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Tardive dyskinesia is a severe motor adverse event of antipsychotic medication,
characterized by involuntary athetoid movements of the trunk, limbs, and/or orofacial
areas. It affects two to ten patients under long-term administration of antipsychotics that
do not subside for years even after the drug is stopped. Dopamine, serotonin, cannabinoid
receptors, oxidative stress, plasticity factors, signaling cascades, as well as CYP
isoenzymes and transporters have been associated with tardive dyskinesia (TD)
occurrence in terms of genetic variability and metabolic capacity. Besides the factors
related to the drug and the dose and patients’ clinical characteristics, a very crucial variable
of TD development is individual susceptibility and genetic predisposition. This review
summarizes the studies in experimental animal models and clinical studies focusing on the
impact of genetic variations on TD occurrence. We identified eight genes emerging from
preclinical findings that also reached statistical significance in at least one clinical study.
The results of clinical studies are often conflicting and non-conclusive enough to support
implementation in clinical practice.

Keywords: tardive dyskinesia, antipsychotics, animal models, pharmacogenetics, GWAS

1 INTRODUCTION

Psychiatric disorders affect approximately 30% of the population worldwide (James et al., 2018).
They can be treated with a combination of different drugs, such as antipsychotics, antidepressants,
mood stabilizers, and anxiolytic drugs. According to the National Health and Nutrition Examination
Survey (NHANES) data collected between 2013 and 2018, which included 17,691 U.S. residents, the
estimated prevalence of antipsychotic drug use was 1.6% (Dennis et al., 2020). In 2020, antipsychotic
drugs were prescribed more than 5 million times (Dennis et al., 2020). The treatment of psychiatric
disorders is a challenge, and the drug efficacy is limited. Moreover, the administration of these drugs
is usually accompanied by the occurrence of mild to serious adverse events (Reynolds 2007). Despite
large number of typical and atypical antipsychotic drugs, it is difficult to find the safest drug with the
maximum therapeutic efficacy for the patient. Additionally, patients treated with antipsychotics were
at higher risk for comorbidities (Dennis et al., 2020). This can lead to polypharmacy and high risk of
unpleasant adverse events (Ravyn et al., 2013).

Tardive dyskinesia (TD) is a severe motor adverse event of antipsychotic medication,
characterized by involuntary athetoid movements of the trunk, limbs, and/or orofacial areas that
affects 25.3% of patients under long-term treatment with antipsychotics. (Owens 2019; Islam et al.,
2021). According to the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-
V), tardive dyskinesia is a drug-induced movement disorder that lasts for 1 month (American
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Psychiatric Association 2013). It is also a very persistent disorder,
meaning that its symptoms do not subside for years even after the
drug is stopped (Vasan and Padhy 2021) It decreases patients’
quality of life and leads to difficulties in daily life and
stigmatization (Owens 2019). TD severity is assessed with the
Abnormal Involuntary Movement Scale (AIMS). This 12-item
scale can serve as an essential tool for TD diagnosis in clinical
practice when used by trained physicians and healthcare
professionals. The first items refer to movements of different
body regions, such as facial and oral areas, extremities, and trunk.
The rest reflect the global judgment regarding movement severity
and accounts for dental status (Guy 1976; Caroff et al., 2020).
According to Schooler and Kane criteria, the prerequisites for TD
diagnosis include at least 3 months of exposure to an
antipsychotic drug, moderate abnormal movements in one
body part or mild in two or more, and no other potential
cause (Schooler and Kane 1982).

The development of TD is related to demographic variables,
such as age, sex, and race, as well as the class of antipsychotics
prescribed, the duration, and the dosage of the antipsychotic
treatment (Zai et al., 2018b). Women, elderly patients, African
Americans, patients with mood disorders, intellectual disability,
or central nervous system injury, as well as patients with a past or
current history of akathisia, parkinsonism, or acute dystonic
reactions, are more susceptible to developing TD (Owens
2019; Keepers et al., 2020; Vasan and Padhy 2021). TD is
caused mainly by the long-term exposure to antipsychotics,
either first-generation (FGAs) or second-generation (SGAs)
(Lee and Kang 2011; Zai et al., 2018b; Owens 2019). However,
20% of patients treated with FGAs experience TD. One of the
underlying causes is the increased dopamine D2 affinity that
characterizes FGAs (Vasan and Padhy 2021). On the contrary,
the lower D2 affinity of SGAs, such as clozapine or quetiapine,
might improve TD symptoms (Ricciardi et al., 2019; Vasan and
Padhy 2021). Notably, a 12-years cross-national study that
inspected the patterns of antipsychotic prescription in Taiwan,
Hong Kong, Japan, and the United States, indicated that SGAs
were more frequently prescribed in younger patients in all studied
countries. Quetiapine and haloperidol were the most common in
the United States and Hong Kong (Su et al., 2020). It is crucial to
mention that among patients receiving an antipsychotic, only 1
out of 10 had a schizophrenia spectrum disorder diagnosis, while
the rest had bipolar disorder, treatment-resistant depression,
anxiety, personality disorders, autism, and/or other conditions
(Loughlin et al., 2019; Dennis et al., 2020).

Although the results of two randomized controlled trials
(RCTs) indicated that there was no association between the
class of antipsychotics and TD frequency (Miller et al., 2008;
Peluso et al., 2012), a meta-analysis published in 2018, which
assessed 57 RCTs, suggested that the administration of SGAs is
associated with lower risk for TD development (Carbon et al.,
2018). Switching from FGAs to SGAs was proposed as a more
efficient strategy for improvement of symptoms than treatment
discontinuation (Bai et al., 2003) and a later systematic review
confirmed a reduction of TD symptoms (Ricciardi et al., 2019).
However, the 18-years long prospective study indicated that
adding a SGA to existing FGA treatment was not necessarily

associated with reduction in TD severity (Mentzel et al., 2017).
The results are conflicting regarding the impact of duration and
the dosage of the antipsychotic therapy on TD risk. A
retrospective study suggested that the dose of antipsychotics
was associated with high TD risk in patients with
schizophrenia (Patterson-Lomba et al., 2019). In contrast, a
meta-analysis of 26 studies (Takeuchi et al., 2020) and a
review of 13 RCTs (Bergman et al., 2018) did not confirm this
association.

The Curaçao Extrapyramidal Syndromes Study XII, a
prospective study that lasted for 18 years and included 223
patients, suggested that an increase in the dose of
antipsychotics can reduce the severity of TD (Mentzel et al.,
2017). This finding is in line with other older studies with a small
sample size (Kazamatsuri et al., 1972, Kazamatsuri et al., 1973;
Gerlach et al., 1974; Korsgaard et al., 1984; Tamminga et al.,
1994). However, attention should be paid to the potential
masking effect of the increased dose on TD symptoms, and it
should be emphasized that the alleviation is only short-term and
that TD symptoms inevitably return after some time (Mentzel
et al., 2017; Yoshida and Takeuchi 2021).

Age, sex, health behaviors, liver and renal function,
comorbidities, and the administration of co-medication are
important factors in choosing the right type of the
antipsychotic drug and its dose (Ohmori et al., 2003; Ravyn
et al., 2013). Apart from the above factors a very crucial variable of
TD development is individual susceptibility and genetic
predisposition to TD development. Dopamine, serotonin,
cannabinoid receptors, oxidative stress, plasticity factors,
signaling cascades, as well as CYP isoenzymes and
transporters have been associated with TD occurrence, in
terms of genetic variability, and metabolic capacity. The
genetic variability of pharmacokinetic and pharmacodynamic
genes can lead to decreased or increased drug plasma levels
and impact the drug response, in terms of efficacy and toxicity
(Ravyn et al., 2013).

To elucidate potential genetic factors contributing to the
molecular pathogenesis of TD, this review first collected all the
available data on preclinical animal studies of TD development
induced by antipsychotic treatment published in the last
10 years. To achieve our aim, we performed a literature
review of studies published until today found in the
MEDLINE database, using combinations of the following
keywords: “pharmacogenomics,” “pharmacogenetics,” “tardive
dyskinesia,” “drug-induced tardive dyskinesia,”
“antipsychotics,” “adverse drug reactions,” “genes,” “genetic
variations,” “polymorphisms,” and limited the search filter
“species” to “humans.” The respective search for preclinical
animal studies was performed by using the search term “tardive
dyskinesia” and limiting the search filter “species” to “other
animals.” Additional references were also identified and
retrieved from the articles that emerged from the search
using the above combinations. Next, we reviewed candidate
gene and genome-wide association studies that focused on
genetic variations in genes involved in pharmacokinetics and
pharmacodynamics and drug-induced TD. The findings of
larger, genome-wide association studies (GWAS) were also
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included. We elaborated on how this information can be used
for patients’ benefit.

2 PRECLINICAL STUDIES OF TARDIVE
DYSKINESIA DEVELOPMENT

Candidate genes that would be relevant to be studied in regards to
TD development could be derived from preclinical studies
conducted primarily on experimental animals, such as mice,
rats, and monkeys (Blanchet et al., 2012). In most models, TD
is induced by treatment with the FGA haloperidol, commonly
prescribed in patients with schizophrenia (Marder and Cannon
2019). Additionally, fluphenazine, one of the oldest
antipsychotics (Matar et al., 2018) and reserpine, an indole
alkaloid used as antipsychotic and antihypertensive agent
(Soung et al., 2018) are used to induce TD in experimental
animals as well. The phenotype of TD in animals is different
in comparison to human beings since it presents with robust,
seemingly purposeless chewing activity (so-called vacuous
chewing movements or VCM), often fluctuating, and
occurring in short bursts, occasionally associated with bruxism
and tongue protrusions. VCM in animals usually occur shortly
after treatment initiation or even after acute treatments, whereas
in humans the development of TD takes longer (Blanchet et al.,
2012). Many studies have been conducted in experimental
animals to elucidate the underlying pathology of TD and
determine potential pharmacotherapy. However, no consensus
has been made so far.

We identified 43 animal studies dealing with TD pathogenesis
and possible ways of treatment in the past 10 years. All of the studies
are presented in the Supplementary Table S1. Animal experiments
studied candidate pathways involved in TDdevelopment on the level
of functional perturbations due to treatment with antipsychotics.
Inflammation (Bishnoi and Boparai 2012; Grover et al., 2013;
Thakur et al., 2015; Datta et al., 2016; Peroza et al., 2016; Sonego
et al., 2018; Soung et al., 2018; Wang et al., 2021a) and oxidative
stress defense (Patil et al., 2012; Grover et al., 2013; Nade et al., 2013;
Thakur et al., 2015; Wang et al., 2015; Datta et al., 2016; Schaffer
et al., 2016; Samad and Haleem 2017; Dhingra et al., 2018; Sonego
et al., 2018; Soung et al., 2018; Tsai et al., 2019; Wang et al., 2021a)
pathways were among the most studied ones. Accordingly, different
antioxidants were tested as potential agents for the treatment of TD.
Many studies showed decreased levels of catalase (CAT), superoxide
dismutase (SOD), and glutathione (GSH), either in their quantity or
antioxidant capacity, upon treatment with haloperidol (Grover et al.,
2013; Thakur et al., 2015; Datta et al., 2016; Samad andHaleem 2017;
Dhingra et al., 2018; Sonego et al., 2018; Tsai et al., 2019;Wang et al.,
2021a), reserpine (Patil et al., 2012; Nade et al., 2013; Wang et al.,
2015; Soung et al., 2018) or fluphenazine (Schaffer et al., 2016).
Studies have also shown that a plethora of cytokines are elevated
upon treatment with antipsychotics, such as TNF-α (Bishnoi and
Boparai 2012; Grover et al., 2013; Thakur et al., 2015; Datta et al.,
2016; Peroza et al., 2016; Sonego et al., 2018; Soung et al., 2018;Wang
et al., 2021a), IL-1β (Grover et al., 2013; Thakur et al., 2015; Datta
et al., 2016; Peroza et al., 2016; Sonego et al., 2018; Wang et al.,
2021a), IL6 (Datta et al., 2016; Peroza et al., 2016; Sonego et al., 2018;

Soung et al., 2018; Wang et al., 2021a), and IFN-γ (Peroza et al.,
2016). On the contrary, IL-10 is decreased, due to its role as an anti-
inflammatory cytokine (Peroza et al., 2016; Sonego et al., 2018).
Consequently, some agents with antioxidative and anti-
inflammatory properties were tested as potential drugs for TD,
such as resveratrol (Busanello et al., 2012, Busanello et al., 2017),
vitamin E (An et al., 2016; Shi et al., 2016), lycopene (Datta et al.,
2016), L-theanine (Chen et al., 2018; Soung et al., 2018; Tsai et al.,
2019), cannabidiol (Sonego et al., 2018; Kajero et al., 2020), and
catechin (Wang et al., 2015; Reinheimer et al., 2020). Additionally,
several different plant-based compounds were tested (Patil et al.,
2012; Sekiguchi et al., 2012; An et al., 2013; An et al., 2016; Shi et al.,
2016; Samad and Haleem 2017; Dhingra et al., 2018; Wang et al.,
2021a). A widely measured endpoint upon TD induction is the
severity of apoptosis in different brain areas. Caspase-3 was elevated
in animals with TD (Bishnoi and Boparai 2012; Soung et al., 2018;
Wang et al., 2021a). Furthermore, the transcription level of the
proapoptotic BAX was elevated, whereas antiapoptotic BADmRNA
was decreased (An et al., 2016). In light of this brain-derived
neurotrophic factor (BDNF), a molecule involved in the viability
of neurons, was shown to be decreased in several brain regions of rats
with haloperidol-induced VCM. It was rescued with antioxidant-
acting Ginkgo biloba extract and vitamin E (Shi et al., 2016).

