
ORIGINAL ARTICLE Reproductive genetics

Genetic evidence that lower circulating
FSH levels lengthen menstrual cycle,
increase age at menopause and impact
female reproductive health
Katherine S. Ruth, Robin N. Beaumont, Jessica Tyrrell, Samuel E. Jones,
Marcus A. Tuke, Hanieh Yaghootkar, Andrew R. Wood,
Rachel M. Freathy, Michael N. Weedon, Timothy M. Frayling, and
Anna Murray*

Genetics of Complex Traits, University of Exeter Medical School, RILD Level 3, Royal Devon and Exeter Hospital,
Barrack Road, Exeter EX2 5DW, UK

*Correspondence address. E-mail: a.murray@exeter.ac.uk

Submitted on September 19, 2015; resubmitted on October 27, 2015; accepted on November 25, 2015

study question: How does a genetic variant in the FSHB promoter, known to alter FSH levels, impact female reproductive health?

summary answer: The T allele of the FSHB promoter polymorphism (rs10835638; c.-211G.T) results in longer menstrual cycles and
later menopause and, while having detrimental effects on fertility, is protective against endometriosis.

what is known already: The FSHB promoter polymorphism (rs10835638; c.-211G.T) affects levels of FSHB transcription and, as a
result, circulating levels of FSH. FSH is required for normal fertility and genetic variants at the FSHB locus are associated with age at menopause and
polycystic ovary syndrome (PCOS).

study design, size, duration: We used cross-sectional data from the UK Biobank to look at associations between the FSHB
promoter polymorphism and reproductive traits, and performed a genome-wide association study (GWAS) for length of menstrual cycle.

participants/materials, setting, methods: We included white British individuals aged 40–69 years in 2006–2010, in the
May 2015 release of genetic data from UK Biobank. We tested the FSH-lowering T allele of the FSHB promoter polymorphism (rs10835638;
c.-211G.T) for associations with 29, mainly female, reproductive phenotypes in up to 63 350 women and 56 608 men. We conducted a
GWAS in 9534 individuals to identify genetic variants associated with length of menstrual cycle.

main results and the role of chance: The FSH-lowering T allele of the FSHB promoter polymorphism (rs10835638; MAF
0.16) was associated with longer menstrual cycles [0.16 SD (c. 1 day) per minor allele; 95% confidence interval (CI) 0.12–0.20;
P ¼ 6 × 10216], later age at menopause (0.13 years per minor allele; 95% CI 0.04–0.22; P ¼ 5.7 × 1023), greater female nulliparity [odds
ratio (OR) ¼ 1.06; 95% CI 1.02–1.11; P ¼ 4.8 × 1023] and lower risk of endometriosis (OR ¼ 0.79; 95% CI 0.69–0.90; P ¼ 4.1 × 1024).
The FSH-lowering T allele was not associated with other female reproductive illnesses or conditions in our study and we did not replicate associa-
tions with male infertility or PCOS. In the GWAS for menstrual cycle length, only variants near the FSHB gene reached genome-wide significance
(P , 5 × 1029).

limitations, reasons for caution: The data included might be affected by recall bias. Cycle length was not available for 25% of
women still cycling (1% did not answer, 6% did not know and for 18% cycle length was recorded as ‘irregular’). Women with a cycle length
recorded were aged over 40 and were approaching menopause; however, we did not find evidence that this affected the results. Many of the
groups with illnesses had relatively small sample sizes and so the study may have been under-powered to detect an effect.

wider implications of the findings: We found a strong novel association between a genetic variant that lowers FSH levels and
longer menstrual cycles, at a locus previously robustly associated with age at menopause. The variant was also associated with nulliparity and
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endometriosis risk. These findings should now be verified in a second independent group of patients. We conclude that lifetime differences in
circulating levels of FSH between individuals can influence menstrual cycle length and a range of reproductive outcomes, including menopause
timing, infertility, endometriosis and PCOS.

study funding/competing interest(s): None.

trial registration number: Not applicable.

