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Bovine and buffalo are important livestock species that have contributed to human lives
for more than 1000 years. Improving fertility is very important to reduce the cost of
production. In the current review, we classified reproductive traits into three categories:
ovulation, breeding, and calving related traits. We systematically summarized the
heritability estimates, molecular markers, and genomic selection (GS) for reproductive
traits of bovine and buffalo. This review aimed to compile the heritability and genome-
wide association studies (GWASs) related to reproductive traits in both bovine and
buffalos and tried to highlight the possible disciplines which should benefit buffalo
breeding. The estimates of heritability of reproductive traits ranged were from 0 to 0.57
and there were wide differences between the populations. For some specific traits, such
as age of puberty (AOP) and calving difficulty (CD), the majority beef population presents
relatively higher heritability than dairy cattle. Compared to bovine, genetic studies for
buffalo reproductive traits are limited for age at first calving and calving interval traits.
Several quantitative trait loci (QTLs), candidate genes, and SNPs associated with bovine
reproductive traits were screened and identified by candidate gene methods and/or
GWASs. The IGF1 and LEP pathways in addition to non-coding RNAs are highlighted
due to their crucial relevance with reproductive traits. The distribution of QTLs related
to various traits showed a great differences. Few GWAS have been performed so far
on buffalo age at first calving, calving interval, and days open traits. In addition, we
summarized the GS studies on bovine and buffalo reproductive traits and compared
the accuracy between different reports. Taken together, GWAS and candidate gene
approaches can help to understand the molecular genetic mechanisms of complex
traits. Recently, GS has been used extensively and can be performed on multiple traits
to improve the accuracy of prediction even for traits with low heritability, and can be
combined with multi-omics for further analysis.
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INTRODUCTION

Reproductive traits are economically important for sustainable
food production, especially for monotocous livestock, such as
cattle and buffalo. Low reproductive capacity or infertility can
be described as an extended duration between two calvings.
This problem requires additional inseminations, more veterinary
attention, and hormonal treatments, which consequently alters
the current and subsequent lactations (Boichard, 1990). Also,
additional costs are raised due to culling and replacing animals
with fertility problems (Roxström and Strandberg, 2002).
Enhancing fertility is the best choice not only to reduce the culling
cost but also to save important genetic materials and increase
farm profit (Dekkers, 1991). Several countries have included
female reproductive traits in the breeding goals to emphasize the
genetic aspects of reducing fertility costs (FCOST) in dairy cattle
(Kadarmideen and Simm, 2002). Herein, we emphasize the recent
literature about genetic parameters, genome-wide association
study (GWAS), and genomic selection (GS) for reproductive
traits in cattle and buffalo over the past 20 years for researchers,
who can integrate these traits in cattle and buffalo breeding
programs and achieve optimum fertility.

In the previous study, reproductive traits were divided into
binary, interval, and continuous traits with respect to statistical
distribution (Berry and Evans, 2014). To better understand and
utilize reproductive traits in livestock and breeding programs,
they are reclassified as ovulation, mating, and calving-related
traits from the physiological viewpoint (Cammack et al., 2009;
Table 1).

HERITABILITY ESTIMATES OF
REPRODUCTIVE TRAITS

Genetic variation, which is a variability in breeding values
within a population for a trait under selection, significantly
affects the accuracy of genetic selection. Heritability measures
how much of the phenotypic variation is attributed to genetic
variation, and affects the rate of genetic improvement for a trait
over generations. Over the past 20 years, several studies were
conducted to estimate the heritability of different reproductive
traits in dairy cattle (Table 2), beef cattle (Table 3), and buffalo
cows (Table 4).

In dairy cattle, all ovulation-related traits range from low
to moderate heritabilities (Table 2). The heritability estimate
of the superovulation response was about 0.15 in Holstein
cows (Jaton et al., 2020). Regarding mating-related traits,
heritability estimates for age of puberty (AOP) and age at
first calving (AFC) were moderate in most cattle populations,
except for AFC in the Chile population (h2