Since TD arises from perturbations in neurotransmitter
systems, a lot of emphasis was put on that in terms of end-
point measurements when TD was induced in experimental
animals. Several different neurotransmitter systems were
studied, such as dopaminergic, serotonergic, cholinergic, and
glutamatergic. As expected, the most widely studied pathway is
the dopaminergic pathway. The binding capacities or
expression levels of different components of dopaminergic
pathways were assessed upon haloperidol treatment. It was
shown that the function or activity of dopamine transporter
(Bordia et al., 2012; Lévesque et al., 2017), monoamine oxidase
B (MAO-B) (Busanello et al., 2017), and dopamine receptor 1
(DRD1) (Mahmoudi et al., 2014) were decreased, whereas
binding capacities or activities of the tyrosine hydroxylase
(TH) (Lévesque et al., 2017; Ceretta et al., 2018) and
dopamine receptor 3 (DRD3) (Mahmoudi et al., 2014;
Hernandez et al., 2019) were increased. The storage capacity
of the monoamine neurotransmitters was decreased since the
expression of vesicular monoamine transporter 2 (VMAT2)
was shown to be reduced upon TD induction (Lévesque et al.,
2017). The serotonergic system works hand in hand with the
dopaminergic system also in the context of TD development
(Crisafulli et al., 2013) (34). The serotonin receptor 2A
(HTR2A) mRNA was decreased upon chronic exposure to
haloperidol in monkeys (Lévesque et al., 2017). All of the
above indicate a lack of adaptation of the aminergic
neurotransmission in TD development (Lévesque et al.,
2017; Hauser and Truong 2018). Not only were those
components of serotonergic and dopaminergic systems
dysregulated, but the concentrations of neurotransmitters
themselves were decreased (Dhingra et al., 2018; Soung
et al., 2018; Wang et al., 2021a).

Studies of TD in animal models showed that other
neurotransmitter systems, such as acetylcholine and glutamate,
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are also affected. Neuronal acetylcholine receptor subunits, for
instance alpha-4 (CHRNA4), beta-2 (CHRNB2), and alpha-6
(CHRNA6), were decreased upon haloperidol treatment (Bordia
et al., 2012). Additionally, the acetylcholinesterase activity was
decreased in different brain areas in haloperidol-induced
orofacial dyskinesia in rats, recuperated by the vitamin B
cocktail (de Oliveira et al., 2013). On the other hand,
glutamate receptor subunits, GRIN2A and GRIN2B were
increased in the putamen of haloperidol treated monkeys
(Lévesque et al., 2017). Along with that, glutamate transporter
(SLC1A2) was decreased in the striatum and cortex of
haloperidol-treated rats (Sekiguchi et al., 2012). Furthermore,
cannabinoid receptor type 1 (CNR1) was shown to be increased
in haloperidol-induced orofacial dyskinesia in rats (Röpke et al.,
2021).

A few animal studies explored the genetic background of TD
as well. Crowley et al. conducted a genome-wide association study
in 27 inbred strains of mice treated with haloperidol for 60 days.
TD was recorded in case the animal developed VCM. The
association mapping analysis highlighted six genes with
variants associated with the development of VCM, namely
CPEB2, BST1, PIT2, ZIC4, PLSCR1, and DRD1A, of which the
latter was concluded to be the most important one (Crowley et al.,
2012).

TD was also induced in knock-out animals to dissect the role
of individual genes in the development of TD. Khan et al. induced
TD in the GNAL knock-out and wild-type mice with haloperidol.
GNAL encodes Gα(olf), the α subunit of a heterotrimeric GTP-
binding protein that couples to downstream signaling partners.
Gα(olf) is highly enriched in the striatum, where it positively
couples with DRD1 and ADORA2A to activate adenylyl cyclase,
thereby increasing intracellular cAMP levels in DRD1-expressing
striatonigral and DRD2-expressing striatopallidal neurons,
respectively. Gα(olf) levels serve as a determinant of cAMP
signal-dependent activity. GNAL ± mice presented higher
levels of DNA damage and cell death in the brain. This was
accompanied by reduced levels of cAMP and histone H3
phosphorylation in the striatum and enhanced behavioral
abnormalities after haloperidol treatment in comparison to
GNAL+/+ haloperidol treated mice (Khan et al., 2019). Results
of this study warrant further functional research on the role of
Gα(olf) in TD.

Animal studies focusing on a particular protein function in TD
development have been published as well. A study conducted by
Nagaoka et al. studied the role of striatal transient receptor
potential vanilloid 1 (TRPV1) in acetaminophen treatment of
orofacial dyskinesia induced by haloperidol in rats. First, they
successfully showed that acetaminophen and the acetaminophen
metabolite AM404 are valid options for alleviation of TD. They
also showed that TRPV1 is a crucial component in the
mechanism of acetaminophen action since the anti-dyskinetic
effect was lost in the TRPV1 knock-out animals if compared to
wild-type rats (Nagaoka et al., 2021). Furthermore, in a monkey
model of TD induced by haloperidol, monkeys treated with
haloperidol without TD had a higher expression of the
transcription factor NUR77. This indicates that NUR77, which
is involved in a neuroadaptive response mounted against

abnormal motor behaviors following typical antipsychotic drug
exposure, is associated with a decreased risk for TD development
(Mahmoudi et al., 2013). S100B, a calcium-binding protein, exerts
neuroprotective and neurodegenerative effects depending on its
concentration. Low concentrations appear to have
neuroprotective effects on neuronal growth and survival. On
the other hand, higher concentrations induce
neurodegeneration and apoptosis. A rat model of TD showed
increased levels of S100B, which were rescued by antioxidant
administration (An et al., 2016). A study conducted by Miksys
et al. dealt with brain metabolism levels of haloperidol and their
association with TD development in a rat model. They show that
lower CYP2D6 activity in the brain decreases the risk for
catalepsy and VCM development, whereas high CYP2D6
activity increases VCM and catalepsy development (Miksys
et al., 2017).

Preclinical studies showed many insights into the
pathogenesis of TD and, more importantly, many suggested
how this troublesome adverse event of antipsychotic treatment
could be tackled. However, there are some caveats to the
animal models of TD. The phenotype of TD in animals
differs from the one in human beings, since TD in animals
presents mostly as VCM focused on the orofacial area whereas
in humans it affects other body parts as well. Additionally,
VCM are often observed after >2–3 weeks of subchronic
haloperidol treatment, which is a relatively long time in the
average life span of a rat (Kulkarni and Dhir 2011). The
percentage of animals developing VCM due to antipsychotic
treatment is much higher than the percentage in patients as
well (Blanchet et al., 2012). All of the above indicates that
animal studies cannot substitute the findings from studies in
human beings. However, they present an invaluable basis for
the direction of human studies towards a better understanding
and management of TD.

3 PHARMACOGENOMIC STUDIES
FOCUSING ON THE ASSOCIATION
BETWEEN TARDIVE DYSKINESIA AND
GENES INVOLVED IN THE
PHARMACOKINETICS OF
ANTIPSYCHOTICS

Pharmacogenetics aims to provide the appropriate drug for the
individual patient in terms of efficacy and adverse events’
occurrence based on the patient’s genetic background (Ravyn
et al., 2013). For many years the main focus of the research was
genetic variability of drug metabolizing enzymes, mainly
cytochromes P450 (Ohmori et al., 2003; Gopisankar 2017).
The metabolizing properties and capacities of cytochromes
vary a lot and they can metabolize diverse substrates (Ravyn
et al., 2013; Gopisankar 2017).

The most important as well as highly polymorphic drug-
metabolizing enzyme is CYP2D6. Interestingly, 30% of the
drugs are primarily or partially metabolized by CYP2D6.
Psychiatric drugs, including antipsychotics are among them
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(Petrović et al., 2020). Depending on the genotype, the
metabolizing phenotype differs, and the drug metabolism
consequently changes. More specifically, based on their
metabolizing capacity, individuals can be grouped into four
different drug metabolizer phenotypes: ultra-rapid
metabolizers (UM), normal (extensive) metabolizers (EM),
intermediate metabolizers (IM), and poor metabolizers (PM)
(Ravyn et al., 2013; Gopisankar 2017). As the frequency of
CYP2D6 alleles differs among races and populations, the drug

metabolism phenotypes distributions are different among
ethnicities (Gopisankar 2017).

Researchers have extensively explored the association between
CYP2D6 genetic variability and TD development; however, the
results are contradictory (Table 1 and Supplementary Table S2).
Some studies did not show an association between TD and
CYP2D6*1, CYP2D6*2, CYP2D6*3, CYP2D6*4, CYP2D6*5,
CYP2D6*6, CYP2D6*15a, and CYP2D6*17 (Arthur et al., 1995;
Armstrong et al., 1997; Ohmori et al., 1998; Ohmori et al., 1999;

TABLE 1 | Pharmacokinetics gene polymorphisms and associations with TD.