Key words: FSH b subunit / menstrual cycle / menopause / endometriosis / fertility

Introduction
FSH is a key pituitary hormone, which stimulates maturation of oocytes
and is a biomarker of ovarian reserve. FSH is a heterodimer comprised a
hormone-specificb-chain (FSH-b) associated with ana-chain shared by
other members of the glycoprotein hormone family (Nagirnaja et al.,
2010). The anterior pituitary produces FSH, with transcription of FSHB
being the rate-limiting step for FSH production. FSH stimulates target
cells by binding to the FSH receptor (FSHR), a G-protein-coupled recep-
tor (Fan and Hendrickson, 2005), promoting follicle maturation and es-
trogen production in women, and Sertoli cell proliferation and
spermatogenesis in men (Nagirnaja et al., 2010).

Rare mutations in the FSHB gene cause truncation of the FSH-b
protein and result in hypogonadism and primary amenorrhoea in
females (Layman et al., 1997; Matthews and Chatterjee, 1997;
Kottler et al., 2010) and, in a male, delayed puberty with azoospermia
(Phillip et al., 1998). Mouse models suggest that FSH is required for
normal fertility. Female Fshb knockout mice are infertile and fail to com-
plete normal folliculogenesis, while male knockouts remain fertile but
have reduced sperm counts, and infertility is observed in both male
and female transgenic mice overexpressing human FSH (Kumar et al.,
1997, 1999).

A polymorphism in the promoter of FSHB (rs10835638; c.-211G.T)
2211 bp upstream of the transcription start site is associated with
reduced FSH-b production in vitro and in human genetic studies.
In vitro, the T allele of the promoter polymorphism reduces expression
of a luciferase reporter gene (Hoogendoorn et al., 2003) and decreases
FSHB transcription in gonadotroph cells as a result of reduced LHX3
homeodomain transcription factor binding (Benson et al., 2013). The
T allele of rs10835638 (c.-211G.T) is associated with lower FSH
levels in men and women, and with higher LH and lower testicular
volume, sperm count, FSH/LH ratio, inhibin B and testosterone in
men, and has been found at a higher prevalence in infertile men (Grigor-
ova et al., 2008, 2010, 2011; Tuttelmann et al., 2012; La Marca et al.,
2013; Schuring et al., 2013; Simoni and Casarini, 2014; Ruth et al.,
2015). Genetic association studies have identified signals at the FSHB
locus associated with age at menopause (Stolk et al., 2012; Day et al.,
2015), polycystic ovary syndrome (PCOS) (Hayes et al., 2015) and
levels of LH (Hayes et al., 2015; Ruth et al., 2015).

Using the unique resource of the UK Biobank (Allen et al., 2014),
we show that a common genetic variant known to alter FSH levels
impacts a wide range of traits important to female reproductive
health, including fertility, endometriosis and menstrual cycle length. In
the first genome-wide association study (GWAS) for menstrual cycle
length, we identified the FSHB locus as the only signal associated
with this trait.

Materials and Methods

Source of data
The UK Biobank includes data for 503 325 people aged 40–69 years recruited
in 2006–2010 from across the UK (Allen et al., 2014). We analysed data from
the May 2015 interim release of imputed genetic data from UK Biobank, which
contains 73 355 667 single-nucleotide polymorphisms (SNPs), short insertion/
deletions and large structural variants in 152 249 individuals [http://www.
ukbiobank.ac.uk/wp-content/uploads/2014/04/imputation_documentation_
May2015.pdf (17 December 2015, date last accessed)]. UK Biobank invited 9.2
million people to participate, giving a response rate of 5.47% (Allen et al., 2012).
Participants were registered with the UK National Health Service and lived
within 25 miles of one of the 22 assessment centres. Participants answered
detailed questions about themselves, had measurements taken and provided
blood, urine and saliva samples. Two arrays with over 95% common marker
content were used to genotype the individuals. Approximately 50 000
people were genotyped on the UK BiLEVE array, and the remainder were gen-
otyped on the UK Biobank Axiom array.

Phenotypes
We derived reproductive phenotypes from the UK Biobank data (Supplemen-
tary data). Continuous phenotypes were age at birth of first and last child
(females only), age at menarche, age at natural menopause, lengthof menstrual
cycle, number of live births and number of children fathered (included to test
the association with male fertility). Menstrual cycle length was only recorded in
women who were still cycling and they were asked ‘How many days is your
usual menstrual cycle? (The number of days between each menstrual
period)’ (excluding those answering ,7 or .365; and if the answer was
,12 or .60, then the participant was asked to confirm). Cycle length was
not available for 25% of women still cycling (1% did not answer, 6% did not
know and for 18% cycle length was recorded as ‘irregular’).

