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Abstract California is home to both the native state-
threatened Sierra Nevada red fox (Vulpes vulpes ne
cator), which historically inhabited high elevations of 
the Sierra Nevada and Cascade mountains, and to 
multiple low-elevation red fox populations thought to 
be of exotic origin. During the past few decades the 
lowland populations have dramatically expanded their 
distribution, and possibly moved into the historic range 
of the native high-elevation fox. To determine whether 
the native red fox persists in its historic range in Cali
fornia, we compared mitochondrial cytochrome-b 
haplotypes of the only currently-known high-elevation 
population (n = 9 individuals) to samples from 3 
modern lowland populations (n = 35) and historic 
(1911–1941) high-elevation (n = 22) and lowland 
(n = 7) populations. We found no significant popula
tion differentiation among the modern and historic 

high-elevation populations (average pairwise FST = 
0.06), but these populations differed substantially from 
all modern and historic lowland populations (average 
pairwise FST = 0.52). Among lowland populations, the 
historic and modern Sacramento Valley populations 
were not significantly differentiated from one another 
(FST = –0.06), but differed significantly from recently 
founded populations in the San Francisco Bay region 
and in southern California (average pairwise FST = 
0.42). Analysis of molecular variance indicated that 3 
population groupings (mountain, Sacramento Valley, 
and other lowland regions) explained 45% of molecu

lar variance (FCT = 0.45) whereas only 4.5% of the 
variance was partitioned among populations within 
these groupings (FSC = 0.08). These findings provide 
strong evidence that the native Sierra Nevada red fox 
has persisted in northern California. However, all nine 
samples from this population had the same haplotype, 
suggesting that several historic haplotypes may have 
become lost. Unidentified barriers have apparently 
prevented gene flow from the Sacramento Valley 
population to other eastern or southern populations in 
California. Future studies involving nuclear markers 
are needed to assess the origin of the Sierra Nevada 
red fox and to quantify levels of nuclear gene flow. 

Introduction 

California is currently home to both native and exotic 
populations of red fox (Vulpes vulpes). The native 



Sierra Nevada red fox (V. v. necator) is restricted to 
subalpine habitats above 1525 m (5000 ft) in the Sierra 
Nevada and Cascade mountain ranges of California 
(Grinnell et al. 1937; Schempf and White 1977). His

torically the Sierra Nevada red fox existed at low 
densities throughout its range (Grinnell et al. 1937), 
but an apparently precipitous population decline led 
state wildlife officials to prohibit commercial trapping 
in 1974 and to list the subspecies as State Threatened in 
1980 (Gould 1980; Lewis et al. 1999). It is currently 
considered ‘‘extremely endangered’’ and its population 
size, extent, and trend are unknown (CDFG 1996, 
2004). 

The other red fox populations in California inhabit 
the lowland areas (<1066 m) and likely consist of 
individuals from multiple unidentified source popula
tions (Grinnell et al. 1937; Roest 1977; CDFG 1999; 
Fitzpatrick 1999; Lewis et al. 1999). Lowland foxes 
were first recorded in the 1880s from the plains near 
the Sutter Buttes in the Sacramento Valley and their 
origin is unknown, although some individuals may have 
been transported from elsewhere in North America for 
sport hunting or rodent control (Grinnell et al. 1937; 
Roest 1977; Lewis et al. 1999). Low elevation red foxes 
remained restricted to the Sacramento Valley through 
the early decades of the 20th century (Roest 1977; 
Lewis et al. 1999). By the 1990s, the range of the 
‘‘lowland red fox’’ had expanded dramatically, 
extending throughout the Sacramento and San Joaquin 
Valleys to the Sierra Nevada foothills and in various 
coastal locations from San Francisco to San Diego 
(Lewis et al. 1999). However, it is unclear to what ex
tent the new lowland populations (i.e., those outside 
the Sacramento Valley) arose from the original Sac
ramento Valley population; some of them likely derive 
from additional introductions from outside of Califor
nia after 1950 (CDFG 1999; Fitzpatrick 1999; Lewis 
et al. 1999). Moreover, it is unknown whether lowland 
red foxes have expanded into the historic range of the 
native mountain red fox (Lewis et al. 1995). Morpho

logical characteristics are insufficient to confidently 
conclude whether an individual red fox originated from 
either the native or exotic populations (Roest 1977). A 
genetic comparison of present-day and historic red 
foxes is needed to ascertain the ancestry of these 
populations so that appropriate management actions 
can be taken (Kucera 1995, 1999; Lewis et al. 1995; 
Aubry 1997). 

Advances in DNA extraction techniques have en
abled the collection of genetic data from museum 
specimens for use in evolutionary and population ge
netic studies (Pääbo 1989; Cooper 1994; Hummel 2003; 
Pääbo et al. 2004). Museum specimens have proven 

particularly valuable for comparing modern and his
toric levels of genetic diversity within populations that 
have subsequently become rare or endangered. This 
approach has been applied across a wide range of 
animal taxa and conservation questions, such as 
investigating bottlenecks in the greater prairie chicken 
(Tympanuchus cupido; Bouzat et al. 1998), northern 
elephant seal (Mirounga angustirostris; Weber et al. 
2000), Yellowstone grizzly bear (Ursus arctos; Miller 
and Waits 2003), and black-footed ferret (Mustela 
nigripes; Wisely et al. 2002); discerning the taxonomic 
affiliation of the Dawson caribou (Rangifer tarandus 
dawsoni; Byun et al. 2002), red wolf (Canis rufus; Roy 
et al. 1996), and Uele River gorilla (Gorilla gorilla 
uellensis; Hofreiter et al. 2003); and quantifying the 
genetic impact of recent forest fragmentation on red 
squirrels (Sciurus vulgaris; Hale et al. 2001). The ap
proach has proven particularly useful for examining 
temporal changes in population structure, such as in 
the Panamint kangaroo rat (Dipodomys panamintinus; 
Thomas et al. 1990), bearded vulture (Gypaetus barb
atus; Gautschi et al. 2000), northeastern beach tiger 
beetle (Cicindela dorsalis dorsalis; Goldstein and 
DeSalle 2003), North Sea cod (Gadus morhua; 
Hutchinson et al. 2003), and adonis blue butterfly 
(Polyommatus bellargus; Harper et al. 2006). 