Gene Genetic
polymorphisms

Association References

CYP2D6 CYP2D6*2 No Ohmori et al. (1999); Inada et al. (2003); de Leon et al. (2005); Plesnicar et al. (2006); Grossman et al. (2008)
CYP2D6*3 Yes Kapitany et al. (1998); Jaanson et al. (2002); Ellingrod et al. (2002)

No Arthur et al. (1995); Armstrong et al. (1997); Andreassen et al. (1997); Ohmori et al. (1998); Scordo et al. (2000);
Lohmann et al. (2003); Inada et al. (2003); de Leon et al. (2005); Plesnicar et al. (2006); Grossman et al. (2008);
Ivanova et al. (2016a)

CYP2D6*4 Yes Kapitany et al. (1998); Jaanson et al. (2002); Ellingrod et al. (2002); Ivanova et al. (2016a)
No Arthur et al. (1995); Armstrong et al. (1997); Andreassen et al. (1997); Ohmori et al. (1998); Scordo et al. (2000);

Lohmann et al. (2003); Inada et al. (2003); Tiwari et al. (2005b); de Leon et al. (2005); Plesnicar et al. (2006);
Grossman et al. (2008)

CYP2D6*5 Yes Kapitany et al. (1998)
No Arthur et al. (1995); Armstrong et al. (1997); Andreassen et al. (1997); Scordo et al. (2000); Lohmann et al. (2003);

de Leon et al. (2005); Plesnicar et al. (2006); Grossman et al. (2008)
CYP2D6*6 No Andreassen et al. (1997); Scordo et al. (2000); Lohmann et al. (2003); de Leon et al. (2005); Plesnicar et al. (2006);

Grossman et al. (2008)
CYP2D6*7 No Andreassen et al. (1997); de Leon et al. (2005)
CYP2D6*8 No de Leon et al. (2005); Plesnicar et al. (2006)
CYP2D6*9 No de Leon et al. (2005); Plesnicar et al. (2006); Grossman et al. (2008)
CYP2D6*10 Yes Ohmori et al. (1998); Lam et al. (2001); Fu et al. (2006)

No Inada et al. (2003); Liou et al. (2004); de Leon et al. (2005); Plesnicar et al. (2006); Grossman et al. (2008)
CYP2D6*11 No de Leon et al. (2005); Plesnicar et al. (2006)
CYP2D6*12 No Inada et al. (2003); Plesnicar et al. (2006)
CYP2D6*14 No de Leon et al. (2005); Plesnicar et al. (2006)
CYP2D6*15 No Brockmöller et al. (2002); de Leon et al. (2005); Plesnicar et al. (2006)
CYP2D6*17 No Brockmöller et al. (2002); de Leon et al. (2005); Grossman et al. (2008)
CYP2D6*18 No de Leon et al. (2005)
CYP2D6*19 No de Leon et al. (2005)
CYP2D6*20 No de Leon et al. (2005)
CYP2D6*25 No de Leon et al. (2005)
CYP2D6*26 No de Leon et al. (2005)
CYP2D6*29 No de Leon et al. (2005); Grossman et al. (2008)
CYP2D6*30 No de Leon et al. (2005)
CYP2D6*31 No de Leon et al. (2005)
CYP2D6*35 No de Leon et al. (2005)
CYP2D6*36 No de Leon et al. (2005)
CYP2D6*37 No de Leon et al. (2005)
CYP2D6*40 No de Leon et al. (2005)
CYP2D6*41 No de Leon et al. (2005); Grossman et al. (2008)
CYP2D6*43 No de Leon et al. (2005)
CYP2D6*45 No de Leon et al. (2005)
CYP2D6 duplications No Scordo et al. (2000); de Leon et al. (2005); Plesnicar et al. (2006)

CYP1A2 CYP1A2*1F Yes Basile et al. (2000); Fu et al. (2006); Ivanova et al. (2015); Ivanova et al. (2016a)
No Schulze et al. (2001); Chong et al. (2003b); Matsumoto et al. (2004a); Grossman et al. (2008)

CYP1A2*1C Yes Tiwari et al. (2005a)
No Matsumoto et al. (2004a)

CYP17A1 rs743572 Yes Segman et al. (2002a); Ivanova et al. (2014)
CYP3A4 CYP3A4*1B No Tiwari et al. (2005b)
ABCB1 rs1045642 No de Leon et al. (2005); De Luca et al. (2009)

rs1922242 No De Luca et al. (2009)
rs1045642, rs1922242 Yes–haplotype De Luca et al. (2009)
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Brockmöller et al., 2002; Lohmann et al., 2003), but some studies
indicated a statistically significant or borderline association
between CYP2D6 alleles and TD. A statistically significant
association between CYP2D6*10 and TD, both before and after
adjustment for clinical variables, was reported in a cohort of 100
Japanese patients with schizophrenia (Ohmori et al., 1998).
Similarly, the T allele of the CYP2D6*10 was associated with
TD development in a different study (Fu et al., 2006). Another
study reported potential associations between CYP2D6*3,
CYP2D6*4, and CYP2D6*5 variants and TD occurrence.
According to the results, heterozygotes in particular presented
with a higher risk for TD development (Kapitany et al., 1998).
Similarly, heterozygotes forCYP2D6*3 orCYP2D6*4 had a higher
chance for TD development (Jaanson et al., 2002). A report by
Andreassen et al. (1997) investigated CYP2D6*1, CYP2D6*3,
CYP2D6*4, CYP2D6*5, CYP2D6*6 and CYP2D6*7 variants in
100 schizophrenic patients from South-East Scotland. They
showed a positive correlation between PM and TD severity
(Andreassen et al., 1997). Koola et al., 2014 explored the
impact of CYP2D6*3, CYP2D6*4, CYP2D6*5 and CYP2D6*41
genetic variability on TD occurrence and revealed that an increase
in the number of functional CYP2D6 alleles is associated with TD
risk (Koola et al., 2014). One of the latest studies with a slightly
higher number of participants showed that CYP2D6*4 was
associated with a higher risk for limbo-truncal TD (Ivanova
et al., 2016a). Additionally, a study done by Lu et al. reported
that CYP2D6UM and PM have a higher risk for TD development
and higher severity of TD compared to IMs and EMs. This is the
first study that suggested that both extremes of CYP2D6
metabolic capacity have increased TD risk instead of PM only
(Lu et al., 2020). Lastly, a meta-analysis that included 12
pharmacogenetic studies aimed to identify the potential
association between CYP2D6 alleles and TD development. A
statistically significant association was observed between loss
of function CYP2D6 alleles and increased risk for TD
development in patients with schizophrenia treated with
antipsychotics (Patsopoulos et al., 2005).

Differences in CYP2D6*10 allele frequency were also
reported in gender analysis studies. More specifically, the
frequency of CYP2D6*10 was higher in female than in male
patients with schizophrenia that experienced TD (Lam et al.,
2001). Additionally, the risk for developing TD was higher in
male carriers of a non-functional or partially functional allele,
for instance CYP2D6*5, CYP2D6*10B, CYP2D6*14, and
CYP2D6*41 than in wild type allele carriers (Nikoloff et al.,
2002). Notably, smoking is another important variable, given
that a study that considered interactions between genotypes
and smoking status, indicated that most American smokers
treated with antipsychotics and being carriers of the
CYP2D6*1/*3, *4 genotypes had TD (Ellingrod et al., 2002).

The impact of CYP1A2 genetic variability in TD also yielded
conflicting results. No association was recorded between TD and
CYP1A2*1F (Schulze et al., 2001; Chong et al., 2003b; Matsumoto
et al., 2004a) or CYP1A2*1C (Matsumoto et al., 2004a). However,
higher AIMS scores were reported in CYP1A2*1F CC
homozygotes (Basile et al., 2000; Ivanova et al., 2015). Two
additional studies confirmed the association of the CYP1A2*1F

genotype with TD development (Fu et al., 2006; Ivanova et al.,
2016a). Interestingly, carriers of CYP1A2*1C variant allele who
were smokers and received only FGAs had increased severity of
TD (Tiwari et al., 2005a).

Finally, it was reported that the CYP17A1 rs743572 affects the
development of TD since carriers of the CC genotype had a lower
risk for TD occurrence (Ivanova et al., 2014). Additionally, the
same single nucleotide polymorphism (SNP) was associated with
the risk for abnormal orofacial and distal involuntary movements
in schizophrenia patients (Segman et al., 2002a).

Among transporters important for pharmacokinetics of
antipsychotics only the ABCB1 was assessed. It was reported
that there is no association between the ABCB1 rs1045642 or
rs1922242 and TD development (de Leon et al., 2005; De Luca
et al., 2009). Notably, the haplotypes of rs1045642 and rs1922242
may play a role in the severity of TD, given that T–A and T-T
haplotypes were associated with lower and higher AIMS scores,
respectively (De Luca et al., 2009).

4 PHARMACOGENOMIC STUDIES
FOCUSING ON THE ASSOCIATION
BETWEEN TARDIVE DYSKINESIA AND
GENES INVOLVED IN THE
PHARMACODYNAMICS

4.1 Dopamine Receptor Genes
Dopamine is a neurotransmitter that has an important role in
human brain functions. Its dysregulation has been found to cause
psychosis and mood disorders, as well as movement disorders,
such as Parkinson’s disease and Huntington’s disease (Goode-
Romero et al., 2020). A variety of commonly prescribed
antipsychotic drugs, such as aripiprazole, cariprazine and
brexpiprazole, are partial agonists of dopamine receptors. The
involvement of dopamine receptors in TD development has
received much attention over the years (Table 2) due to their
crucial role in antipsychotics’ mechanism of action (Wang et al.,
2018; Azorin and Simon 2019). All of the studies are presented in
this chaptercan be found in the Supplementary Table S2.

D1 dopamine receptor is mainly found in the central nervous
system. It regulates neuronal growth and development, and
mediates behavioral and cognitive functions by stimulating
adenylyl cyclase and activating cyclic AMP-dependent protein
kinases (Dolzan et al., 2007). DRD1 rs5326, rs4532 and rs265975
polymorphisms have been investigated as potential TD
biomarkers. Schizophrenia patients with the DRD1 rs4532 CC
genotype had increased chance for TD development, while the
rest of the studied polymorphisms did not reach statistical
significance (Lai et al., 2011b). Nevertheless, the association
between rs4532 and TD was not supported in a cohort of
Indian patients with TD (Srivastava et al., 2006).

Dopamine receptor D2 protein inhibits adenylyl cyclase
activity. Genetic variability of DRD2 has been associated with
schizophrenia and response to both FGAs and SGAs, as well as
myoclonus dystonia (Klein et al., 1999; Wu et al., 2005; Fan et al.,
2010; Wang et al., 2018). Studied DRD2 polymorphisms which
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TABLE 2 | Genetic variability of dopamine receptors and its association with TD.

Genes Genetic variations Association References

DRD1 rs4532 Yes Lai et al. (2011b)
No Srivastava et al. (2006)

rs5326 No Lai et al. (2011b)
rs265975 No Lai et al. (2011b)
rs5330 No Srivastava et al. (2006)
rs5331 No Srivastava et al. (2006)
rs13306309 No Srivastava et al. (2006)
rs686 No Srivastava et al. (2006)

DRD2 rs1800497 Yes Chen et al. (1997); Liou et al. (2006); Zai et al. (2007a); Bakker et al. (2008)
No Hori et al. (2001); Kaiser et al. (2002); Segman et al. (2003); Srivastava et al. (2006); Park et al. (2011);

Koning et al. (2012); Lu et al. (2018)
rs6275 Yes Zai et al. (2007b)

No Park et al. (2011)
rs6277 Yes Zai et al. (2007b)

No Koning et al. (2012); Lu et al. (2018)
rs1079597 Yes Liou et al. (2006)

No Kaiser et al. (2002)
rs1799732 No Hori et al. (2001); Kaiser et al. (2002); Segman et al. (2003); de Leon et al. (2005); Srivastava et al.