To test assumptions of linearity, we analysed the binary outcomes early
menarche (lower 5% tail), early menopause (20–44 years), long menstrual
cycle (.31 days), short menstrual cycle (≤20 days) and multiple pregnancy
loss (.1 case).

We defined two infertility-related binary phenotypes; never pregnant
(females) and never fathered a child (males). We analysed female medical
conditions as binary outcomes, comparing people reporting a condition
(case) with those who did not (control). Medical conditions included
dysmenorrhoea, endometriosis, fibroids, irregular menstrual cycles, meno-
pausal symptoms, menorrhagia, ovarian cysts, PCOS, uterine polyps,
vaginal/uterine prolapse and breast, endometrial and ovarian cancer. As
more general indicators of gynaecological health, we included the medical
interventions bilateral oophorectomy or hysterectomy in our analysis.

Participants
In our analysis, we included individuals who both self-identified as white
British and were confirmed as ancestrally Caucasian by UK Biobank from
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genetic information (n ¼ 128 266). We calculated principal components
(PCs) for inclusion as covariates in our analyses using FlashPCA (Abraham
and Inouye, 2014). PCs were calculated in 120 286 unrelated participants
(as identified by UK Biobank) based on 95 535 independent, directly geno-
typed SNPs (pairwise r2 , 0.1). These SNPs had a minor allele frequency
(MAF) ≥2.5% and missing-ness ,1.5% across all participants in the May
2015 interim release of genetic data, and had a Hardy–Weinberg equilibrium
(HWE) P . 1 × 1026 within the white British participants.

Testing for associations of the FSHB promoter
polymorphism with reproductive phenotypes
We tested the FSH-lowering T allele of the FSHB promoter polymorphism
(rs10835638; c.-211G.T) for associations with reproductive phenotypes
(up to 63 350 women and 56 608 men). SNP rs10835638 was well
imputed in the data (imputation quality 0.995; HWE P ¼ 0.16; missing
rate ¼ 0.3%). All analyses were carried out in males or females as appropri-
ate (based on self-defined sex) using Stata (v13) (StataCorp LP, College
Station, TX, USA).

For continuous phenotypes, we transformed the phenotype by adjusting
for recruitment centre, age at recruitment and the first five PCs prior
to inverse-normalization. We performed linear regression of transformed
phenotype on imputed minor-allele dosages at SNP rs10835638 with geno-
typing chip as a covariate. We carried out a sensitivity analysis of the effect of
different transformations, e.g. inverse normalizing the trait prior to calculating
the residuals; however, this did not materially affect our results. Since the data
on length of menstrual cycle included a wide range of values (Supplementary
data, Figs S1 and S2), we carried out analyses on cycles from 21 to 35 days and
in women aged ,45 and ≥45 years at recruitment. We validated our results
for length of menstrual cycle by carrying out analyses in two randomly chosen,
equally sized groups. For age at menopause and age at menarche, we also ran
analysis using the phenotype definition from the ReproGen Consortium
GWAS (www.reprogen.org) (untransformed age at menopause between
40 and 60 years not adjusted for age, untransformed age at menarche) to
allow comparisons with published data (Stolk et al., 2012; Perry et al.,
2014a,b; Day et al., 2015).

For binary outcomes, we performed logistic regression of the phenotype
on minor-allele dosages at SNP rs10835638 including the first five PCs, re-
cruitment centre, age at recruitment and genotyping chip as covariates.

GWAS of length of menstrual cycle
We conducted a GWAS to identify genetic variants associated with length of
menstrual cycle (n ¼ 9534) using the BOLT-LMM algorithm (described in
Loh et al., 2015) from the freely available BOLT-LMM software package

[version 2.2, https://data.broadinstitute.org/alkesgroup/BOLT-LMM/
(17 December 2015, date last accessed)] to account for relatedness and
population structure. This allowed us to include related individuals who
were excluded from the association analysis of the FSHB promoter poly-
morphism (Supplementary data, Table SI). We transformed length of men-
strual cycle by adjusting for recruitment centre and age at recruitment
prior to inverse-normalization, and performed association testing while
adjusting for genotype chip. We filtered results on imputation quality .0.4,
HWE P . 1 × 1025, and MAF .0.1%, resulting in �16.8 million variants
that were tested. As the UK Biobank GWAS included more variants than a
standard GWAS and we did not have a replication sample available, we
chose a threshold of P , 5 × 1029, based on a Bonferroni correction for
the number of variants tested, rather than the conventional P , 5 × 1028.