Until recently, analysis of historic and recent Cali
fornia red foxes was hindered not by the lack of mu

seum specimens but rather by the absence of mountain 
fox specimens collected after 1950 (Fig. 1). A recent 
ecological study of the red foxes in the Lassen Peak 
region of northern California (1900–3150 m elevation) 
enabled the collection of genetic samples for this pur
pose (Perrine 2005). The Lassen area was historically a 
main population center for the Sierra Nevada red fox 
(Grinnell et al. 1937; Schempf and White 1977) and is 
currently the only known montane red fox population 
in the state (Perrine 2005). However, the Lassen area 
may also be highly vulnerable to colonization by low
land red foxes from the Sacramento Valley <70 km 
away, which is within the potential dispersal radius of 
red fox (Larivière and Pasitschniak-Arts 1996). Fur
thermore, escapees from several red fox fur farms in 
the Lassen region during the 1940s and 1950s could 
have become naturalized in the surrounding area 
(Lewis et al. 1995, 1999). 

Our primary objective in this study was to test the 
hypothesis that the Lassen red foxes are descendants 
of the native mountain population rather than exotic 
colonists. Our secondary objectives were to quantify 
the diversity and distribution of mitochondrial 
haplotypes within California, especially those unique 
to the mountain or lowland populations, and to obtain 
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Fig. 1 Distribution of red fox specimens according to collection 
year and elevation. Horizontal dashed line at 1066 m differen
tiates ‘‘lowland’’ from ‘‘high-elevation’’; vertical dashed line at 
1950 differentiates ‘‘historic’’ from ‘‘modern.’’ Few specimens 

a preliminary assessment of population structure 
within the state for use in determining sampling pri
orities for future research. Analyses were based on a 
354 base-pair region of the mitochondrial cyto

chrome-b gene sequenced from historic and modern 
foxes from mountain and lowland locations through
out California. 

Materials and methods 

Samples 

We obtained a total of 85 samples for genetic analyses, 
including five ear punches and nine feces collected 
during the Lassen Peak study (1998–2002; Perrine 
2005). The nine feces, selected from a total of 227 red 
fox feces collected during the study, were considered 
likely to represent additional individuals because they 
were found outside the home ranges of the five col
lared foxes that provided the ear punches. Four of the 
nine fecal samples were included in our analysis after 
being reliably differentiated from one another and 
from the five captured individuals by microsatellite 
analysis (B. Sacks, unpublished data). Specifically, 
these samples were genotyped twice at 12 to 14 mi

crosatellite loci and differed by an average of 15 alleles 
(>50%; range 5–19 alleles). Because allelic dropout 
could have influenced these comparisons, we only in
cluded individuals that were differentiated from all 
others at both allelic positions of at least one locus. The 
nine specimens from the Lassen Peak region likely 
represent a significant proportion of this highly local
ized population (Perrine 2005). Specimens from 
other populations were obtained from the Museum of 
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were collected near these boundary lines, making it highly 
unlikely that any were misclassified. Note the lack of modern 
high-elevation specimens prior to 2000 

Vertebrate Zoology at the University of California, 
Berkeley (n = 45), other university and municipal 
natural history collections in California (n = 22), and 
from several road-killed red foxes and one skeleton 
collected in the Sacramento Valley (see Appendix 
Table 4). Extractions were first attempted using 
untanned hide or muscle, and if these were unavailable 
or did not yield usable cytochrome-b sequences, we 
used maxilloturbinal bones (Wisely et al. 2004b) as the 
source for DNA. 

We classified specimens based upon the elevation 
and date of their collection (Fig. 1). Only specimens 
with unambiguous collection dates and localities were 
included in our analyses. In keeping with the opera
tional criterion used by the California Department of 
Fish and Game (e.g., Lewis et al. 1993), specimens 
collected above 1066 m (3500 ft) were considered 
‘‘mountain’’ and those below 1066 m were ‘‘lowland.’’ 
Similarly, those collected prior to 1950 were considered 
‘‘historic’’ and those collected after 1950 were consid
ered ‘‘modern.’’ We chose 1950 as a temporal bound
ary based upon a natural separation in the collection 
times of the available museum specimens and because 
the range of the lowland red fox had not expanded 
beyond the Sacramento Valley by this date (Lewis 
et al. 1999). In total, comparisons were based on 7 
sample groupings (hereafter, ‘‘populations’’): 3 from 
the mountains (Historic Cascades, Historic Sierra Ne

vada, Modern Cascades) and 4 from the lowlands 
(Historic Sacramento Valley, Modern Sacramento 
Valley, San Francisco Bay Area, Southern California) 
(Fig. 2). San Francisco Bay Area (hereafter, ‘‘Bay 
Area’’) and Southern California populations did 
not exist prior to 1950 and are therefore represented 
solely as modern populations. All specimens from the 



Fig. 2 Distribution of red fox specimens and 7 putative 
populations in California, relative to the range of the native 
Sierra Nevada red fox (stippling) and the lowland red fox 
(diagonal lines). Note the increase in the lowland red fox’s range 
from the 1930s to the 1990s. The current distribution of the 

Modern Cascades population were obtained from the 
Lassen Peak region. No modern specimens were 
available from the Sierra Nevada Mountains. 