(2006); Liou et al. (2006); Zai et al. (2007b); Park et al. (2011); Koning et al. (2012)
rs1799978 No Kaiser et al. (2002)
rs1800496 No Kaiser et al. (2002); Zai et al. (2007b)
rs1800497 No Zai et al. (2007b)
rs1800498 No (Kaiser et al., 2002; Liou et al., 2006; Zai et al., 2007b; Park et al., 2011; Koning et al., 2012)
rs1800499 No Kaiser et al. (2002)
rs1801028 No Hori et al. (2001); Kaiser et al. (2002); Segman et al. (2003); Chong et al. (2003a); de Leon et al. (2005);

Srivastava et al. (2006); Liou et al. (2006); Park et al. (2011)
rs4648317 No Zai et al. (2007b)
rs1079598 No Zai et al. (2007b)
rs2242591 No Zai et al. (2007b)
rs2242592 No Zai et al. (2007b)
rs2242593 No Zai et al. (2007b)
Val96Ala No Kaiser et al. (2002)
rs2234689 No Srivastava et al. (2006)
rs17294542 No Srivastava et al. (2006)
rs1125394 No Zai et al. (2007b)

DRD3 rs6280 Yes Steen et al. (1997); Segman et al. (1999); Segman et al. (2002a); Basile et al. (1999); Liao et al. (2001);
Lerer et al. (2002); Woo et al. (2002); de Leon et al. (2005); Al Hadithy et al. (2009)

No Gaitonde et al. (1996); Rietschel et al. (2000); Løvlie et al. (2000); Segman et al., 2000; Garcia-Barceló
et al. (2001); Chong et al. (2003a); Srivastava et al. (2006); Zai et al. (2009b); Utsunomiya et al., 2012;
Koning et al. (2012)

rs9817063 No Bakker et al. (2012); Ivanova et al. (2012b)
rs2134655 No Zai et al. (2009b); Bakker et al. (2012); Ivanova et al. (2012b)
rs963468 No Bakker et al. (2012); Ivanova et al. (2012b)
rs324035 No (Bakker et al., 2012; Ivanova et al., 2012b)
rs3773678 No Bakker et al. (2012); Ivanova et al. (2012b)
rs167771 No Bakker et al. (2012); Ivanova et al. (2012b)
rs11721264 No Bakker et al. (2012); Ivanova et al. (2012b)
rs167770 No Zai et al. (2009b); Bakker et al. (2012); Ivanova et al. (2012b)
rs7633291 No Zai et al. (2009b); Bakker et al. (2012); Ivanova et al. (2012b)
rs1800828 No Bakker et al. (2012); Ivanova et al. (2012b)
rs3732782 No Zai et al. (2009b)
rs905568 No Srivastava et al. (2006); Zai et al. (2009b)
rs7620754 No Zai et al. (2009b)
rs7616367 No Zai et al. (2009b)
rs7611535 No Zai et al. (2009b)
rs1394016 No Zai et al. (2009b)
rs9825563 No Zai et al. (2009b)
rs1800828 No Zai et al. (2009b)
rs2399496 No Zai et al. (2009b)
rs2087017 No Zai et al. (2009b)
rs1025398 No Zai et al. (2009b)
rs3732782, rs905568, rs7620754 Yes - haplotype Zai et al. (2009b)
rs324026 No Srivastava et al. (2006)
rs1503670 No Srivastava et al. (2006)

(Continued on following page)
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did not reach statistical significance in neither allelic nor
genotypic level include rs1801028 (Hori et al., 2001; Kaiser
et al., 2002; de Leon et al., 2005; Srivastava et al., 2006; Park
et al., 2011), rs1800497 (Hori et al., 2001; Kaiser et al., 2002;
Segman et al., 2003; Srivastava et al., 2006; Park et al., 2011;
Koning et al., 2012; Lu et al., 2018), rs1799732 (Hori et al., 2001;
Kaiser et al., 2002; Segman et al., 2003; de Leon et al., 2005; Liou
et al., 2006; Srivastava et al., 2006; Zai et al., 2007b; Park et al.,
2011; Koning et al., 2012), rs1801028 (Hori et al., 2001; Kaiser
et al., 2002; Chong et al., 2003a; Segman et al., 2003; de Leon et al.,
2005; Liou et al., 2006; Srivastava et al., 2006; Park et al., 2011),
rs1799978, rs1079597, p. Val96Ala, rs1800499, rs1800496 (Kaiser
et al., 2002), rs1800498 (Kaiser et al., 2002; Liou et al., 2006; Zai
et al., 2007b; Park et al., 2011; Koning et al., 2012), rs2234689, and
rs17294542 (Srivastava et al., 2006). However, an older study
performed in patients with schizophrenia indicated that
rs1800497 might affect the development of TD, given that the
A2 allele and A2/A2 genotype were more frequent in female
patients with TD (Chen et al., 1997). In addition, two meta-
analyses and a comparative study suggested that the A2 allele and
the A2/A2 genotype of rs1800497 was associated with increased
TD risk (Liou et al., 2006; Zai et al., 2007a; Bakker et al., 2008).
Regarding rs1079597, B2 allele and B2/B2 genotype has been
associated with increased TD risk (Liou et al., 2006). A meta-
analysis that included 1256 patients with schizophrenia
concluded that rs1799732 was not associated with TD (Zai
et al., 2007a). Rs6275 (Park et al., 2011) and rs6277 (Koning
et al., 2012) gave negative results for potential association with
TD. Nonetheless, the study of Zai et al. found that rs6277 T allele
and rs6275 C allele frequencies were lower in TD patients as
compared to patients with schizophrenia without TD (Zai et al.,
2007b).

Dopamine D3 receptor is associated with cognitive, emotional,
and endocrine functions due to its localization in the limbic areas of
the brain. It signals through G proteins which inhibit adenylyl
cyclase. Pathologies associated with DRD3 polymorphisms include
schizophrenia and hereditary essential tremor (Jeanneteau et al.,
2006; Nunokawa et al., 2010; Sáiz et al., 2010). Many scientific
groups focused on the association between DRD3 rs6280 and TD,
which gave conflicting results. Some studies indicated no
association with TD development, on neither allelic nor

genotypic level (Gaitonde et al., 1996; Løvlie et al., 2000;
Rietschel et al., 2000; Segman et al., 2000; Garcia-Barceló et al.,
2001; Chong et al., 2003a; Srivastava et al., 2006; Zai et al., 2009b;
Koning et al., 2012; Utsunomiya et al., 2012). Several meta-analyses
have also been conducted, which either observed a significant
contribution of the p.9Gly allele to the higher risk for TD (Lerer
et al., 2002; Bakker et al., 2006) or failed to prove a significant
association (Tsai et al., 2010). There was no association on the
genotypic level, probably due to the small effect size and ethnic
diversity. The authors concluded that DRD3 rs6280 might be
associated with TD, but caution is required in interpreting this
result (Bakker et al., 2006). However, some studies showed a
correlation between TD with either the p.9Gly allele (Steen
et al., 1997; Lerer et al., 2002; Bakker et al., 2006), or p.9Gly
homozygotes (Basile et al., 1999; Woo et al., 2002) and
heterozygotes (Liao et al., 2001). Additionally, DRD3 rs6280 was
associated with a subtype of TD, namely limb-truncal dyskinesia
(Al Hadithy et al., 2009). Other DRD3 polymorphisms that have
been studied but indicated no association with TD include
rs3732782, rs905568, rs7620754, rs7616367, rs7611535,
rs1394016, rs9825563, rs1800828, rs2399496, rs2087017,
rs1025398, rs9817063, rs2134655, rs963468, rs324035, rs3773678,
rs167771, rs11721264, rs167770, rs7633291 and rs1800828 (Zai
et al., 2009b; Bakker et al., 2012; Ivanova et al., 2012b) rs324026,
rs1503670 and biallelic STR (Srivastava et al., 2006). However, it is
important to mention that the study of Zai et al. and his colleagues
reported an association between theDRD3 haplotype of rs3732782,
rs905568, and rs7620754 and TD and they provided evidence of
interaction between BDNF and DRD3 polymorphisms.

Finally, DRD4 rs3758653, rs11246226, 48 bp VNTR exon 3,
rs936465, rs3758653, rs762502, rs916457, rs1800955 have been
investigated in connection to TD, but did not show any
correlation (Segman et al., 2003; Srivastava et al., 2006; Zai
et al., 2009a; Bakker et al., 2012; Ivanova et al., 2012b).

However, association between the haplotype of rs3758653,
rs916457, rs762502, rs11246226 and TD was reported (Zai
et al., 2009a), as well as association between the 120 bp
duplication marker in DRD4 and TD in genotypic level
(Srivastava et al., 2006), which was not replicated (Segman
et al., 2003). All of the studies are presented in this chaptercan
be found in the Supplementary Table S2.

TABLE 2 | (Continued) Genetic variability of dopamine receptors and its association with TD.

Genes Genetic variations Association References

biallelic STR No Srivastava et al. (2006)
DRD4 120-bp tandem duplication Yes Srivastava et al. (2006)

No Segman et al. (2003)
rs11246226 No Zai et al. (2009a)
48 bp VNTR exon 3 No Segman et al. (2003); Srivastava et al. (2006); Zai et al. (2009a)
rs936465 No Zai et al. (2009a)
rs3758653 No Zai et al. (2009a); Bakker et al. (2012); Ivanova et al. (2012b)
rs3758653, rs916457, rs762502,
rs11246226

Yes–haplotype Zai et al. (2009a)

rs762502 No Zai et al. (2009a)
rs916457 No Zai et al. (2009a)
rs1800955 No Srivastava et al. (2006)
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4.2 Serotonin Receptor Genes
Serotonin is a neurotransmitter, which plays a crucial role in
brain pathways. Members of the 5-hydroxytryptamine receptor
subfamily encode seven different receptors for serotonin.
HTR2A, HTR2B and HTR2C are positively coupled with the
phospholipase C enzyme (PLC) and have been investigated for
their potential involvement in TD in many different populations
(Table 3).

5-HT2A receptors are postsynaptic receptors that regulate the
function of prefrontal-subcortical circuits. The 5-HT2A receptor
interacts with G proteins and stimulates PLC to produce the
intracellular second messengers sn-1,2-DAG and inositol-1,4,5-
trisphosphate (IP3), which control the calcium channel
(McMahon et al., 2006). Mutations in the HTR2A gene were
shown to be associated with susceptibility to mental disorders,
such as schizophrenia, depression and obsessive-compulsive
disorder, alcohol dependence and response to antidepressants
(Williams et al., 1996; McMahon et al., 2006; Yasseen et al., 2010).
HTR2A rs6313, rs6311 and rs6314 have been extensively studied
for their potential association with TD development. According
to some studies, rs6313, rs6311 and rs6314 did not reach
statistical significance (Basile et al., 2001; Herken et al., 2003;
Koning et al., 2012). However, HTR2A rs6313 T allele was

associated with TD development (Tan et al., 2001; Hsieh et al.,
2011), but on the contrary the frequency of HTR2A rs6313 TT
homozygotes was higher in patients without TD (Tan et al.,
2001). Additionally, it has been reported that the frequencies of
HTR2A rs6313 C allele andHTR2A rs6311 G allele were higher in
patients with TD. In line with that, the HTR2A rs6313 CC and
HTR2A rs6311 GG (rs6311) genotypes were associated with
higher AIMS scores (Segman et al., 2001) and rs6311
presented a trend of association with TD in Turkish patients
with schizophrenia under prolonged exposure to antipsychotics
(Boke et al., 2007). Additionally, the HTR2A rs6313 CC genotype
was associated with TD development in older patients and those
with limb-truncal TD (Lerer et al., 2005). The haplotype analysis
of the HTR2A rs6313 and HTR2A rs6314 showed significant
associations with TD (Lerer et al., 2005). Finally, HTR2A
rs1928040 was associated with the orofacial type of TD
(Pozhidaev et al., 2020).

Regarding HTR2C genetic variability rs6318 has been
thoroughly studied over the years. Two studies indicated no
association with TD (Hsieh et al., 2011; Koning et al., 2012).
However, a study published in 2000 showed that the frequency of
the Ser allele was more frequent in patients with TD (Segman
et al., 2000). Additionally, HTR2C rs6318 was associated with

TABLE 3 | Genetic variability of serotonin receptors and its association with TD.