Results

A common allele in the FSHB gene, known to
lower FSH levels, is associated with longer
length of menstrual cycle
The FSH-lowering T allele of the FSHB promoter polymorphism
(rs10835638; MAF 0.16) was associated with longer menstrual cycles
[0.16 SD (�1 day) per minor allele; 95% confidence interval (CI)
0.12–0.20; P ¼ 6 × 10216]. Of the reproductive traits tested (Tables I
and II), length of menstrual cycle was the most strongly associated with
rs10835638 (Fig. 1 and Table III). The SNP was also associated with
cycle length when we dichotomized data into women reporting a cycle
length of ≤20 days compared with those reporting an average length
of 28 days [odds ratio (OR) ¼ 0.70; 95% CI 0.54–0.90; P ¼ 5.1 ×
1023] (Fig. 1). There was no evidence for an association with a cycle
.31 days compared with the average (OR ¼ 1.16; 95% CI 0.92–1.47;
P ¼ 0.21). Results remained consistent when we analysed cycle
lengths of 21–35 days and when we split our analysis into women
aged ,45 or ≥45 years (Supplementary data, Fig. S3). Analysis after ran-
domly dividing the sample into two equal parts supported these results
(Supplementary data, Fig. S3).

Variants in or near the FSHB gene were the only ones that reached a
conservative level of genome-wide significance in the GWAS for menstrual
cycle length (Fig.2). The strongest associationwas for rs564036233G.GA,
a 1 bp insertion which was associated with longer cycles by 1 day (0.16 SD)
per minor allele (95% CI 0.12–0.20; P¼ 1.30 × 10216). The rs564036233
variant is in strong linkage disequilibrium (LD) with the promoter

.............................................................................................................................................................................................

Table I Description of cohort of unrelated individuals for continuous outcome measures.

Phenotype n Min Max Mean SD Lower quartile Median Upper quartile

Age at first birth (years)1 43 066 10 50 25.1 4.6 22 25 28

Age at last birth (years)1 43 008 15 50 30.0 4.8 27 30 33

Age at menarche (years)1 61 306 9 17 12.9 1.6 12 13 14

Age at natural menopause (years)1 27 996 18 65 49.9 4.5 48 50 53

Length of menstrual cycle (days)1 8870 7 300 26.8 6.2 25 28 28

Number of children fathered2 56 508 0 28 1.8 1.2 1 2 2

Number of live births1 63 306 0 22 1.8 1.2 1 2 2

Min, minimum; Max, maximum.
1Females only.
2Males only.
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polymorphism rs10835638 (r2¼ 0.82) and conditional analysis indicated
that rs564036233 and rs10835638 represent the same signal. The next
strongest signal in the GWAS was on Chromosome 9 in the NOTCH1
gene, but did not meet our genome-wide significance threshold and
would require further replication (rs3124592A.G; MAF 0.45; 0.08 SD
per minor allele; 95% CI 0.05–0.11; P ¼ 1.9 × 1028).

The FSHB allele associated with longer
cycle length is associated with later
menopause
The FSH-lowering T allele of rs10835638 was associated with later age at
menopause for those in the UK Biobank [0.13 years per minor allele
(ReproGen definition); 95% CI 0.04–0.22; P ¼ 5.7 × 1023]. There was
no association between rs10835638 and menopause age when we
dichotomized the phenotype into early menopause compared with
later menopause (Table III). The FSHB locus is known to be associated
with timing of menopause: in a GWAS conducted by the ReproGen con-
sortium, the signal at this locus (rs12294104) increases age at meno-
pause by 0.23 years (95% CI 0.16–0.29; P ¼ 1.5 × 10211) (Stolk
et al., 2012). Later menopause has been shown to be associated with
later age at last birth (Ayatollahi et al., 2003; Dorjgochoo et al., 2008)
and rs10835638 was also associated with later age at last birth [0.02
SD (�0.1 years) per T allele; 95% CI 0.00–0.04; P ¼ 4.2 × 1022].