= 0.01) (Montaldo
et al., 2017). Likewise, the heritabilities of non-return rate
(NRR) and pregnancy rate (PR) of Holstein dairy cows and
Brown Swiss cattle were low (Gaddis et al., 2016; Tiezzi
et al., 2018; Ansari-Mahyari et al., 2019; Zhang et al., 2019).
Regarding the superovulation response and twinning rate,
heritability was higher for superovulation, indicating a response
to hormone treatment is more heritable than natural ovulation

in dairy cows. Non-return and PR are directly related to
reproductive outcomes. Unfortunately, the heritability estimates
for these two traits were remarkably low. Besides, dairy cows’
calving-related traits, including calving interval, days open,
calving difficulty (CD), and the length of the productive
life, were all of low heritability. Therefore, management
practices (reproductive management, balanced nutrition, etc.)
and/or environmental factors are of significant importance for
improving reproductive efficiency and preventing reproductive
disorders in dairy cows. Thus, selection on dairy cows’ AOP, first
calving, and superovulation response may gain more progression
than other traits.

In beef cattle, the superovulation response had higher
heritability than those of ovulation rate, and twinning rate was
similar to those reported in dairy cattle (Table 3). Regarding
mating-related traits, AOP had moderate to high heritability
estimates in most beef populations; for example, the estimate
reached 0.78 in the Brahman bull population (Fortes et al.,
2012). The h2 for scrotal circumference was also reported
to have moderate to high estimates. Excluding the Angus
population (0.2) (Doyle et al., 2000) in beef cattle, the NRR
and PR of heritability were low, as reported in dairy cattle. The
heritabilities for calving difficulties in beef cattle had moderate
to high estimates, unlike those reported in dairy cattle with low
heritabilities. In comparison, other mating-related reproductive
traits, such as DO, NRR, CI, and length of productive life
had low heritabilities similar to dairy cattle. Taken together,
selections on beef cow’s AOP, calving difficulties, DO, NRR,
and CI traits may gain more progression due to the moderate
to high estimates of heritabilities compared with other traits
(Cassell, 2009).

The excellent milk quality and the limitation of buffalo milk
yield contribute to the breeding selection focusing more on
milk production traits in buffalo compared with reproductive
traits. Currently, there are limited studies for estimating genetic
parameters for reproductive traits in buffalo species, mainly for
AFC and CI (Table 4). The heritability estimates of AFC in the
buffalo population is close to Holstein cattle (Gupta et al., 2015;
Kumar et al., 2015; Barros et al., 2016; Rathod et al., 2018). Most
studies showed that the heritability of CI is low, mostly below
0.1 (Morammazi et al., 2007; Thiruvenkadan et al., 2010; El-
Bramony and Reclamation, 2014; Camargo et al., 2015). However,
the highest record for CI was 0.55 in Surti buffalo, which may be
due to the limited numbers of lactation records and/or number of
parities per sire monitored (Rathod et al., 2018). The heritabilities
of DO (Camargo et al., 2015) and CD (Al-Khuzai et al., 2019)
were similar to those reported in dairy cattle.

Comparing heritabilities between different traits in dairy and
beef cattle along with buffalo, we found that:

(1) Most of the reproductive traits had low habitabilities,
but not all. In the dairy and beef cattle, AOP showed
high heritabilities. The heritability estimates for scrotal
circumference of the beef bull were medium to high. Also,
the superovulation response in dairy and beef cattle was
worthy of notice. These moderate to high heritability traits
could be applied to the selection and breeding system.
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TABLE 1 | Physiological classification and description of reproductive traits.

Trait category Parameter Description

Ovulation Ovulation rate Corpus luteum (CL) number during mid-luteal phase of the estrous cycle

Superovulation response The biological potentiality of the cow in terms of total number of ova (TNO), transferable embryos (NTE),
unfertilized ova (NUO) and degenerated embryos (NDE); total number of embryos (NE) and number of viable
embryos (VE)

Twinning rate The proportion of cows giving birth to two or more calves in one pregnancy

Mating Age of puberty (AOP) Male: the age when a bull scrotal circumference reaches 26–29 cm (AGESC)*, or the age at which a bull first
produces an ejaculate containing at least 50 million sperm with a minimum of 10% motility
Female: the appearance of the first corpus luteum (AGECL), age at first behavioral estrus (AFO) or standardized
age at first behavioral estrus (SFO) and plasma progesterone concentration

Age at first calving (AFC) The interval between the date of first calving and the date of birth of the cow

Non-return rate (NRR) The proportion of cows that are not subsequently rebred

pregnancy rate (PR) The percentage of cows to become pregnant

Calving Calving interval (CI) The period of time (days or months) between the birth of a calf and the birth of a subsequent calf, both from the
same cow

Days open (DO) The period between calving and conception

Calving difficulty (CD) Dystocia, which is categorized into three degrees, including easy calving, slight problems, and difficult calving

Length of production life
(LPL)

Mainly focused on dairy cattle, length of service, tenure, etc. Such as fertility-/mastitis-/production-/determined
PL (FPL/MPL/PPL)

*Most of the heritability studies for bulls’ puberty employed the AGESC 26–29 cm.

