs in the AD EWAS

overlapped with mQTLs.

Finally, several EWAS have examined the effects of

cigarette smoking on DNA methylation patterns in lung

tissue and PBL. mQTL data from lung tissues are sparse, so

we focused on the EWAS in PBL. Among five EWAS

comparing PBL from current smokers to never smokers

[138–140, 152, 153], 18,935 DM CpGs in 6965 genes were

identified, with 90% of them showing case–control differ-

ences in methylation of less than 1%, but with a small num-

ber of loci showing greater DM. A total of 856 CpGs (5%)

were replicated as hits in at least two EWAS, and seven

genes, including AHRR, GFI1, GNA12, and LRP5, were

identified as having DM in all five datasets. Once again, the

low percentage of replicated EWAS hits might be partly ex-

plained by differences in statistical power between studies,

with most of the DM being identified only in the large

meta-analysis which includes about 16,000 individuals

[153]. In contrast to the mild effect sizes seen in AD

EWAS, the strongest smoking-associated DM CpGs, in the

AHRR and GFI1 genes, showed 24 and 15% differences in

methylation, respectively. We found a definite but still rela-

tively modest contribution of cis-acting genetic effects

among the total EWAS DM CpGs from the five studies,

with 3440 CpGs showing a DM–mQTL overlap, as well as

395 SNP-containing CpGs, which together represent 20%

of the EWAS DM CpGs. Among the EWAS DM CpGs

replicated in at least two studies, there were 12 SNP-

containing CpGs and 162 EWAS DM–mQTL overlaps,

including CpGs in AHRR and GFI1, for which a cis-effect

contribution was shown by Gonseth et al. [157].

On the basis of these findings, we conclude that des-

pite small effect sizes and limited inter-study replication,

EWAS have revealed some interesting and reproducible

examples of DM, with the majority of published EWAS

peaks not being mQTLs. Examples of reproducible and

top-ranked DM loci that are not associated with pub-

lished mQTLs include BMI-associated DM in HDAC4,

AD-associated DM in PCNT, and smoking-associated

DM in F2RL3. Nonetheless, in our analysis, between 5

and 20% of EWAS DM CpGs overlap with mQTLs.

Recently, Chen et al. [37] used a different analytical

approach using gene expression as a proxy for disease

phenotype and found that cis-genetic effects could

account for the methylation–expression correlation in

more than 50% of the significant genes, suggesting a

somewhat higher estimate of genetically influenced loci

among EWAS hits.

Conclusions and future directions
Although GWAS have met part of their initial prom-

ise, identifying chromosomal regions that are linked to

medically relevant phenotypes, the GWAS design is

limited in its ability to pinpoint causal genes and DNA

regulatory elements. Genome-wide maps of cis-regu-

lated allele-specific phenomena, including eQTLs,

mQTLs/hap-ASM, and allele-specific histone modifi-

cations and TFBS occupancies, are coming into focus

and are helping to nominate candidate genes and

DNA sequence variants that can account for GWAS

signals. DNA sequence polymorphisms in CTCF and

TFBS are emerging as an underlying mechanism for

many, but not all, hap-ASM DMRs, and comprehen-

sive efforts to identify these sites are expected to yield

insights into transcriptional pathways that affect

disease susceptibility.

Nevertheless, a number of challenges still need to be

surmounted. As noted above, array-based methods for

identifying mQTLs are limited by incomplete and gene-

centric coverage, SNPs that can affect probe hybridization,

and probes that align to multiple genomic locations [158].

These problems can be solved by using the more direct

approaches of targeted and whole genome bis-seq to score

ASM. Agilent sequence capture [49], MCC-seq, or WGBS

with sample pooling [53] have been employed to achieve

sufficient depth, but the newest sequencing platforms are

expected to make deep WGBS more practical. As cost will

probably remain a factor, it will be useful to determine the

optimal sequencing depth for WGBS by performing sys-

tematic comparisons with ultra-deep targeted bis-seq [49].

Improvements in epigenomic mapping will also come

from the development of more standardized pipelines

for data analysis. Basic quality control for methylation

BeadChip data, including the filtering of poorly per-

forming probes, normalization and batch adjustment,

are well defined [159, 160], but the criteria that define

mQTLs are not yet standardized. Approaches to con-

trol for the inflation of false positives that results from

the high number of correlations being tested are still

under investigation [161]. Likewise, in ASM studies,

statistical analysis and allele-specific bis-seq alignments

are performed using in-house pipelines, in which tech-

nical issues, including misalignment of reads mapping

to regions with similar bisulfite-converted sequences,

achievement of the required depth, bias of the align-

ments toward the reference allele, and determination of

DMRs, have been addressed to varying degrees. More

fundamentally, there is already evidence that the know-

ledge of genotypes at single index SNPs is sometimes

insufficient to reveal the haplotype-dependence of

ASM—in some instances, the allelic asymmetry can be

driven by more than one sequence variant in the local

haplotype [49, 57]. This challenge warrants future

Do et al. Genome Biology  (2017) 18:120 Page 17 of 22



efforts to determine long-range phased haplotypes.

Such efforts can build on conditional analyses [57],

SNP phasing approaches [162], and family-based ana-

lyses [54]. More directly, sequencing of single DNA

molecules to generate bona fide phased genotypes [163]

is now being made possible by Illumina (TruSeq®

Synthetic Long-read DNA library prep kit).

We believe that it will be important to continue to

scrutinize EWAS data for cis-acting genetic–epigenetic ef-

fects, which need to be filtered out to reveal epigenetic

changes that are mediated by the environment or by

disease progression, and not by genetics. Conversely,

environmental and clinico-demographic factors that are

found to associate with DM in EWAS can act as con-

founders in mQTL/ASM analysis, and will increasingly

need to be controlled for as mQTL/ASM studies expand

to larger and better-characterized sample groups. Al-

though less directly connected to genetics, changes in cell

populations will also need to be more carefully controlled

for in EWAS [164]. This caveat is highlighted by findings

that DM in GRP15, one of the replicated DM loci in

smoking EWAS, reflects smoking-induced changes in the

composition of T-cell populations [165], and by a meta-

analysis showing that some CpGs associated with BMI

and eight other cardiometabolic traits are in turn associ-

ated with C-reactive protein (CRP) levels, a marker of

chronic inflammation [166]. Similarly, the complicating

factor of reactive gliosis warrants attention as a possible

non-cell-autonomous explanation for the mild DM and

low inter-study concordance in AD EWAS.

At the most fundamental level, increasingly thorough

mapping of hap-ASM and other allele-specific epigenetic

marks in genetically diverse human populations, and in

human versus NHP comparisons, will lead to a more

complete understanding of the role of allele-specific TFBS

occupancies as an underlying mechanism. In this regard,

work focusing only on local sequences might fail to reveal a

mechanism for all instances of hap-ASM; 3D chromosome

architecture will probably need to be taken into account.

Future studies can be designed to ask whether some ASM

DMRs might be established and propagated based on the

presence of rSNPs in TFBSs that are distant from the DMR

on a linear scale, but are brought into physical proxim-

ity in one or more tissues through chromatin looping

(Figs. 2 and 3). This goal of more fully accounting for

allele-specific epigenetic patterning in human cells

should be achievable by superimposing the locations of

ASM DMRs, and allele-specific ATAC-seq and ChIP-

seq peaks, onto 3D genome structures elucidated by

chromosome conformation capture methods (such as

4C, 5C, and high-throughput chromosome conform-

ation capture [HiC]) or ChIA-PET [122, 167]. Such data

will become increasingly useful when centrally com-

piled, for example, in the 3D Genome Browser [168].
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