In part of its geographic range in California, the 
lowland red fox overlaps in distribution with a con
genor, the kit fox (Vulpes macrotis; Hall 1981). How

ever, V. vulpes and V. macrotis are unlikely to 
hybridize as they have dramatically different chromo

some numbers (2n = 48 and 36, respectively) and 
chromosome morphology (Wayne et al. 1987) and 
genetically are not closely related (Lindblad-Toh et al. 
2005). Cytochrome-b and other protein coding se
quences differ by over 8% between the two species 
(Wayne et al. 1997). 

Laboratory procedures 

Hide and muscle samples were cut into 100–200 mg 
pieces, diced with a sterile blade, then soaked in sterile 
1 · PBS solution for 24 h to dilute any preservatives 
that may have been present. DNA was then extracted 
using a QIAamp minikit (Qiagen Incorporated, 
Valencia, CA) and the standard tissue extraction pro
tocol (200 ll elution volume). DNA was extracted 
from nasal turbinate samples using the method of 
Wandeler et al. (2003b) in a separate isolated and 
dedicated facility for low-copy DNA samples. A 100– 
300 mg sample of bone fragments was chilled in liquid 
nitrogen in a sterile vial for 2 min, then pulverized into 
a fine powder using a UV- and bleach-sterilized mortar 
and pestle. The powder was decalcified for 72 h by 
suspension and agitation in 1.5 ml of 0.5 M EDTA. 
Samples were then digested with 60 ll of 10% N-sar

cosyl and 600 lg of proteinase K for 24 h at 56°C, 

Sierra Nevada red fox is unknown and is therefore assumed to be 
the same as its historic distribution. CS = Cascades; SN = Sierra 
Nevada; SV = Sacramento Valley; BA = Bay Area; SC = South
ern California. Distributions based upon Grinnell et al. (1937) 
and Lewis et al. (1999) 

followed by an additional 300 lg of proteinase K and 
24 additional h at 56°C. Samples were then centrifuged 
and 1 ml of the supernatant was transferred to a 10 ml 
tube containing 5 ml of Qiagen Buffer PB. The DNA 
was then bound, washed and resuspended in 50 ll of  
TE buffer using the Qiagen Qiaquick PCR Purification 
Kit. A negative control was run with each set of 
extractions to detect possible contamination. 

A 354 bp sequence of cytochrome-b was isolated 
using primers RF14724 (5¢-CAACTATAAGAACAT

TAATGACC-3¢) and RF15149 (5¢-CTCAGAATGA

TATTTGTCCTC-3¢; 441 bp PCR product), modified 
from L14724 and H15149, respectively (Irwin et al. 
1991). Because the nasal turbinate samples were often 
degraded with DNA fragment lengths potentially 
shorter than the desired products, a set of shorter 
overlapping PCR products was used to generate the 
same DNA sequence: RF14724-RFCYTB3R and 
RFCYTBBF-RF15149 (RFCYTB3R: 5¢-GAT

GCTCCGTTTGCATGTATG-3¢; start position 263 of 
cytochrome-b, 263 bp PCR product, and RFCYTBBF: 
5¢-CTGCCGAGACGTTAACTATGGCTG-3¢; start 
position 224 of cytochrome-b, 218 bp PCR product). 

PCR reactions were 25 ll total volume and con
sisted of 2 ll of tissue derived DNA or 5 ll of fecal or 
nasal turbinate derived DNA, 2.5 ll of 10  · PCR 
buffer, 2.0 ll of 10 mM dNTPs, 1.5 ll of 25  mM  
MgCl2, 1  ll each of 10 lM forward and reverse prim

ers, 0.3 ll of 5 U/ll Taq and remainder water. PCR 
cycle conditions were 94°C for 3 min; then 45 cycles of 
94°C for 30 sec, 50°C for 30 sec and 72°C for 45 sec; 
followed by 10 min at 72°C. PCR products were run on 
agarose gels and extracted using Ultraclean 15 DNA 
purification kits (Mo Bio, Solana Beach, CA) or were 



purified using multiscreen PCR micro 96 plates (Mil

lipore Corporation, Billerica, MA). Dye terminator 
sequencing reactions were performed for each PCR 
product for each primer using Beckman DTCS re
agents and products were sequenced in both directions 
on a Beckman CEQ2000XL capillary sequencer (Ful
lerton, CA) or using Applied Biosystems reagents with 
products sequenced on an ABI 3730 capillary se
quencer (Applied Biosystems, Foster City, CA). Se
quences were deposited in the EMBL/Genbank/DDBJ 
nucleotide database (Accession Nos. EF064207– 
EF064220). 

Data analysis 

Due to the matrilineal inheritance of mtDNA, we in
cluded only one specimen per litter whenever such 
information was known. Within each population, hap
lotype and nucleotide diversity (Watterson 1975) were 
estimated using Arlequin 2.000 (Schneider et al. 2000). 
Relationships among haplotypes were described using 
a minimum spanning tree. To assess differentiation 
among population groupings, we conducted a series of 
hierarchical analyses of molecular variance (AMOVA; 
Excoffier et al. 1992) using Arlequin 2.000. These in
cluded one temporal analysis (historic vs. modern 
populations) and two spatial analyses: (1) mountain 
(Historic Sierra Nevada, Historic Cascades, Modern 
Cascades) versus lowland (Historic Sacramento Valley, 
Modern Sacramento Valley, Bay Area, Southern Cal
ifornia); and (2) mountain, Sacramento Valley (His

toric and Modern), and other lowland populations 
(Bay Area, Southern California). Because differentia
tion among mountain populations was hypothesized to 
be low (i.e., if originating from a single population) 
relative to that among lowland populations (potentially 
high due to multiple source populations), we also used 