Genes Genetic variations Association References

HTR1A rs6295 No Pozhidaev et al. (2020)
rs1364043 No Pozhidaev et al. (2020)
rs10042486 No Pozhidaev et al. (2020)
rs1800042 No Pozhidaev et al. (2020)
rs749099 No Pozhidaev et al. (2020)

HTR1B rs6298 No Pozhidaev et al. (2020)
rs6296 No Pozhidaev et al. (2020)
rs130058 No Pozhidaev et al. (2020)

HTR2A rs1928040 Yes Pozhidaev et al. (2020)
rs6311 Yes Segman et al. (2001); Boke et al. (2007)

No Basile et al. (2001); Herken et al. (2003); Al Hadithy et al. (2009); Pozhidaev et al. (2020)
rs6313 Yes Segman et al. (2001); Tan et al. (2001); Hsieh et al. (2011)

No Basile et al. (2001); Herken et al. (2003); Koning et al. (2012); Pozhidaev et al. (2020)
rs6314 No Basile et al. (2001); Segman et al. (2001); Koning et al. (2012); Pozhidaev et al. (2020)
rs7997012 No Pozhidaev et al. (2020)
rs9316233 No Pozhidaev et al. (2020)
rs2224721 No Pozhidaev et al. (2020)

HTR2C rs518147 Yes Zhang et al. (2002a)
rs6318 Yes Segman et al. (2000); Al Hadithy et al. (2009)

No Hsieh et al. (2011); Ivanova et al. (2012b); Koning et al. (2012); Pozhidaev et al. (2020)
rs1801412 Yes Pozhidaev et al. (2020)

No Bakker et al. (2012); Pozhidaev et al. (2020)
rs4911871 No Bakker et al. (2012)
rs12858300 No Bakker et al. (2012); Pozhidaev et al. (2020)
rs17326429 No Bakker et al. (2012); Pozhidaev et al. (2020)
rs3813929 No Zhang et al. (2002a); Ivanova et al. (2012b); Koning et al. (2012); Pozhidaev et al. (2020)
rs4911871 No Ivanova et al. (2012b); Pozhidaev et al. (2020)
rs569959 No Bakker et al. (2012); Ivanova et al. (2012b); Pozhidaev et al. (2020)
rs5946189 No Bakker et al. (2012); Pozhidaev et al. (2020)

HTR3A rs1062613 No Kang et al. (2013); Pozhidaev et al. (2020)
rs33940208 No Pozhidaev et al. (2020)
rs1176713 No Pozhidaev et al. (2020)

HTR3B rs1176744 No Pozhidaev et al. (2020)
HTR6 rs1805054 No Ohmori et al. (2002); Segman et al. (2003); Pozhidaev et al. (2020)
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TABLE 4 | Genetic variability of other neurotransmitter receptors and their association with TD.

Genes Genetic variations Association References

CHRM1 rs2075748 No Boiko et al. (2020)
rs544978 No Boiko et al. (2020)
rs2067477 No Boiko et al. (2020)
rs2067479 No Boiko et al. (2020)
rs2186410 No Boiko et al. (2020)
rs542269 No Boiko et al. (2020)

CHRM2 rs2061174 Yes Boiko et al. (2020)
rs1824024 Yes Boiko et al. (2020)
rs324650 No Boiko et al. (2020)
rs2350780 No Boiko et al. (2020)
rs7810473 No Boiko et al. (2020)
rs2350786 No Boiko et al. (2020)
rs324640 No Boiko et al. (2020)
rs1378650 No Boiko et al. (2020)

CNR1 rs806374 Yes Tiwari et al. (2012)
rs12720071 No Tiwari et al. (2012)
rs1049353 No Tiwari et al. (2012)
rs80639 No Tiwari et al. (2012)
rs806370 No Tiwari et al. (2012)
rs806368 No Tiwari et al. (2012)
rs806375 No Tiwari et al. (2012)
rs806377 No Tiwari et al. (2012)
rs806378 No Tiwari et al. (2012)
rs2023239 No Tiwari et al. (2012)
rs806380 No Tiwari et al. (2012)
rs806381 No Tiwari et al. (2012)
rs7752758 No Tiwari et al. (2012)
rs12528858 No Tiwari et al. (2012)
rs12205430 No Tiwari et al. (2012)
rs6914429 No Tiwari et al. (2012)
rs2180619 No Tiwari et al. (2012)
rs754387 No Tiwari et al. (2012)
rs9450902 No Tiwari et al. (2012)
rs10485170 No Tiwari et al. (2012)

GABRB2 rs918528 No Son et al. (2014)
GABRG3 rs2061051 No Son et al. (2014)
GRIN2A rs7206256 Yes Ivanova et al. (2012b)

rs1345423 Yes Ivanova et al. (2012b); Ivanova et al. (2016b)
No Bakker et al. (2012)

rs7190619 Yes Ivanova et al. (2012b)
No Bakker et al. (2012)

rs9788936 Yes Ivanova et al. (2012b)
No Bakker et al. (2012)

rs11646587 Yes Ivanova et al. (2012b)
No Bakker et al. (2012)

rs9921541 No Bakker et al. (2012); Ivanova et al. (2012b)
rs7192557 No Bakker et al. (2012); Ivanova et al. (2012b)
rs8049651 No Bakker et al. (2012); Ivanova et al. (2012b)
rs7196095 No Bakker et al. (2012); Ivanova et al. (2012b)
rs11866328 No Bakker et al. (2012); Ivanova et al. (2012b)
rs4782039 No Bakker et al. (2012); Ivanova et al. (2012b)
rs11644461 No Bakker et al. (2012); Ivanova et al. (2012b)
rs9989388 No Bakker et al. (2012); Ivanova et al. (2012b)
rs8057394 No Bakker et al. (2012); Ivanova et al. (2012b)
rs1650420 No Bakker et al. (2012); Ivanova et al. (2012b)

GRIN2B rs2192970 Yes Ivanova et al. (2012b)
No Bakker et al. (2012)

rs1805481 No Ivanova et al. (2012b)
rs7313149 No Bakker et al. (2012); Ivanova et al. (2012b)
rs2300242 No Bakker et al. (2012); Ivanova et al. (2012b)
rs10845838 No Bakker et al. (2012); Ivanova et al. (2012b)
rs12300851 No Bakker et al. (2012); Ivanova et al. (2012b)
rs220599 No Bakker et al. (2012); Ivanova et al. (2012b)
rs10772715 No Bakker et al. (2012); Ivanova et al. (2012b)

(Continued on following page)
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limb-truncal but not with orofaciolingual dyskinesia in the
Russian population (Al Hadithy et al., 2009). Another studied
polymorphism ofHTR2C rs518147 was more frequent in patients
with schizophrenia that experienced TD (Zhang et al., 2002a;
Koning et al., 2012). Other HTR2C polymorphisms were studied,
such as rs569959, rs17326429, rs12858300, rs4911871, rs5946189,
rs1801412 (Bakker et al., 2012), and rs3813929 (Zhang et al.,
2002a; Koning et al., 2012), but no association with TD was
recorded. However, HTR2C rs1801412 was significantly
associated with the orofacial type of TD in women (Pozhidaev
et al., 2020).

Lastly, there are three studies that focused on HTR6
rs1805054. No association with TD was reported in Japanese,
Ashkenazi, non-Ashkenazi and Caucasian schizophrenia patients
(Ohmori et al., 2002; Segman et al., 2003; Pozhidaev et al., 2020).
All of the studies are presented in this chaptercan be found in the
Supplementary Table S2.

4.3 Other Neurotransmission Receptors
Several other neurotransmitters and their receptors may also play
a role in the development of TD (Table 4).

The glutamate system has also been examined for potential
involvement in TD pathophysiology. GRIN2A encodes the
N-methyl-d-aspartate (NMDA) receptor, which belongs to the
glutamate-gated ion channel family. These receptors are involved
in crucial signaling pathways, and their dysregulation is associated
with epilepsy, cognitive and speech deficits, and intellectual
disability (Endele et al., 2010; Lemke et al., 2013; Lesca et al.,
2013). Three studies have investigated the potential role of NMDA
glutamate receptor genes, GRIN2A and GRIN2B in TD (Bakker
et al., 2012; Ivanova et al., 2012b; Ivanova et al., 2016b). Except for
GRIN2A rs7206256, which was associated with orofacial TD
(Ivanova et al., 2012b), conflicting results emerged for GRIN2A
rs1345423, rs7190619, rs9788936 and rs11646587 (Bakker et al.,
2012; Ivanova et al., 2012b; Ivanova et al., 2016b). The same stands
for GRIN2B rs2192970 (Bakker et al., 2012; Ivanova et al., 2012b),
while the rest of the studied polymorphisms were not associated
with TD (Bakker et al., 2012; Ivanova et al., 2012b; Ivanova et al.,
2016b). The role of GABA receptor genes GABRB2 and GABRG3
in TD has been investigated, but no significant associations were
reported for the studied polymorphisms. However, gene-gene
interactions between GABRB2, GABRG3, and SCL6A11 and
susceptibility to TD highlighted the importance of the GABA
receptor signaling pathway (Son et al., 2014).

Muscarinic receptors participate in various cellular responses
such as inhibition of adenylate cyclase, degeneration of
phosphoinositide, and control of potassium channel. These
receptors can influence the function of the central and peripheral
nervous system through acetylcholine-induced signaling (Luo et al.,

2005). Blocking muscarinic receptors with anticholinergic drugs is a
common therapeutic approach for treatment of the drug-induced
parkinsonism and dystonia. Assessment of the association of
muscarinic cholinergic receptor 1 (CHRM1) and 2 (CHRM2)
genetic variability with TD development showed a trend towards
CHRM2 rs2061174 and rs1824024 effect on TD risk (Boiko et al.,
2020). Interestingly, CHRM2 is involved in neurophysiological
processes, mood disorders, alcohol and nicotine abuse (Luo
et al., 2005; Dick et al., 2007; Mobascher et al., 2010).

Opioid receptors can act as dopamine regulators and target
endogenous opioid peptides and analgesics. Genetic variability of
opioid receptors has been associated with substance abuse and
addiction, as well as schizophrenia (Deb et al., 2010; Serý et al.,
2010). Genetic variability ofOPRD1 indicated no association with
TD. However, OPRM1 rs1799971 showed to be a promising
biomarker of TD development since the frequency of the G
allele was lower in patients with TD (Ohmori et al., 2001).

Cannabinoid receptors are members of the G-protein coupled
receptor family, which inhibits adenylate cyclase activity in a dose-
dependent way. Cannabinoid use induces symptoms, such as
anxiety, memory loss and chronic pain, which is associated with
cannabinoid receptors 1 (CNR1) and 2 (CNR2) (Oddi et al., 2012;
Hua et al., 2016). Apart from their association with cannabis
dependence and abuse, and heroin addiction, cannabinoid
receptors have also been related to antipsychotic-induced weight
gain in patients with schizophrenia (Proudnikov et al., 2010; Tiwari
et al., 2010; Arias Horcajadas et al., 2021). The potential role of
CNR1 as an activator in movement inhibition has also been
investigated. The findings indicate an association between the
CNR1 rs806374 CC genotype with both the development and
severity of TD. However, more studies are needed to replicate this
association (Tiwari et al., 2012).All of the studies are presented in
this chaptercan be found in the Supplementary Table S2.

4.4 Neurotransmitter Transporters
SLC18A2 encodes the vesicular monoamine transporter 2
protein, a transmembrane protein that regulates
neurotransmission through transportation of monoamines,
such as dopamine, serotonin, and norepinephrine, into the
intracellular vesicles. Psychiatric disorders like schizophrenia,
as well as movement disorders (Rilstone et al., 2013), nicotine
and alcohol dependence (Schwab et al., 2005) and
antidepressant response (Crowley et al., 2008) have been
associated with SLC18A2 polymorphisms. SLC18A2
rs363390, rs14240, rs1860404, rs2015586 (Zai et al., 2013),
and rs363224 were all associated with TD development (Zai
et al., 2013; Lu et al., 2018).

SLC6A4 encodes the serotonin transporter (5-HTT), a
membrane protein that transports serotonin from the synaptic

TABLE 4 | (Continued) Genetic variability of other neurotransmitter receptors and their association with TD.

Genes Genetic variations Association References

rs12827536 No Bakker et al. (2012); Ivanova et al. (2012b)
OPRD1 921 T/C No Ohmori et al. (2001)
OPRM1 rs1799971 Yes Ohmori et al. (2001)

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 12 | Article 83412911

Tsermpini et al. Pharmacogenetics of Tardive Dyskinesia

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


cleft back to presynaptic neurons. Genetic variability of SLC6A4 is
associated with response to antidepressant and lithium treatment
(Rybakowski et al., 2009; Tansey et al., 2012). However, studies
focusing on SLC6A4 and TD development provided no evidence
of association (Chong et al., 2000; Herken et al., 2003; Segman
et al., 2003; Hsieh et al., 2011).

SLC6A3 encodes a dopamine transporter, member of the
sodium- and chloride-dependent neurotransmitter
transporter family. Variation in the number of repeats has
been associated with attention-deficit hyperactivity disorder,
alcohol and cocaine dependence, as well as susceptibility to
Parkinson’s disease (Lott et al., 2005; Kurian et al., 2009, 2011;
Müller et al., 2010). The 40 bp tandem repeat VNTR found in
the 3’ UTR was not associated with TD (Segman et al., 2003;
Srivastava et al., 2006), and so was not the G2319A
transversion either (Segman et al., 2003).