Longer cycle length is not a general feature of
alleles associated with later age at menopause
We next tested the role of all 56 genetic variants associated with age
at menopause. In addition to the age at menopause signal at the FSHB
locus (rs12294104), only one of the other 55 published age at meno-
pause signals was nominally associated with cycle length (P . 0.05):
rs10734411 was associated at P ¼ 0.005 (Stolk et al., 2012; Perry
et al., 2014a,b; Day et al., 2015). For the 56 published menopause
SNPs, there was no correlation between the published effect estimates
for age at menopause and the effect estimates from our GWAS for men-
strual cycle length (R ¼ 0.064, P ¼ 0.63) (Fig. 3). The FSHB SNP was an
outlier in this plot, but removing it did not substantially affect the correl-
ation (R ¼ 20.027; P ¼ 0.84).

The FSHB allele associated with lower FSH
is also associated with an indicator of female
infertility
The FSH-lowering T allele of the FSHB promoter polymorphism
(rs10835638) was associated with female nulliparity, i.e. greater odds
of never being pregnant (OR ¼ 1.06; CI 1.02–1.11; P ¼ 4.8 × 1023)
(Fig. 1). The FSH-lowering allele was not associated with other possible
indicators of female infertility (later age at first birth and fewer live births)
or male infertility (number of children fathered) (P . 0.05) (Table III).

.............................................................................................................................................................................................

Table II Number of people included in binary outcome measures.

Phenotype Description Cases Controls n

Bilateral oophorectomy1 Yes versus no 5118 57 177 62 295

Dysmenorrhoea1 Yes versus none recorded 78 63 272 63 350

Breast cancer1 Breast cancer recorded on cancer registry versus none recorded 2810 60 540 63 350

Early menarche1 Youngest 5% age at menarche versus oldest 5% 3050 3050 6100

Early menopause1 Natural menopause at 20–45 versus 50–60 years 3058 17 805 20 863

Endometrial cancer1 Endometrial cancer recorded on cancer registry versus none recorded 342 63 008 63 350

Endometriosis1 Yes versus none recorded 993 62 357 63 350

Fibroids1 Yes versus none recorded 1819 61 531 63 350

Hysterectomy1 Yes versus no 4753 50 932 55 685

Irregular menstrual cycles1 Irregular menstrual cycles versus regular cycle 2490 10 316 12 806

Long menstrual cycle (versus average)1 Menstrual cycle .31 versus 28 days 237 3889 4126

Menopausal symptoms1 Yes versus none recorded 126 63 224 63 350

Menorrhagia1 Yes versus none recorded 348 63 002 63 350

Multiple pregnancy loss1 More than one pregnancy loss versus none 4047 33 191 37 238

Never fathered child2 Never fathered a child versus one or more children fathered 11 729 44 779 56 508

Never pregnant1 Never pregnant versus one or more pregnancies 9247 52 966 62 213

Ovarian cancer1 Ovarian cancer recorded on cancer registry versus none recorded 247 63 103 63 350

Ovarian cysts1 Yes versus none recorded 1 015 62 335 63 350

Polycystic ovary syndrome1 Yes versus none recorded 153 63 197 63 350

Short menstrual cycle (versus average)1 Menstrual cycle ≤20 versus 28 days 288 3889 4 177

Uterine polyps1 Yes versus none recorded 359 62 991 63 350

Vaginal/uterine prolapse1 Yes versus none recorded 653 62 697 63 350

1Females only.
2Males only.
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The FSHB allele associated with higher FSH
is also associated with higher odds of
endometriosis and surgical intervention
The more common G allele was associated with increased odds of endo-
metriosis (OR ¼ 1.27; CI 1.11–1.45; P ¼ 4.1 × 1024) (Fig. 1). Of the
seven published GWAS variants associated with endometriosis risk
(Nyholt et al., 2012), the variant on chromosome 12 was nominally asso-
ciated with cycle length, with the allele associated with an increased risk
of endometriosis also associated with shorter cycles (P ¼ 0.02).

The G allele of rs10835638 was also associated with increased odds of
having the medical interventions bilateral oophorectomy (OR ¼ 1.12;
95% CI 1.06–1.19; P ¼ 1.4 × 1024) and hysterectomy (OR ¼ 1.13;
95% CI 1.06–1.20; P ¼ 1.0 × 1024), which are used as treatments for
a range of gynaecological conditions including endometriosis.