Arlequin to generate a matrix of pairwise FST esti

mates (Weir and Cockerham 1984) among all popula
tions based upon haplotype frequencies. Pairwise F ST 

were also estimated to incorporate pairwise differences 
between haplotypes (Nei and Li 1979). Significance (a 
= 0.05) was calculated using 1000 permutations and 
then corrected for multiple tests via the sequential 
Bonferroni method (Rice 1989). Haplotypes based on 
homologous sequences from 41 red foxes widely dis
tributed throughout Europe (Frati et al. 1998; Gen

bank Accession Nos. Z80957–Z80997) were used to 
help elucidate nonnative ancestry among California 
red foxes. Although we did not necessarily expect the 
exotic foxes in our study to have been introduced di
rectly from Europe, the species originated and evolved 
primarily in Eurasia (Kurtén 1980), making a Euro
pean sample a useful reference to identify foreign 
haplotypes. 

Results 

We obtained unambiguous cytochrome-b sequences 
from 75 of the 85 specimens (88.2%). To be conser
vative, specimens yielding only partial sequences were 
not included in the analyses. Sequences from two 
specimens were excluded because they were litter-
mates of other specimens that amplified successfully 
(Appendix Table 4). The 73 remaining sequences had 
17 variable sites (13 transitions, 4 transversions) in 
354 bp and defined 14 haplotypes (Table 1; Fig. 3). 
Haplotypes differed from haplotype A by up to 6 
substitutions. Three haplotypes (G, M, N) shared a 
signature of three distinctive polymorphisms with the 
European haplotypes (Fig. 3), whereas the remaining 
haplotypes differed by one or two substitutions from 
haplotype A. 

Table 1 Occurrence of 14 mitochondrial cytochrome-b haplotypes in three historic (pre-1950) and four modern (post-1950) California 
red fox populations 

Populationa n Haplotypes 

A C D E F G H I J K M N O P 

Historic 
SN 18 13 1 1 – – – – – 2 – – – 1 – 
CS  4  3  1 –  – – – – – – – –  – – –  
SV  7  1  – 5  – – – – – – – –  – – 1  

Modern 
CS  9  9  – –  – – – – – – – –  – – –  
SV 12 1 – 10 – – 1 – – – – – – – – 
BA 10 – – – – 6 1 1 – – – 1 1 – – 
SC 13 – – – 1 2 2 – 1 – 6 – 1 – – 

a SN = Sierra Nevada, CS = Cascades, SV = Sacramento Valley, BA = San Francisco Bay Area, SC = Southern California 



  

 

 
 

Fig. 3 Variable sites in the 354 bp region of the cytochrome-b 
gene in red foxes from California (this study) and Europe 
(n = 41; Frati et al. 1998). Note that the 17 European haplotypes 
shared bases in positions 168, 174 or 219. California haplotypes 
G, M, and N also shared these bases, in contrast with other 
California haplotypes 

Only haplotypes A and D (differing by one substi
tution) occurred in both high-elevation and lowland 
populations, and the remaining 12 haplotypes were 
exclusive to either the mountains or the lowlands 
(Table 1; Fig. 4). Haplotype A accounted for 25 of 31 
(80.6%) mountain specimens and two of 42 (4.8%) 
lowland specimens (both from the Sacramento Valley). 
Haplotype D accounted for one of 31 (3.2%) mountain 
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Fig. 4 Minimum spanning tree illustrating relationships among 
14 cytochrome-b haplotypes. Circles indicating haplotypes are 
shown in proportion to their frequency in the sample and color-
coded with respect to their origin in mountain (white), 
Sacramento Valley (gray), or other lowland (black) population. 
Lines indicate unsampled haplotypes 

specimens and 15 of 42 (35.7%) lowland specimens, all 
from the Sacramento Valley. All three haplotypes with 
the European signature were restricted to lowland 
populations. Of the eight haplotypes that were unique 
to a single population, six were represented by a single 
individual. Haplotype K occurred only in the six 
foxes from Santa Barbara County within the Southern 
California population. 

All nine specimens in the Modern Cascades (i.e., 
Lassen Peak) population had haplotype A, which was 
also the most common haplotype in the Historic Cas
cades (75%) and Historic Sierra Nevada (72.2%) 
populations. Three haplotypes occurred in the Modern 
Sacramento Valley population but D was the most 
prevalent (83.3%). Despite the geographic proximity 
of the Sacramento Valley and the Bay Area, they 
shared only haplotype G, which was present in one 
sample from each population. The Bay Area and 
Southern California populations shared three haplo
types and these populations had the greatest haplotype 
and nucleotide diversity (Table 2). 

The temporal AMOVA allocated no significant 
proportion of the genetic variation to time period 
(historic vs. modern) (FCT = –0.07; P = 0.64). The 2
group spatial AMOVA allocated 30% of the genetic 
variation to that between the mountain and lowland 
groups of populations (FCT = 0.30; P = 0.03) and 20.9% 
of the variability among the populations to that within 
the 2 groups (FSC = 0.30; P<0.001). The 3-group spatial 
AMOVA allocated 45% of the genetic variation to 
that among the mountain, Sacramento Valley, and 
other lowland population groupings (FCT = 0.45; P = 
0.01) and only 4.5% of the variability among popula
tions within groups (FSC = 0.08; P<0.001). Thus, the 
3-group model was a considerably better fit to the data 
than the 2-group model. Pairwise FST and F ST values

Table 2 Haplotype and nucleotide diversity associated with a 
354-bp sequence of the mitochondrial cytochrome-b gene among 
seven populations 