The protein encoded by SLC6A11 is a sodium-dependent
transporter of GABA from synaptic cleft to surrounding glial
cells leading to decreased GABA signaling. A case-control study,
which included 180 patients with schizophrenia, 105 of whom
experienced TD, identified an association between SLC6A11

rs4684742 and TD (Son et al., 2014) (Summarized in
Table 5). All of the studies are presented in this chaptercan be
found in the Supplementary Table S2.

4.5 Neurotransmitter Biosynthesis and
Degradation Pathways
Genes involved in neurotransmitter biosynthesis and degradation
have also been studied for their potential role in the development and
severity of TD (Table 6). However, only rs4680 located on the
catechol-O-methyltransferase gene (COMT) indicated potential
association, given that AA and AG genotypes were associated with
decreased TD risk in comparison with carriers of GG genotype
(Srivastava et al., 2006; Bakker et al., 2008). However, additional
studies failed to replicate this result (Herken et al., 2003; Matsumoto
et al., 2004a; Lai et al., 2005; Zai et al., 2010b; Koning et al., 2012; Li
et al., 2013; Lv et al., 2016). The AA genotype of COMT rs165599 was
associated with TD and a trend of association with higher AIMS
scores was also reported in a mixed cohort of Caucasians and African
Americans (Zai et al., 2010b). Allelic and genotypic associations were
also recorded for rs4818 in a cohort of Indian patients with

TABLE 5 | Genetic variability of neurotransmitter transporters and its associations with TD.

Genes Genetic variations Association References

SLC18A2 rs363390 Yes Zai et al. (2013)
rs14240 Yes Zai et al. (2013)
rs1860404 Yes Zai et al. (2013)
rs2015586 Yes Zai et al. (2013)
rs363224 Yes Zai et al. (2013); Lu et al. (2018)
rs363285 No Zai et al. (2013)
rs363393 No Zai et al. (2013)
rs2072362 No Zai et al. (2013)
rs2244249 No Zai et al. (2013)

SLC6A4 5-HTTLPR VNTR (5-HTT) No Chong et al. (2000); Herken et al. (2003); Segman et al. (2003); Hsieh et al. (2011)
SLC6A3 40 bp VNTR No Segman et al. (2003); Srivastava et al. (2006)

G2319A No Segman et al. (2003)
SLC6A11 rs4684742 Yes Son et al. (2014)

TABLE 6 | Genetic variability of neurotransmitter biosynthesis and degradation pathways and its association with TD.

Genes
examined

Genetic variations Association References

COMT rs4680 Yes Srivastava et al. (2006); Bakker et al. (2008)
No Herken et al. (2003); Matsumoto et al. (2004a); Lai et al. (2005); Zai et al. (2010b); Koning et al. (2012);

Li et al. (2013); Lv et al. (2016)
rs4818 Yes Srivastava et al. (2006)

No Zai et al. (2010b)
rs165599 Yes Zai et al. (2010b)
rs737865 No Zai et al. (2010b)
rs6269 No Zai et al. (2010b)
rs4633 No Srivastava et al. (2006); Zai et al. (2010b)
rs2075507 No Srivastava et al. (2006)
900 ins C 3 UTR No Srivastava et al. (2006)

DBH rs72393728 No Sun et al. (2013); Hui et al. (2015); Hui et al. (2017)
MAOA 30-bp repeat in the promoter

region
No Matsumoto et al. (2004b); Li et al. (2013)

MAOB rs1799836 No Matsumoto et al. (2004b)
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schizophrenia (Srivastava et al., 2006), which was not replicated in a
later study (Zai et al., 2010b) (summarized in Table 6).

Other studied genes of this category that did not reach
statistical significance, include DBH coding for dopamine beta-
hydroxylase (Sun et al., 2013; Zhou et al., 2013; Hui et al., 2015,
2017), and genes coding for monoamine oxidases, MAOA
(Matsumoto et al., 2004b; Li et al., 2013) and MAOB
(Matsumoto et al., 2004b).All of the studies are presented in
this chaptercan be found in the Supplementary Table S2.

4.6 Developmental/Plasticity Factors
ErbB4 is a tyrosin kinase receptor and among others binds
neuregulins and other compounds. It plays an essential role in
neurotransmission and cellular responses. It is a regulator of
GABA and dopamine signaling and mediates neuroplasticity
(Vullhorst et al., 2009). Genetic variability of ERBB4 has been
associated with cancer, schizophrenia, and amyotrophic lateral
sclerosis (Tvorogov et al., 2009; So et al., 2010; Takahashi et al.,
2013). Regarding TD, ERBB4 rs839523 CC genotype was
associated with a high risk of developing TD and a higher
chance for severe TD in a cohort of 153 European patients
with schizophrenia (Zai et al., 2019a).

The gene coding for the Protein Regulating Synaptic
Membrane Exocytosis 2 (RIMS2) has also been studied, and
an association between rs567070433 and TD occurrence was
observed (Alkelai et al., 2019). RIMS2 encodes a protein that
binds other proteins involved in neurotransmitter diffusion.
Polymorphisms in this gene have been associated with
degenerative lumbar scoliosis, congenital cone-rod synaptic
disorder, neurodevelopmental disease, and abnormal glucose
homeostasis in the elderly (Mechaussier et al., 2020).

Other genes that are involved in developmental plasticity,
including BDNF (Zai et al., 2009b; Wang et al., 2010; Zhang et al.,

2012),DISC1 (Lu et al., 2018), NRXN1 (Lanning et al., 2017), and
NRG1 (Zai et al., 2019a) were investigated but showed no
association with TD (Table 7). All of the studies are presented
in this chaptercan be found in the Supplementary Table S2.

4.7 Oxidative Stress-Related Genes
The role of oxidative stress-related genes has received the attention
of various research groups over the years (Table 8). SOD2 belongs
to the iron/manganese superoxide dismutase family and SOD2
encodes a mitochondrial protein that binds manganese ions and
products of oxidative phosphorylation. SOD2 rs4880 is one of the
most frequently studied polymorphisms of this gene, but
conflicting results regarding its association with TD have been
reported so far. Most of the studies indicated no association with
TD (Zhang et al., 2002b; Zai et al., 2010a; Ivanova et al., 2012b;
Koning et al., 2012), including a meta-analysis with a validation
cohort of 223 patients with schizophrenia of Caucasian andAfrican
American ancestry (Zai et al., 2010a). However, an association
between lower SOD2 rs4880 Ala allele frequencies in TD affected
patients was recorded (Hori et al., 2000), along with a significant
difference in genotypic distribution between patients with and
without TD (Hori et al., 2000; Hitzeroth et al., 2007).

GSTM1 encodes a glutathione S-transferase mu 1. This
enzyme conjugates with glutathione and detoxifies many
electrophilic compounds, such as products of oxidative stress
and drugs, influencing their toxicity and efficacy. Genetic
variability of GSTM1 is associated with cancer, including brain
tumors and chronic diseases, like asthma (Schwartzbaum et al.,
2007; Sakoda et al., 2008; Nguyen et al., 2010; Piacentini et al.,
2010). Association between GSTM1 deletion and TD
development has also been observed in Caucasians taking
risperidone, olanzapine, quetiapine or FGAs (de Leon et al.,
2005).

TABLE 7 | Developmental and plasticity: genetic variations and associations with TD.

Genes Genetic variations Association References

ERBB4 rs839523 Yes Zai et al. (2019a)
RIMS2 rs567070433 Yes Alkelai et al. (2019)
NRXN1 rs17041112 No Lanning et al. (2017)

rs10490162 No Lanning et al. (2017)
rs1400882 No Lanning et al. (2017)
rs12467557 No Lanning et al. (2017)
rs1045881 No Lanning et al. (2017)

NRG1 rs35753505 No Zai et al. (2019a)
rs6994992 No Zai et al. (2019a)

BDNF rs6265 No Zai et al. (2009b); Wang et al. (2010); Zhang et al. (2012)
rs7934165 No Zai et al. (2009b)
rs11030104 No Zai et al. (2009b)
rs1519480 No Zai et al. (2009b)

DISC1 rs2492367 No Lu et al. (2018)
rs3738398 No Lu et al. (2018)
rs1322784 No Lu et al. (2018)
rs11122359 No Lu et al. (2018)
rs821597 No Lu et al. (2018)
rs701158 No Lu et al. (2018)
rs3738401 No Lu et al. (2018)
rs6675281 No Lu et al. (2018)
rs821616 No Lu et al. (2018)
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Other oxidative stress-related genes were also studied but
indicated no association with TD. These genes include NOS1
(Shinkai et al., 2004), NQO1 (Zai et al., 2010a; Bakker et al., 2012;
Ivanova et al., 2012b; Koning et al., 2012), GSK3B (Levchenko
et al., 2019), GPX1 (Shinkai et al., 2006; Bošković et al., 2013),
CAT (Bošković et al., 2013), GSTT1 (de Leon et al., 2005), and
GSTP1 (Shinkai et al., 2005; Koning et al., 2012). All of the studies
are presented in this chaptercan be found in the Supplementary
Table S2.

4.8 Inflammation and Tardive Dyskinesia
Genes involved in inflammation have also been proposed to be
associated with TD (Table 9). Genes that encode proteins
involved in inflammation, such as IL10 (Sun et al., 2013), and
TNF (Wang et al., 2012; Bošković et al., 2013) were studied and
showed no association with TD.

Complement component 4 (C4) is part of the complement
system which mediates immunity. C4 was implicated in
schizophrenia pathophysiology and motor movement after
injury. The investigation of copy number variations of the
long (L) and short (S) forms of C4A and C4B in Europeans
has shown a nominally significant association between C4BL and
TD severity (Zai et al., 2019b). All of the studies are presented in
this chaptercan be found in the Supplementary Table S2.

4.9 Other Genes
Other studied candidate genes and their polymorphisms have
been investigated for potential association with TD (Table 10).

Adenosine receptors are involved in many intracellular
signaling pathways as homeostatic modulators of adenosine in

the central nervous system. Even though there were no associations
between polymorphisms of ADORA1, ADORA2A, and ADORA3
and TD (Ivanova et al., 2012a; Turčin et al., 2016), it should be
mentioned that the ADORA3 CACTAT haplotype of rs3394,
rs3393, rs2229155, rs35511654, rs1544223, and rs2298191
polymorphisms was associated with TD (Turčin et al., 2016).

HSPG2 encodes perlecan, a proteoglycan that binds
components of the matrix and cell membrane and is involved
in essential biological processes. Perlecan participates in
vascularization and maintains endothelial barrier function and
vascular homeostasis. Genetic variability of HSPG2 has been
associated with skeletal disorders (Arikawa-Hirasawa et al.,
2001, Arikawa-Hirasawa et al., 2002). HSPG2 polymorphisms
were not associated with TD in several different studies (Bakker
et al., 2012; Ivanova et al., 2012b; Greenbaum et al., 2012).
However, the assessment of HSPG2 rs2445142 in association
with TD returned both non-significant (Bakker et al., 2012) and
significant results (Greenbaum et al., 2012; Zai et al., 2018a). A
meta-analysis of 324 patients with TD and 515 without TD
indicated that HSPG2 rs2445142 G allele was significantly
associated with TD (Zai et al., 2018a). Association between
HSPG2 rs2445142 G allele and TD risk was also reported in a
patient cohort of Jewish Israeli descent (Greenbaum et al., 2012).

Even though studied polymorphisms in DTNBP1 did not
reach statistical significance, it should be pointed out that a
haplotype comprised of rs2619539 G allele, rs875462 T allele,
and rs17470454 G allele was associated with higher TD risk and a
haplotype with rs760761 A, rs3213207 T, and rs16876738 C
alleles with TD severity (Maes et al., 2021). Mutations of
DTNBP1 have also been associated with memory and

TABLE 8 | Oxidative stress pathway: genetic variations and associations with TD.