The common FSHB variant, associated with
FSH levels, is not associated with reproductive
traits more generally
There was no consistent evidence that the FSHB variant (rs10835638)
was associated with age at menarche. There was a 0.03-year increase

in age at menarche (ReproGen definition) per T allele of rs10835638
(95% CI 0.01–0.05; P ¼ 1.4 × 1022) and the binary phenotype of
early menarche was associated at P . 0.05 (Table III). None of 122 pub-
lished GWAS signals for menarche (Perry et al., 2014a,b) were asso-
ciated with length of menstrual cycle at P , 0.008.

The FSHB promoter polymorphism (rs10835638) was not associated
with other reproductive illnesses or conditions at P , 0.05 (Table III),
except for menopausal symptoms (OR ¼ 0.62; 95% CI 0.41–0.93;
P ¼ 0.02) (Fig. 1). No associations were found with dysmenorrhoea,
fibroids, irregular menstrual cycles, menorrhagia, multiple pregnancy
loss, ovarian cysts, PCOS, uterine polyps or vaginal/uterine prolapse,
or with female breast, ovarian or endometrial cancer.

Discussion
In the first GWAS of menstrual cycle length, we found a strong associ-
ation between an FSH lowering, likely functional, variant in the FSHB pro-
moter and longer cycles (Hoogendoorn et al., 2003; Grigorova et al.,
2008, 2010; Tuttelmann et al., 2012; Benson et al., 2013; La Marca
et al., 2013; Simoni and Casarini, 2014; Ruth et al., 2015). This locus
has been previously robustly associated with age at menopause in the

Figure 1 Forest plot of phenotypes associated (P , 0.05) with the FSH-lowering T allele of rs10835638 (c.-211G.T). For continuous variables, effects
(b) are in standard deviations of the inverse-normally transformed variable to enable effect size comparisons. CI, confidence interval; OR, odds ratio.
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ReproGen consortium GWAS of menopause timing (Stolk et al., 2012;
Day et al., 2015) and the allele associated with longer cycle length is
also associated with later age at menopause. We did not observe asso-
ciations for the majority of age at menopause GWAS signals with length
of menstrual cycle, including the four signals with effects of overone-third
of a year per allele on menopause timing, implying that the association is
specific to FSHB: either FSH-b has independent effects on both cycle
length and menopause or changes in cycle length are causally influencing
menopause timing.

Our results are consistent with the observed epidemiological relation-
ship between longer menstrual cycles and later age at menopause
(Whelan et al., 1990; Kaczmarek, 2007). It is possible that there is a bio-
logical limit on the lifetime number of menstrual cycles; hence, women
with longer cycles would have later menopause. Alternatively, they
may have reduced follicle recruitment per cycle, depleting their ovarian
reserve more slowly. Women with longer cycles have more waves of fol-
liculogenesis during each cycle (Baerwald et al., 2003, 2012) but may
recruit fewer antral follicles per wave. Oocyte loss due to ovulation is un-
likely to be driving the relationship, since this contributes much less to

overall oocyte depletion than atresia, and there is no robust evidence
that preventing ovulation by the use of the combined oral contraceptive
pill influences menopause timing (van Noord et al., 1997; de Vries et al.,
2001; Gold et al., 2001, 2013; Ayatollahi et al., 2003; Palmer et al., 2003;
Kaczmarek, 2007; Dorjgochoo et al., 2008; OlaOlorun and Lawoyin,
2009; Pokoradi et al., 2011; Stepaniak et al., 2013) and both longer
and shorter cycles are more likely to be anovulatory (Mihm et al.,
2011). More work is needed to understand the molecular mechanism
that explains the association between cycle length and menopause
timing.

The FSH-reducing allele was associated with nulliparity, perhaps indi-
cating increased female infertility. Although wewereunable to distinguish
those unable to have children from those not wishing to, the sample of
nulliparous women will be enriched for both female and male factor in-
fertility. The FSH-lowering allele has previously been found to be asso-
ciated with male infertility (Grigorova et al., 2008, 2010; Tuttelmann
et al., 2012; Simoni and Casarini, 2014), but we found no association
with males who had never fathered a child suggesting a female-specific
effect, although this may because the phenotype includes males who

.............................................................................................................................................................................................