Populationa n	 Haplotype SD Nucleotide SD 
diversity diversity 

Historic 
SN 18 0.48 0.14 0.0018 0.0016 
CS 4 0.50 0.27 0.0028 0.0028 
SV 7 0.52 0.21 0.0016 0.0017 

Modern 
CS 9 0 0 0 0 
SV 12 0.32 0.16 0.0027 0.0022 
BA 10 0.67 0.16 0.0087 0.0056 
SC 13 0.78 0.10 0.0100 0.0061 

a SN = Sierra Nevada, CS = Cascades, SV = Sacramento Val
ley, BA = San Francisco Bay Area, SC = Southern California 



Table 3 Pairwise FST and FST estimates among three historic (pre-1950) and four modern (post-1950) California red fox populations 

Historic SN Historic CS Historic SV Modern CS Modern SV Modern BA Modern SC 

Historic SNa 

Historic CS 
Historic SV 
Modern CS 
Modern SV 
Modern BA 
Modern SC 

– 
–0.10 
0.42* 
0.06 
0.54* 
0.44* 
0.38* 

–0.08 
– 
0.42 
0.22 
0.60* 
0.39* 
0.31* 

0.51* 
0.51 
– 
0.73* 

–0.06 
0.40* 
0.33* 

0.00 
0.22 
0.75* 
– 
0.80* 
0.65* 
0.56* 

0.45* 
0.41* 

–0.06 
0.54* 
– 
0.51* 
0.44* 

0.36* 
0.18 
0.40* 
0.31* 
0.40* 
– 
0.18 

0.27* 
0.11 
0.32* 
0.21 
0.33* 
0.09 
– 

Below diagonal measures are based solely on haplotype frequencies (FST); above diagonal estimates incorporate pairwise differences in 
sequence divergence (FST) 
a SN = Sierra Nevada, CS = Cascades, SV = Sacramento Valley, BA = San Francisco Bay Area, SC = Southern California 

* significant at a = 0.05 using sequential Bonferroni correction for multiple tests (Rice 1989) 

were consistent with these analyses, indicating no sig
nificant differentiation among the historic and modern 
high-elevation populations, but significant and sub
stantial genetic differentiation between these popula
tions and the Sacramento Valley populations 
(Table 3). Likewise, the modern and historic Sacra
mento Valley populations were not significantly dif
ferent from one another, but both differed significantly 
from the other 2 modern lowland populations. 

Discussion 

Our study assessed the genetic structure among 
mountain and lowland red fox populations in Califor
nia before and after a marked range increase by the 
lowland populations. High phylogenetic divergence 
was expected between the mountain and lowland 
populations due to their different hypothesized evolu
tionary origins. The Sierra Nevada red fox, along with 
the Cascade and Rocky Mountain red foxes (V. v. 
cascadensis and V. v. macroura, respectively), likely 
derived from a lineage isolated south of the continental 
ice sheets during the Wisconsonian glaciation. When 
the glaciers retreated this southern refugial population 
became isolated in the subalpine and boreal habitats of 
the western mountain ranges (Aubry 1983). In con
trast, the modern-day low-elevation red foxes in Cali
fornia are widely believed to have originated from 
various populations throughout eastern and northern 
North America, which may include European lineages 
due to introductions in the 17th and 18th centuries 
(Churcher 1959; Roest 1977; Aubry 1983; Lewis et al. 
1999; Kamler and Ballard 2002). 

The cytochrome-b gene was chosen over the more 
variable control region to make use of a number of 
previously published cytochrome-b sequences for 
comparison (Geffen et al. 1992; Frati et al. 1998). Even 
with the small sample sizes available, cytochrome-b 

provided sufficient resolution to preliminarily assess 
structure among California red fox populations. In fact, 
the diversity of haplotypes in California was compa

rable that observed for the Mediterranean Basin 
(Fig. 3; Frati et al. 1998). However, inferences based 
on mitochondrial DNA reflect only matrilineal history 
and gene flow. Juvenile male red foxes are more likely 
to disperse than females and usually travel two to three 
times as far (20–30 km for males, 10–15 km for fe
males), although occasional instances of both males 
and females dispersing >70 km (the distance between 
Lassen Peak and the Sacramento Valley) have been 
documented (Phillips et al. 1972; Storm et al. 1976; 
Voigt 1987; Rosatte 2002). Therefore, levels of nuclear 
gene flow may be higher than revealed by analysis of 
mtDNA. With this caveat in mind, however, several 
important findings emerged from our study, as dis
cussed below. 

Population differentiation 

Analysis of cytochrome-b haplotype frequencies found 
no significant genetic differentiation between modern 
and historic populations within the range of the Sierra 
Nevada red fox in California. All nine of the modern 
Cascades specimens from Lassen Peak had the haplo
type (A) that was the most abundant haplotype in the 
Cascades and Sierra Nevada populations in California 
nearly a century earlier. The prominence of this hap
lotype in the mountain populations and its scarcity 
among the lowland populations is strong evidence that 
a remnant of the native, state-threatened Sierra Ne

vada red fox persists in the Lassen Peak region. The 
lack of haplotype diversity within this modern popu
lation is consistent with high levels of genetic drift and 
loss of rare alleles as would be expected within small, 
isolated populations (Wright 1978), as the Lassen Peak 
population appears to be (Perrine 2005). We cannot, 
however, exclude the possibility that the Lassen Peak 



individuals were from a single family group, although 
the temporal and spatial breadth of the sample makes 
this unlikely. The low levels of haplotype and nucleo
tide diversity observed in all three mountain fox pop
ulations are consistent with other species thought to 
exist in refugial Sierra Nevada populations (e.g., 
Wisely et al. 2004a). The lack of genetic differentiation 
between California’s Cascade and Sierra Nevada pop
ulations supports Grinnell et al.’s (1937) characteriza
tion of these populations as the same subspecies, as 
opposed to the original inclusion of the California 
Cascades population with the more northerly Cascade 
Range populations in V. v. cascadensis (Merriam 1900; 
Grinnell et al. 1930). Moreover, haplotype O, which 
occurred in one fox from the historic Sierra Nevada 
population and which differs from haplotype A by a 
single substitution, is the dominant haplotype in mod

ern Cascade foxes from Washington (Perrine 2005), 
suggesting little differentiation between these two 
currently recognized subspecies. 