Genes Genetic variations Association References

GSTM1 GSTM1 deletion Yes de Leon et al. (2005)
SOD2 rs4880 Yes Hori et al. (2000); Hitzeroth et al. (2007)

No Zhang et al. (2002b); Zai et al. (2010a); Ivanova et al. (2012b); Koning et al. (2012); Bošković et al. (2013)
NOS1 C/T polymorphism in exon 29 No Shinkai et al. (2004)
NQO1 rs1800566 No Zai et al. (2010a); Bakker et al. (2012); Ivanova et al. (2012b); Koning et al. (2012)
GSK3B rs334558 No Levchenko et al. (2019)
GPX1 rs1050450 No Shinkai et al. (2006); Bošković et al. (2013)
CAT rs1001179 No Bošković et al. (2013)

rs10836235 No Bošković et al. (2013)
GSTT1 GSTT1 deletion No de Leon et al. (2005)
GSTP1 rs1695 No Shinkai et al. (2005); Koning et al. (2012)

TABLE 9 | Inflammation: genetic variations and associations with TD.

Genes Genetic variations Association References

IL10 rs1800872 No Sun et al. (2013)
TNF rs1800629 No Wang et al. (2012); Bošković et al. (2013)
C4A C4AL No Zai et al. (2019b)

C4AS No Zai et al. (2019b)
C4A No Zai et al. (2019b)

C4B C4BL Yes Zai et al. (2019b)
C4BS No Zai et al. (2019b)
C4B No Zai et al. (2019b)
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TABLE 10 | Genetic variability of other genes and associations with TD.

Genes Genetic variations Association References

PIP4K2A rs10828317 Yes Fedorenko et al. (2014)
rs746203 No Fedorenko et al. (2014)
rs8341 No Fedorenko et al. (2014)

ESR1 NA Yes Lai et al. (2002)
ApoE ApoE ε2 No Kimura et al. (2000)

ApoE ε3 No Kimura et al. (2000)
ApoE ε4 No Kimura et al. (2000)

PAWR rs7979987 No Kim et al. (2012)
rs4842318 No Kim et al. (2012)
rs17005769 No Kim et al. (2012)

DTNBP1 rs760761 No Maes et al. (2021)
rs3213207 No Maes et al. (2021)
rs16876738 No Maes et al. (2021)
rs2619539 No Maes et al. (2021)
rs875462 No Maes et al. (2021)
rs17470454 No Maes et al. (2021)
rs2619539, rs875462, rs17470454 Yes - haplotype Maes et al. (2021)
rs760761, rs3213207, rs16876738 Yes - haplotype Maes et al. (2021)

MTNR1A rs11721818 No Lai et al. (2011a)
rs2375801 No Lai et al. (2011a)
rs6553010 No Lai et al. (2011a)
rs11721818, rs2375801, rs6553010 Yes - haplotype Lai et al. (2011a)

MTNR1B rs4753426 No Lai et al. (2011a)
rs10830963 No Lai et al. (2011a)
rs3781637 No Lai et al. (2011a)

ADORA1 rs1874142 No Turčin et al. (2016)
rs10920568 No Turčin et al. (2016)
rs3766566 No Turčin et al. (2016)
rs3766560 No Turčin et al. (2016)
rs3753472 No Turčin et al. (2016)
rs3766553 No Turčin et al. (2016)
rs12744240 No Turčin et al. (2016)

ADORA2A rs35060421 No Ivanova et al. (2012a)
rs2298383 No Turčin et al. (2016)
rs17004921 No Turčin et al. (2016)
rs5751876 No Turčin et al. (2016)
rs35320474 No Turčin et al. (2016)
rs2236624 No Turčin et al. (2016)

ADORA3 rs3394 No Turčin et al. (2016)
rs3393 No Turčin et al. (2016)
rs2229155 No Turčin et al. (2016)
rs35511654 No Turčin et al. (2016)
rs1544223 No Turčin et al. (2016)
rs2298191 No Turčin et al. (2016)
rs3394, rs3393, rs2229155, rs35511654, rs1544223, rs2298191 Yes - haplotype Turčin et al. (2016)

ACE insertion/deletion in the 16th intron No Segman et al. (2002b)
AKT1 rs3730358 No Zai et al. (2008); Levchenko et al. (2019)

rs1130214 No Zai et al. (2008); Levchenko et al. (2019)
rs2498784 No Zai et al. (2008)
rs2494746 No Zai et al. (2008)
rs10149779 No Zai et al. (2008)
rs2494738 No Zai et al. (2008)
rs3803304 No Zai et al. (2008)
rs2494731 No Zai et al. (2008)

HSPG2 rs2445142 Yes Greenbaum et al. (2012); Zai et al. (2018a)
No Bakker et al. (2012)

rs2270697 No Bakker et al. (2012); Ivanova et al. (2012b)
rrs4738269 No Greenbaum et al. (2012)
rs2061051 No Greenbaum et al. (2012)
rs2124368 No Greenbaum et al. (2012)
rs6698486 No Bakker et al. (2012)
rs886292 No Greenbaum et al. (2012)

RGS2 rs4606 No Koning et al. (2012)
TPH rs1800532 No Segman et al. (2003)
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schizophrenia through the glutamate pathway (Fallgatter et al.,
2010; Hashimoto et al., 2010; Strohmaier et al., 2010).

PIP4K2A is a member of the phosphatidylinositol-5-
phosphate 4-kinase family and mediates secretion, cell
proliferation, differentiation, and motility (Rameh et al., 1997).
It is associated with cancer (Sivakumaren et al., 2020) and it has
also been examined for potential involvement in schizophrenia,
but only a minor association was reported (Thiselton et al., 2010).
PIP4K2A rs10828317, rs746203, and rs8341 have been
investigated for potential association with TD in a cohort of
491 patients of Siberian origin, but only rs10828317 was
associated with TD development (Fedorenko et al., 2014).

Melatonin transmembrane receptor is a G-protein, found in
the brain, where it is involved in the circadian rhythm pathway
(Ebisawa et al., 1999; Stauch et al., 2019). Individual
polymorphisms in the genes of melatonin receptors 1A
(MTNR1A) and 1B (MTNR1B) were not associated with TD.
However, the haplotype comprised of MTNR1A rs11721818 A,
rs2375801 T, and rs6553010 G alleles had a protective effect
against TD (Lai et al., 2011a).

Genetic variability of AKT1 (Zai et al., 2008; Levchenko et al.,
2019), ACE (Segman et al., 2002b), APOE (Kimura et al., 2000),
PAWR (Kim et al., 2012), TPH (Segman et al., 2003) and RGS2
(Koning et al., 2012) was also examined for potential association
with TD, but without statistically significant results. All of the
studies are presented in this chaptercan be found in the
Supplementary Table S2.

5 GENOME-WIDE ASSOCIATION STUDIES
OF TARDIVE DYSKINESIA

Since 2008, seven GWAS had a goal of identifying the genetic
biomarkers of TD development (Table 11). All of them were

focused on patients with schizophrenia treated with
antipsychotics, for whom the diagnosis and the TD were
assessed according to DSM-IV and AIMS, respectively.

The first GWAS investigated 13,307 genes and 40,573 SNPs
and was accompanied by a replication study. The cohort was
comprised of 100 patients of whom 50 had TD, but no SNP was
significantly associated with TD after Bonferroni correction.
However, ELOVL3 rs10748816, BCOR rs6609051, TCP10L
rs7281019, CBLC rs10419669, SLC38A1 rs1444590, EHF
rs286925, TBCD rs3744165, RBM17 rs2274359, DLG5
rs1058198, ABCC8 rs886292, MAN1A2 rs2306444, EDIL3
rs13153252, ANXA13 rs4242345, SMYD3 rs6426327
polymorphisms showed some initial potential, so authors
attempted to evaluate their significance in a replication cohort,
which included 174 (36 with TD) Japanese patients. SLC6A11
rs4684742, GABRB2 rs918528, and GABRA3 rs2061051 were all
statistically significant in both the GWAS and the replication
study, indicating that the GABA receptor signaling pathway may
be involved in TD pathophysiology (Inada et al., 2008). The
involvement of the GABA receptor signaling pathway in TD
pathophysiology was also highlighted in a canonical pathway-
based analysis within a GWAS published in 2010. The GWAS
included 100 Japanese schizophrenia patients (50 with treatment-
resistant TD) and the findings were validated in an independent
cohort of 172 patients (36 with treatment-resistant TD),
identifying an association between several polymorphisms in
the HSPG2 gene and TD (Arinami and Inada 2011).

Association between TD and HSPG2 rs2445142 was observed
in an independent GWAS that studied a cohort of 100 Japanese
schizophrenia patients that included 50 patients with TD. The
study also included a validation cohort of 172 patients (36 with
TD), who were genotyped for the following promising
polymorphisms: PLOD1 rs7529452, HSPG2 rs2445142,
COL11A1 rs1934712, MAN1A2 rs2306444, TBX15 rs869807,

TABLE 11 | Genome-wide association studies of TD.

Outcome Number of subjects Ethnicity Platform References

Association between SLC6A11 rs4684742,
GABRB2 rs918528 and GABRA3 rs2061051,
and TD development

GWAS: 100 (50 with TD)
replication cohort: 174 (36
with TD)

Japanese Sentrix Human-1 Genotyping BeadChip
(Illumina) (40,573 SNPs in 13,307 genes)

Inada et al.
(2008)

Association between HSPG2 rs2445142
and TD

GWAS: 100 (50 with TD),
replication cohort: 172 (36
with TD)

Japanese Illumina Sentrix Human-1 Genotyping 109k
BeadChip

Syu et al. (2010)

Association between GLI2 rs3943552 and TD 327 (131 with TD) European American,
African American and
others

Affymetrix 500K (500,568 SNPs) and the
Perlegen custom 164K chip (164,871 SNPs)

Greenbaum
et al. (2010)

Association between rs7669317 located in an
intergenic region and AIMS

738 (NA with TD) European American,
African American and
others

Affymetrix 500K chipset (Santa Clara, CA,
United States) and a Perlegen custom 164K
chip

Aberg et al.
(2010)

Association between SNPs in HSPG2 and TD
pathophysiology

GWAS: 100 (50 with TD),
replication cohort: 172 (36
with TD)

Japanese NA Arinami and
Inada (2011)

Significant association between DPP6
rs6977820 and TD

122 (61 with TD),
replication cohort: 174 (36
with TD)

Japanese Illumina HumanHapCNV370 BeadChip Tanaka et al.
(2013)

Association between GSE1 rs11639774,
TNFRSF1B rs499646, EPB41L2 rs6926250,
and CALCOCO1 rs4237808 and TD

1406 (280 with TD) Han Chinese,
European, African
American

Illumina 1M Duo Beadchip, Affymetrix 500K “A”
chipset (Nsp and Sty chips), and Perlegen’s
custom 164K chip

Lim et al. (2021)
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DUSP10 rs6668395, SMYD3 rs6426327, EML4 rs4558632, ASB3
rs6714424, LRRTM4 rs2060279, BUB1 rs11694702, KCNH7
rs1873201, UBE2E3 rs11688866, STAC rs3749279, TBL1XR1
rs6443468, LOC285513 rs13115988, C9 rs700237, MGC33648
rs832582, EDIL3 rs13153252, FER rs6594324, FAM46A
rs915125, CDC2L6 rs2691180, CITED2 rs9376506, FLJ39824
rs1832445, ZMIZ2 rs3735478, DPP6 rs1047053, SULF1
rs2583086, KCNB2 rs4738269, STARS rs2927111, ANGPT1
rs3019982, ANXA13 rs4242345, COL15A1 rs1413299, RBM17
rs2274359, PCDH15 rs1932596, DLG5 rs1058198, ELOVL3
rs10748816, GBF1 rs2246775, MGMT rs765934, ABCC8
rs886292, EHF rs286925, SPCS2 rs568758, NEU3 rs624786,
SLC38A1 rs1444590, KIAA1906 rs1154664, LIG4 rs1924174,
SEC10L1 rs1189827, ITPK1 rs11625123, VRK1 rs10140345,
GABRG3 rs2061051, APBA2 rs3764211, PML rs1036673,
DNAH9 rs3809729, FBXW10 rs4630608, ACACA rs2287352,
FLJ13841 rs3744165, DLGAP1 rs474122, HMG20B rs12460403,
NPHS1 rs437168, CBLC rs10419669, HAS1 rs8112223, C20orf26
rs2328500, TCP10L rs7281019, and LOC91464 rs2056965 (Syu
et al., 2010). Except for rs2445142 HSPG2, no other genetic
variants reached statistical significance.