Table III Associations with the FSH-lowering T allele of rs10835638 (c.-211G>T).

Phenotype Statistic Effect(95% CI) SE P-value

Length of menstrual cycle (SD) b 0.16 (0.12, 0.20) 0.02 6.0E216

Endometriosis OR 0.79 (0.69, 0.90) 0.05 4.1E204

Age at natural menopause (SD) b 0.04 (0.01, 0.06) 0.01 1.6E203

Never pregnant OR 1.06 (1.02, 1.11) 0.02 4.8E203

Short menstrual cycle (versus average) OR 0.70 (0.54, 0.90) 0.09 5.1E203

Menopausal symptoms OR 0.62 (0.41, 0.93) 0.13 2.2E202

Age at menarche (SD) b 0.02 (0.00, 0.03) 0.01 3.6E202

Age at last birth (SD) b 0.02 (0.00, 0.04) 0.01 4.2E202

Age at first birth (SD) b 0.02 (0.00, 0.03) 0.01 7.9E202

Number of live births (SD) b 20.01 (20.03, 0.00) 0.01 8.1E202

Never fathered a child OR 1.03 (0.99, 1.08) 0.02 1.2E201

Early menopause OR 0.95 (0.88, 1.02) 0.04 1.6E201

Early menarche OR 0.94 (0.85, 1.04) 0.05 2.1E201

Fibroids OR 0.94 (0.86, 1.03) 0.04 2.1E201

Long menstrual cycle (versus average) OR 1.16 (0.92, 1.47) 0.14 2.1E201

Polycystic ovary syndrome OR 1.18 (0.88, 1.59) 0.18 2.7E201

Ovarian cysts OR 0.94 (0.83, 1.07) 0.06 3.6E201

Number of children fathered (SD) Beta 0.01 (20.01, 0.02) 0.01 4.1E201

Menorrhagia OR 0.92 (0.74, 1.13) 0.10 4.2E201

Irregular menstrual cycles OR 0.97 (0.89, 1.06) 0.04 4.6E201

Multiple pregnancy loss OR 0.98 (0.91, 1.04) 0.03 4.6E201

Dysmenorrhoea OR 0.87 (0.56, 1.38) 0.20 5.6E201

Breast cancer OR 1.02 (0.95, 1.10) 0.04 6.4E201

Ovarian cancer OR 0.94 (0.74, 1.21) 0.12 6.4E201

Vaginal/uterine prolapse OR 0.97 (0.83, 1.13) 0.08 6.7E201

Uterine polyps OR 0.98 (0.80, 1.20) 0.10 8.6E201

Endometrial cancer OR 1.00 (0.81, 1.23) 0.11 9.7E201

Note: For continuous variables, effects (b) are in standard deviations of the inverse-normally transformed variable to enable effect size comparisons. Results significant at P , 5E208 are in
bold; results significant at P , 5E202 are underlined.
CI, confidence interval; OR, odds ratio; SD, standard deviations.
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chose not to have children in addition to infertile males. Using nulliparity
as a proxy for infertility is unlikely to generate a false-positive association,
but may have reduced our power to detect a true association. The rela-
tionship between FSH and fertility over a woman’s lifetime may differ
from the age-related changes in FSH around menopause. In contrast to
our genetic association between lower FSH and infertility, women
nearing menopause have higher FSH concentrations, poorer ovarian
reserve and decreased fertility (Waller et al., 1998; Mihm et al., 2011).
FSH is required for follicle development and it is proposed that an FSH
threshold is required to achieve ovulation (Kumar et al., 1997, 1999).
Ovulation increases with increasing FSH in transgenic mice with FSH
levels that increase with age independently of follicle depletion (McTavish
et al., 2007). A high baseline level of FSH, determined by genetic vari-
ation, may promote ovulation and explain our association with parity.