In contrast to the close relationships among moun

tain populations, FST estimates between mountain and 
lowland populations in California exceeded 0.25 in all 
cases (range = 0.31–0.80), indicating ‘‘very great’’ 
divergence (Wright 1978). Specifically, the Modern 
Cascades population was highly divergent from all 
lowland populations (FST range: 0.56–0.80). Thus, we 
conclude that the modern-day Lassen Peak population 
should be managed as the native, state-threatened 
Sierra Nevada red fox, in the absence of any evidence 
to the contrary. 

Also in contrast to the mountain populations, 
lowland red fox populations in California did not 
constitute a single interbreeding population. The 
Sacramento Valley population, which is the original 
lowland population in California (Grinnell et al. 
1937), was clearly distinct from the other two recently 
founded lowland populations (Lewis et al. 1999). This 
observation supports the previous suggestion (CDFG 
1999) that the San Francisco Bay Area and Southern 
California populations were not founded by foxes 
dispersing from the Sacramento Valley. Three of the 
eight haplotypes in the Bay Area and Southern 
California populations (30% and 23% of samples, 
respectively) shared the 3 bp signature present in the 
European fox samples but absent from the historic 
populations in California’s mountains and Sacra

mento Valley. The presence of this signature does 
not necessarily indicate an anthropogenic transloca
tion from Europe to California in the past century, as 
none of the complete haplotypes matched any of the 
17 European haplotypes reported by Frati et al. 
(1998). It is possible that these haplotypes evolved in 

northern or eastern North America, whose red fox 
populations are thought to have derived from Eur
asian lineages during the Pleistocene (Aubry 1983), 
and were then translocated to California. Although 
one specimen (CSU-2589) from the modern Sacra
mento Valley population had the European signature, 
no other haplotypes were shared between the Sac
ramento Valley and the other lowland populations. 
The absence of haplotypes A and D in the San 
Francisco Bay Area and Southern California popu
lations indicates that these populations were not 
founded by individuals dispersing from the Sacra
mento Valley. 

Our finding that the red fox populations in the Bay 
Area and Southern California exhibited relatively low 
genetic differentiation is in agreement with a previ
ous analysis of three California coastal red fox pop
ulations using three microsatellite loci and a 240 bp 
portion of the mitochondrial control region (Fitzpat
rick 1999). Low FST estimates may indicate high gene 
flow, but can also arise due to recent anthropogenic 
introductions from similar source populations (Fitz
patrick 1999) or high within-population genetic 
diversity (e.g., Whitlock and McCauley 1999). Our 
study and Fitzpatrick’s both found substantial genetic 
diversity within these recently founded lowland red 
fox populations, which is consistent with multiple 
introductions from several source populations (Lewis 
et al. 1999). 

Our evidence that the Sacramento Valley population is 
more similar to the native mountain red fox than to the 
other lowland populations in California contradicts pre
vious ideas about this population. Grinnell et al. (1937: 
385–386) found the presence of red fox in the Sacramento 
Valley ‘‘altogether anomalous’’ considering the boreal 
habitats favored by the native red fox, leading these au
thors to surmise that the population had been ‘‘planted 
there by man’’ by the late 1880s. Their hypothesis was 
supported by morphological evidence indicating that the 
Sacramento Valley foxes more closely resembled speci
mens from central North America (V. v. regalis) than  
specimens from the Sierra Nevada (Roest 1977). How

ever, the fact that the dominant haplotype in the Sacra
mento Valley differs by only a single substitution from that 
in the mountain populations, but by up to seven substi
tutions from haplotypes in the other low elevation popu
lations, clearly indicates that the Sacramento Valley foxes 
are more closely related to the native mountain foxes than 
to the other lowland populations. Moreover, the occur
rence of shared haplotypes between the mountain and 
Sacramento Valley populations suggests the possibility 
that the observed differences in haplotype frequencies 
could have arisen solely via drift over the past century. 

http:0.56�0.80
http:0.31�0.80


Threats of hybridization 

It has been hypothesized that mountain red fox are 
specialists that became restricted to high-elevation 
habitats following the retreat of the glaciers at the end of 
the Pleistocene, and that lowland red fox are dietary and 
habitat generalists that could potentially disperse into 
these mountainous areas and threaten the persistence of 
mountain red fox via hybridization and resource com

petition (e.g., Aubry 1983; Lewis et al. 1995; Kamler and 
Ballard 2002). Of all the lowland populations repre
senting such a threat to the Lassen Peak population, the 
Sacramento Valley region is the closest geographically, 
and therefore the most likely source of lowland immi

gration. However, the pairwise FST value between the 
Lassen region and the modern Sacramento Valley 
population was the largest of any in this study, indicating 
low or nonexistent gene flow. It is unclear what has 
prevented substantial immigration from the valley to 
the mountains, or vice versa, over the past century. Red 
foxes are mobile and highly adaptable generalists, and 
few barriers to dispersal have been identified other than 
major rivers and water courses (Storm et al. 1976; Voigt 
1987). Yet, similar to California, an unidentified barrier 
exists between mid-elevation and high-elevation red fox 
populations in Yellowstone National Park (Swanson 
et al. 2005). In the Cascades of Washington, a dense belt 
of conifer forest separates the lowland red fox from the 
native mountain red fox, but the forest itself is probably 
not the barrier to gene flow as this habitat could easily be 
crossed by red foxes (Aubry 1984). 