The importance of DPP6 was pointed out in a GWAS
conducted on a cohort of 122 patients with schizophrenia (61
with TD) and verified in an independent cohort of 174 patients
(36 with TD). DPP6 rs6977820, located in the first intron of
DPP6, was statistically significantly associated with TD in both
GWAS and replication study. In addition, 50-weeks
administration of haloperidol was associated with high DPP6
expression in the prefrontal, striatal, hippocampal, and
ventricular midbrain regions of mice. In contrast, low gene
expression was observed in the human postmortem prefrontal
cortex of those carrying the risk allele. The authors concluded that
the increased production of DPP6 might decrease dopamine
release, which lowers dopamine sensitivity (Tanaka et al.,
2013). DPP6 is a membrane protein and member of serine
proteases, with an affinity for specific voltage-gated potassium
channels, altering their expression. It is predominantly expressed
in the brain and might be involved in neuronal plasticity and
amyotrophic lateral sclerosis (Jerng et al., 2004). DPP6 protein
can regulate the membrane trafficking of KV4 proteins and
modify channel properties (Clark et al., 2008). Importantly,
KV4 channels regulate the activity of dopaminergic neurons
(Tanaka et al., 2013).

A GWAS that was performed on a cohort of 738 patients
with schizophrenia within the CATIE study (Clinical
Antipsychotic Trial of Intervention Effectiveness) should
also be mentioned, even though it focused not solely on TD,
but more broadly on movement disorders. A statistically
significant association was recorded between rs7669317,
AIMS scores, and probable TD. This polymorphism is
located in the intergenic region of the chromosome 4q24,
very close to PPA2 (Aberg et al., 2010).

An additional two-step study was performed on a cohort of
327 patients within the CATIE cohort, 131 of whom experienced
TD. Authors conducted a GWAS using the genotype data from
the CATIE study, followed by a validation study with the SNPs
shown to be significant in the first stage. Among the 25 SNPs

investigated and genotyped by Sequenom MassArray, GLI2
rs3943552 was significantly associated with TD (Greenbaum
et al., 2010). GLI2 is a transcription factor involved in the
sonic hedgehog signaling pathway, which was found to play
an essential role in controlling voluntary motor movement
through the differentiation of midbrain dopaminergic neurons
(Abeliovich and Hammond 2007; Tolosa et al., 2020).

Lastly, the largest GWAS was published in 2021. The cohort
of patients was comprised of 1406 patients (208 with TD) of
Han Chinese, European and African American descent. To
investigate the genetic variability of the potential underlying
mechanisms and pathways of TD, they applied a robust and
thorough bioinformatic analysis, including meta-analysis,
functional annotation, eQTLs, transcriptome-wide fine-
mapping, polygenic risk score analyses and multivariate
logistic regression analyses. The study revealed the
importance of three genomic loci on chromosomes 1, 6 and
12 and a novel locus on chromosome 16, highlighting the
importance of TNFRSF1B, EPB41L2, CALCOCO1 and GSE1
genes (Lim et al., 2021). TNFRSF1B is a member of the tumor
necrosis factor receptor superfamily and participates in the
antiapoptotic signaling pathway. It is expressed in immune
cells, highlighting the importance of immune system in TD
pathogenesis (Lee and Kang 2011; Lanning et al., 2016; Lim
et al., 2021). EPB41L2 is a membrane protein that was found to
have a protective effect on motor activity. Published data suggest
that its deficiency in mice convoy motor movement
dysfunctions due to its involvement in cytoskeletal binding
(Saitoh et al., 2017; Lim et al., 2021). CALCOCO1 was
recently found to be involved in the autophagy of
endoplasmic reticulum (Nthiga et al., 2020) and the
transcriptional activation of target genes in the Wnt/
CTNNB1 pathway (Mizuta et al., 2014). GSE1 encodes a
proline-rich protein with coiled-coil domains, named
KIAA0182 and it is regulated by miR-489-5p. In breast
cancer, GSE1 is overexpressed, while breast cancer cells’
proliferation, migration and invasion are inhibited when
silencing the gene (Chai et al., 2016). Similarly, GSE1 is
overexpressed in gastric cancer cells treated with
trastuzumab, while its deletion leads to reduced trastuzumab
resistance of trastuzumab-resistant gastric cancer cells (Wang
et al., 2021b).

6 TRANSLATING PRE-CLINICAL AND
CLINICAL FINDINGS TO CLINICAL
PRACTICE: WHERE NEXT?
This comprehensive review of the published findings of studies in
experimental animal models and clinical studies focusing on the
potential association between genetic variations and TD
occurrence shows a rather significant discrepancy between
genes and proteins investigated in preclinical and clinical settings.

However, we were able to identify eight genes that may be
implicated in the molecular pathogenesis of TD based on the
findings of the preclinical studies and which also reached
statistical significance in at least one clinical study. However,
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the results of pharmacogenetic studies were often inconclusive or
even conflicting.

Probably the most interesting entity involves the VMAT2, a
transporter of the monoamine neurotransmitters from the
cytosol into synaptic vesicles. The levels of VMAT2 were
decreased in the experimental animals with VCM (Lévesque
et al., 2017) and genetic variability of SLC18A2 was associated
with TD in two different pharmacogenetic studies (Zai et al.,
2013; Lu et al., 2018). One of the most promising potential
treatments for TD are the VMAT2 inhibitors, such as
valbenazine and deutetrabenazine, which were approved by
the FDA in 2017 (Arya et al., 2019). The detection of
functionally relevant SLC18A2 variants could allow
identification of potential perturbations in VMAT2 function
before the treatment initiation and would offer a window of
opportunity to administer VMAT2 inhibitors along with the
antipsychotic treatment to prevent TD development in the
first place.

Furthermore, dopamine receptors 1 and 3 were also involved
in the TD development in preclinical and at least one clinical
study. It was shown that DRD1 binding is decreased in capuchin
monkeys which developed TD upon haloperidol treatment
(Mahmoudi et al., 2014). In addition, it was shown that the
DRD1 rs4532 CC genotype is associated with increased TD risk.
DRD1 rs4532 is a promoter polymorphism, which means that it
may affect gene expression, but the exact SNP function is not
known yet (Lai et al., 2011b). Moreover, DRD3 binding was
increased in the monkeys with TD (Mahmoudi et al., 2014). In
line with this, the DRD3 rs6280 that increases the binding affinity
of the receptor was associated with a higher chance of TD
development (Steen et al., 1997; Basile et al., 1999; Segman
et al., 1999, Segman et al., 2002a; Liao et al., 2001; Lerer et al.,
2002; Woo et al., 2002; de Leon et al., 2005; Al Hadithy et al.,
2009).

As a part of the serotonergic system, HTR2A was
upregulated in the capuchin monkeys with TD, treated
with haloperidol (Lévesque et al., 2017). Along with that,
three HTR2A SNPs were associated with TD development
(Segman et al., 2001; Tan et al., 2001; Hsieh et al., 2011;
Pozhidaev et al., 2020).

The levels of glutamate receptors GRIN2A and GRIN2B were
also shown to be increased in capuchin monkeys with TD due to
haloperidol treatment (Lévesque et al., 2017). Furthermore,
several GRIN2A SNPs (Ivanova et al., 2012b; Ivanova et al.,
2016b) and one GRIN2B SNP (Ivanova et al., 2012b) were
associated with the occurrence of TD. The functionality of the
GRIN2A and GRIN2B SNP is not well known. Nevertheless, they
may present a promising biomarker for identifying patients with
increased risk for TD development.

A critical pathway associated with TD development is also the
defense against reactive oxygen species. Animal studies showed
that the activity of SOD is decreased in TD affected animals,
which probably explains elevated oxidative stress in TD (Patil
et al., 2012; Nade et al., 2013; Thakur et al., 2015; Wang et al.,
2015; Samad and Haleem 2017; Dhingra et al., 2018; Soung et al.,
2018; Tsai et al., 2019; Wang et al., 2021a). The pharmacogenetic
studies of candidate genes also identified a promising genetic

biomarker of TD within this pathway, namely SOD2 rs4880 (Hori
et al., 2000). This SNP decreases enzyme’s activity and thus
increases the risk for TD development and these observations
agree with the results of the animal studies.

Lastly, CYP2D6 was shown to be decreased in the animals
developing TD (Miksys et al., 2017), which agrees with the
pharmacogenetic studies. The latter consistently reported that
carriers of CYP2D6 with decreased metabolizing capacity had
increased odds for TD development (Koola et al., 2014; Lu et al.,
2020).

All the available published information regarding the impact
of human genetic variations on drug response is compiled and
publicly available from the Pharmacogenomics Knowledge Base
(PharmGKB) (Relling and Klein 2011; Whirl-Carrillo et al., 2012,
Whirl-Carrillo et al., 2021). The database provides clinically
actionable gene-drug and genotype-phenotype associations and
pharmacogenomic guidelines for a variety of drugs (https://www.
pharmgkb.org/). In addition, it provides information about the
significance of the drug-gene association, using the term “level of
evidence (LOE),”which ranges from 1 to 4. Level 1A describes the
strongest variant-drug association, for which there is either a
clinical pharmacogenomic recommendation or an FDA-
approved drug label annotation. On the other hand, LOE 4
refers to evidence that is insufficient to support associations
between the genetic variant and the drug phenotype.
Regarding TD, PharmGKB has three clinical annotations
listing variant-antipsychotic combinations, all of them
reaching LOE 3. This level of evidence indicates a low-level
association, which might be supported either by one single
study or several studies that failed to validate the association.
According to PharmGKB clinical annotations, patients with the
COMT rs4680 GG genotype, HTR2A rs6311 TT genotype, and
DPP6 rs6977820 TT genotype, who are treated with
antipsychotics, have a higher chance for TD development
(https://www.pharmgkb.org/disease/PA447268/
clinicalAnnotation).

Based on the above, it is evident that despite the high number
of clinical and preclinical studies conducted in TD, the translation
of the acquired knowledge to the everyday clinical practice is still
lagging. More clinical studies with larger sample sizes are needed
to validate the results and provide evidence for pharmacogenomic
recommendations that can be implemented into the clinical
practice.

7 CONCLUSION

Our comprehensive review showed that the preclinical and
clinical studies helped to elucidate some molecular
mechanisms implicated in TD development and suggested
that genetic variability in these pathways may provide some
promising biomarkers of TD. However, the clinical studies
have failed to provide sufficient evidence for establishing
pharmacogenomic recommendations that would support
their implementation into psychiatric clinical practice. The
studies that emerged from our literature review investigated
TD in patients of diverse origins, which might explain the
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conflicting results. Moreover, the included cohorts’ sizes were
often small, which might explain the inability to replicate the
findings in some cases. Additionally, in most of the studies,
risk factors for TD, like demographics, health behavior, and
clinical variables, have not been considered. Finally, the
studies presented in this review indicate the contribution of
a single gene to the development of TD, in contrast with the
fundamentals of pharmacogenomics which focuses on the
contribution of multiple genes and variants. Including
cohorts with bigger sizes that are very well defined in terms
of dose and drug duration, smoking status, alcohol or drug
use, co-medication, comorbidities, and family history of
psychiatric disorders in future studies will increase our
understanding of the contribution of genetic factors to the
emergence of TD and will lead to selecting the ideal treatment
for each patient, aiming to provide a better quality of life for
patients and their caregivers. Therefore, future studies
integrating different approaches, such as metabolic,
neurophysiological, and genetic, are needed to elucidate the
potential interactions and support the development of a
personalized approach for TD management and prevention.
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