The FSH-increasing allele increased the risk of endometriosis in our
study. Several GWAS of endometriosis have been performed;
however, none have reported a signal at the 11p14.1 locus and there
was no evidence that the genome-wide significant endometriosis var-
iants were associated with cycle length in our study (Adachi et al.,
2010; Uno et al., 2010; Painter et al., 2011; Nyholt et al., 2012; Albertsen
et al., 2013). Drug treatments for endometriosis aim to prevent ovulation
and menstruation, and to stabilize hormone levels, since estrogens fuel
ectopic endometrial growth (Vercellini et al., 2014). The FSH-increasing
allele may similarly stimulate abnormal growth of endometrium. Endo-
metriosis is associated with earlier menopause (Pokoradi et al., 2011;
Yasui et al., 2011) and shorter menstrual cycles (Vercellini et al., 2014),
consistent with our findings. The FSH-increasing variant associated
with increased risk of endometriosis was also associated with parity;
however, endometriosis can cause infertility as a result of endometriotic
lesions and chronic pelvic inflammation. Therefore, the association of the
FSHB polymorphism with infertility appears to be independent of the as-
sociation with endometriosis.

We found a modest association of the FSH-lowering allele with
increased age at menarche, but the published age at menarche GWAS
signals were not associated with length of menstrual cycle. The closest
GWAS menarche signal to FSHB (rs16918636) is 1.13 Mb away and is
not in LD (r2 ¼ 0.001) with the FSHB promoter polymorphism SNP
(Perry et al., 2014a,b). Although FSH is important for normal puberty,
the role of variation in baseline FSH levels on puberty timing is uncertain.

The UK Biobank recruited individuals over 40 years old, and many of
the women still cycling will be approaching menopause; however, if the
association with cycle length was being driven by peri-menopausal
changes, we would expect all menopause-associated variants to be asso-
ciated with cycle length. In addition, our sensitivity analysis suggested a
stronger effect of the FSHB promoter polymorphism in younger
women. We were unable to replicate an association between the
FSH-lowering allele and increased odds of PCOS (Hayes et al., 2015).
However, we had only a small number of cases (n ¼ 153) limiting our
power to detect this association. Other illnesses had relatively small
sample sizes and may have been similarly under-powered. We might
have also under-ascertained cases, as most illnesses will be subject to
recall bias as they are self-reported and collected retrospectively, while
controls might include people not reporting an illness.

Our study provides evidence that a likely functional variant in the FSHB
promoter is strongly associated with longer menstrual cycles, and to a
lesser extent with female infertility and lower risk of endometriosis.
There is considerable evidence that the T allele of the FSHB promoter

Figure 2 LocusZoom plot showing variants associated with length of
menstrual cycle. The most strongly associated variant for cycle length is
rs564036233. LD (1000 Genomes Nov 2014 EUR) shown is with
rs10835638, the FSHB promoter polymorphism. Other SNPs indicated
were the variants most significantly associated with FSH (rs11031005)
and LH (rs11031002) in a GWAS of hormone levels (Ruth et al., 2015),
and with age at natural menopause (rs12294104) in a meta-analysis
(Stolk et al., 2012). KCNA4: potassium channel, voltage-gated shaker-
related subfamily A, member 4. ARL14EP: ADP-ribosylation factor-like
GTPase 14 effector protein. MPPED2: metallophosphoesterase domain
containing 2. Note: LD values are not available for all SNPs since they
are not included in 1000 Genomes Nov 2014 EUR. Position is in build
hg19/GRCh37.

Figure3 Comparison of the published effect size of the 56 known age
at menopause variants (Stolk et al., 2012; Perry et al., 2014a,b) and their
effect size in the GWAS for menstrual cycle length. There was no signifi-
cant correlation between the effects on age at menopause and cycle
length (R ¼ 0.064, P ¼ 0.63). The FSHB promoter polymorphism
(rs10835638) is indicated.
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polymorphism decreases FSH levels (Hoogendoorn et al., 2003; Grigor-
ova et al., 2008, 2010; Tuttelmann et al., 2012; Benson et al., 2013;
La Marca et al., 2013; Simoni and Casarini, 2014; Ruth et al., 2015),
but it has also been associated with increased LH levels (Hayes et al.,
2015; Ruth et al., 2015). While we cannot rule out that the variant
may be having direct or indirect effects on other hormone levels, a
change in FSH is the most likely primary mechanism. In conclusion, we
suggest that lower FSH levels result in longer menstrual cycles and as a
consequence later menopause and, while having detrimental effects on
female fertility, are protective against endometriosis.

Supplementary data
Supplementary data areavailable athttp://humrep.oxfordjournals.org/.
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