The barrier restricting mountain red foxes to high 
elevation habitats may also prevent lowland red foxes 
from dispersing into or establishing there. For exam

ple, dispersing red foxes may select habitats that are 
similar to their natal habitats, as has been hypothesized 
to account for habitat-specific population structure in 
coyotes (Canis latrans; Sacks et al. 2004, 2005) and gray 
wolves (Canis lupus; Carmichael et al. 2001; Geffen 
et al. 2004). Habitat-specific behavioral differences, 
including differences in social structure, dispersal rates 
and dispersal distances, likely contribute to the signif
icant genetic structure observed among urban red fox 
populations and between the urban and adjacent rural 
populations (Robinson and Marks 2001; Simonsen 
et al. 2003; Wandeler et al. 2003a). Alternatively, the 
barrier could be extrinsic, such as the presence of 
coyotes or other dominant competitors between the 
mountain and lowland red fox populations. Coyotes 
can be an important source of mortality for smaller 
canids (Sargeant and Allen 1989; Ralls and White 1995; 
Palomares and Caro 1999; Farias et al. 2005). Spatial 
avoidance of coyotes by red foxes has led to the ele

vational stratification of the two species in regions of 
Alberta (Dekker 1989) and Maine (Fuller and Harri

son 2006) and possibly the Lassen Peak region of 
California (Perrine 2005). However, coyotes and red 
foxes co-occur at lower elevations in California (e.g., 
Ralls and White 1995), and there is no direct evidence 
that the presence of coyotes is the primary factor 
separating lowland from mountain red fox populations. 
The available genetic evidence suggests that the barrier 
between mountain and lowland red fox populations has 
existed for more than a century, although the mecha

nisms that created and maintain it are unclear. 
Our results underscore the need for several further 

investigations. Analyses employing nuclear markers are 
needed to quantify the extent of male-biased gene flow 
between the lowlands and the mountains, and to detect 
additional private alleles within these populations. 
Incorporating historic and modern specimens from the 
Cascade Range and Rocky Mountains could resolve 
longstanding questions about the shared origin of these 
three mountain subspecies (Aubry 1983) and indicate 
whether there is genetic support for the proposal that 
they be relegated to a single subspecies (Roest 1979). 
Likewise, the acquisition of additional lowland speci
mens from throughout California, available due to 
control operations to protect native species, could more 
fully elucidate current patterns of gene flow and genetic 
structure among these populations. Determining the 
origins of the lowland populations, especially the Sac
ramento Valley population, would require incorporat
ing samples from a broader geographic area to include 
multiple potential source populations and utilizing 
higher-resolution markers such as the mitochondrial 
control region. 

Management implications 

Several western states, including California, Oregon, 
Washington, Utah, and Idaho, likely host both native 
mountain and exotic lowland red fox populations (Au

bry 1984; Kamler and Ballard 2002). However, only 
California has separate management strategies for 
mountain and lowland populations, under the assump

tion that one is native and the other exotic (Kamler and 
Ballard 2002). Although the elevation boundary of 
1066 m (3500 ft) used to delimit these populations in 
California is arbitrary and the true boundary likely 
varies with latitude, our findings indicate that this 
operational criterion successfully separates high-eleva
tion from lowland populations. Unfortunately, no 
specimens from the Sierra Nevada have been collected 
since 1941. In fact, it is unclear whether any red foxes 
currently inhabit the Sierra Nevada. Recent surveys 



using baited camera traps and track plates failed to de
tect red fox anywhere in the Sierra Nevada (Zielinski 
et al. 2005), including historic population centers such as 
Sequoia and Kings Canyon National Parks (Green 
2006). Additional targeted surveys are necessary in 
these areas, preferably involving the collection of ge
netic samples via hair snares and the collection of feces. 
Collaborative efforts with state and federal agencies 
should be established so that any available specimens 
(e.g., road-kills) within the historic range of the Sierra 
Nevada red fox are collected for analysis. 

The distribution of mountain red fox appears to be 
extremely limited in California and their population 
density and distribution appear to have declined con
siderably in recent decades. We found no evidence that 
this decline is due to competition with or displacement 
by the exotic red fox; however, without evidence from 
nuclear markers, genetic introgression cannot be ruled 
out. Even if hybridization has not occurred to date, the 
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Table 4 Red fox specimens obtained for this study (n = 85) 

threat of future immigration from lowland red fox 
populations, either from the west (Lewis et al. 1995) or  
from the east (Kamler and Ballard 2002), should not be 
discounted. The distribution and range expansion of 
these exotic populations should be carefully moni

tored, not just for the benefit of the native red fox but 
also for numerous other native species that may be 
negatively impacted (Lewis et al. 1999). 
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Population California county Sample ID Year Collection Institution PCR 
elevation (m) 

Historic CS Lassen MVZ-34984 1925 1850 MVZ OK 
Lassen MVZ-35280 1925 1850 MVZ OK 
Siskiyou MVZ-3296 1904 2135 MVZ Fail 
Siskiyou MVZ-68857 1934 2050 MVZ OK 
Siskiyou MVZ-68858 1934 2050 MVZ OK 

Historic SN Mariposa MVZ-23696 1916 1350 MVZ OK 
Mono MVZ-32800 1921 2950 MVZ OK 
Mono MVZ-32809 1922 3000 MVZ OK 
Mono MVZ-33381 1922 3050 MVZ OK 
Mono MVZ-33382 1922 3050 MVZ OK 
Mono MVZ-33472 1923 3000 MVZ OK 
Mono MVZ-33473 1923 3000 MVZ OK 
Mono MVZ-33474 1923 3050 MVZ OK 
Mono MVZ-33586 1923 3100 MVZ OK 
Mono MVZ-33587 1923 3100 MVZ OK 
Mono MVZ-41004 1928 2950 MVZ OK 
Mono MVZ-41468 1928 2950 MVZ OK 
Mono MVZ-44097 1929 2950 MVZ OK 
Mono MVZ-46663 1929 2950 MVZ OK 
Nevada MVZ-95401 1941 1850 MVZ OK 
Tulare MVZ-16251 1911 3000 MVZ OK 
Tulare MVZ-16252 1911 3000 MVZ OK 
Tulare MVZ-16374 1911 2450 MVZ OK 

Historic SV Colusa MVZ-33550 1923 <50 MVZ OK 
Colusa MVZ-36492 1926 <50 MVZ OK 
Colusa MVZ-36493 1926 <50 MVZ Fail** 
Colusa MVZ-36494 1926 <50 MVZ OK 
Colusa MVZ-36495 1926 <50 MVZ OK** 
Colusa MVZ-36496 1926 <50 MVZ OK** 
Colusa MVZ-36497 1926 <50 MVZ OK 
Colusa MVZ-46865 1926 <50 MVZ Fail** 
Colusa MVZ-70285 1935 <50 MVZ OK 
Glenn MVZ-44095 1929 <50 MVZ OK 
Tehama MVZ-115439 1948 50 MVZ OK 



Table 4 continued 

Population California county Sample ID Year Collection Institution PCR 
elevation (m) 

Modern BA Alameda LF-42 * 1995 350 MVZ OK 
Alameda REJ-1535 1996 50 MVZ OK 
Alameda REJ-1537 1996 50 MVZ OK 
Alameda REJ-1540 1996 50 MVZ OK 
Marin MVZ-175993 1982 <50 MVZ OK 
San Joaquin REJ-1624 1997 <50 MVZ OK 
San Mateo REJ-1555 1996 100 MVZ OK 
San Mateo REJ-1573 1996 100 MVZ OK 
San Mateo REJ-1575 1996 100 MVZ OK 
San Mateo REJ-1588 1997 50 MVZ OK 

Modern CS Tehama F01 1998 1900 J. Perrine OK 
Tehama F02 2000 1700 J. Perrine OK 
Shasta F03 2000 2550 J. Perrine OK 
Tehama F05 2000 1750 J. Perrine OK 
Tehama M01 1998 1750 J. Perrine OK 
Shasta Scat 8 1999 2600 J. Perrine Fail 
Tehama Scat 12 1999 2100 J. Perrine OK 
Shasta Scat 16 1999 2550 J. Perrine OK 
Tehama Scat 17 1999 2050 J. Perrine OK 
Shasta Scat 21 1998 2650 J. Perrine OK 
Tehama Scat 40 1998 2100 J. Perrine Fail 
Shasta Scat 330 2001 2050 J. Perrine Fail 
Shasta Scat 333 2001 2050 J. Perrine Fail 
Shasta Scat 404 2001 2000 J. Perrine Fail 

Modern SC Fesno FRC-027 1997 <200 FRVC OK 
Kern FRC-061 1999 <200 FRVC OK 
Kern R003 * 2003 50–150 MVZ OK 
Kings FRC-087 2000 <200 FRVC OK 
Los Angeles LA-85700 1988 250–400 LA NHM Fail 
Los Angeles LA-87636 1990 250–400 LA NHM OK 
Los Angeles LA-5 * 2002 <150 LA NHM OK 
Los Angeles LA-87624 1989 <150 LA NHM OK 
Santa Barbara SB-1 * 2002 <150 SB MNH OK 
Santa Barbara SB-2 * 1993 <150 SB MNH OK 
Santa Barbara SB-3 * 1990 <150 SB MNH OK 
Santa Barbara SB-4 * 1994 <150 SB MNH OK 
Santa Barbara SB-5 * 1995 <150 SB MNH OK 
Santa Barbara SB-6 * 1996 <150 SB MNH OK 

Modern SV Butte CSU-2530 1966 <100 CSUC OK 
Butte CSU-3943 1970 <150 CSUC OK 
Butte CSU-1 * 1995 <100 CSUC Fail 
Butte X-2 2001 <50 R. Alessio OK 
Colusa CSU-2588 1968 <50 CSUC OK 
Colusa X-1 2000 <50 J. Perrine OK 
Glenn CSU-2589 1969 <100 CSUC OK 
Glenn CSU-5128 1973 <100 CSUC OK 
Glenn PW-1 2004 100 P. Weliver OK 
Napa CSU-2591 1968 <350 CSUC OK 
Tehama CSU-3504 1970 <100 CSUC OK 
Tehama H-1 * 1986 <350 HSU OK 
Yolo W-1 2002 50 J. Perrine OK 

Collection elevations rounded to the nearest 50 m. Institution abbreviations are as follows: CSUC = California State University, Chico; 
FRVC = Fort Roosevelt Vertebrate Collection, Hanford; HSU = Humboldt State University, Arcata; LA NMH = Los Angeles 
County Natural History Museum; MVZ = Museum of Vertebrate Zoology, UC Berkeley; SB NHM = Santa Barbara Natural History 
Museum. Other names indicate specimens not from official collections, such as field study animals or roadkills. PCR indicates whether 
a specimen yielded a usable sequence (‘‘OK’’; n = 75) or not (‘‘fail’’; n = 10; also includes scats that could not be reliably differentiated 
from other individuals via microsatellites) 

* specimen not yet assigned an official number by the institution 

** specimen excluded from analysis because the animal was a known littermate of another specimen yielding a usable sequence 
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