(2) The heritability estimates for calving intervals, NRR, days
open, and length of reproductive life in most populations
were very low, which indicated that these traits would
be influenced and improved by proper management
practices. The application of synchronization-timed AI
protocol (Goodling et al., 2005), body composition control,
reproductive disorder treatment, and culling on time
would benefit the related performance.

(3) The heritability of the same trait varies greatly among
different breeds. For instance, the heritability of age at
first calving was as high as 0.4 in a crossbreed of dairy
cows (Effa et al., 2011), while the Dairy Overo Colorado
breed was as low as 0.01 (Montaldo et al., 2017). The
heritability of CI reported in Surti buffalo is 0.55 (Rathod
et al., 2018) compared to the Murrah buffalo cows near
to 0.1 (Thiruvenkadan et al., 2010). Although heritability
was estimated using paternal half-sib correlation methods
in both studies, lactation records, number of buffaloes,
and sired by bulls were higher for Murrah buffaloes.
Even in the same breed, the different populations showed
varied values, which may related to different management
and performance.

(4) For most of the reproductive traits, beef cattle had higher
heritability estimates compared to those estimated in dairy
cattle for the AOP and CD (Tables 2, 3). Either the genetic
makeup or the fact that dairy cows are more susceptible
to reproductive diseases, such as endometritis, vaginitis,
ovarian cyst, and mastitis, due to high energy consumption
for milk production may be the reason for this difference.

(5) The breeding progress of buffalo is slow compared to dairy
and beef cattle, as a few studies have reported during
the last decade. Further large-scale studies are required
to accurately estimate the genetic parameters for different
reproductive traits in buffalo populations.

MARKER-ASSOCIATED STUDIES FOR
BOVINE AND BUFFALO REPRODUCTIVE
TRAITS

Concerning the disadvantages of the long cycle and not up-
to-mark efficiency of traditional breeding, several association
analyses were performed to identify genomic loci associated
with the trait variation to find the possible candidate genes
or to detect causative mutations. This section summarized the
GWAS and candidate gene studies for bovine and buffalo
reproductive traits published in the past 20 years (2000–2020)
(Supplementary Tables 1–3).

At present, there are few marker-assisted selection (MAS)
studies on the reproductive traits of buffalo. In this regard,
FSHR, INHA, LHCGR, and OPN were reported to have significant
effects on the buffalo superovulation responses. So far, few GWAS
have been performed on buffalo reproductive traits (Camargo
et al., 2015; Li et al., 2018a,b; de Araujo Neto et al., 2020).
Previous GWASs for reproductive traits (Camargo et al., 2015; Li
et al., 2018a) were conducted using the bovine reference genome
assembly, and the results are expressed for bovine autosomes
(BTA). Camargo et al. (2015) reported some candidate genes
(TPCN1, SCG5, and Fig 4) associated with reproductive traits
such as AFC, CI, and DO in buffalo. Also, Li et al. (2018a;
2018b) found 25 SNPs in 13 genes related to reproductive
traits by integrating RNA-seq and GWAS methods. They also
described significant SNPs on BBU 6, 9, and 15 [corresponding
to bovine chromosomes 3, 7, 14, and 8: equivalence presented
by Cribiu et al. (2001)]. Recently, ssGBLUP was employed
to identify genomic regions affecting AFC and first calving
interval (FCI) in buffalo cows and select candidate loci and
gene expression (de Araujo Neto et al., 2020). They reported
that the observed candidate regions for both traits (CI, AFC;
explaining a large proportion of variance for both traits) were
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TABLE 2 | Heritability estimates of reproduction traits in dairy cattle.

Category Trait Heritability Breeds (Numbers/records) References

Ovulation Superovulation
responses

0.231 ± 0.091 Holstein (2,489) König et al., 2007

0.27 ± 0.08 Holstein (926) Gaddis et al., 2017

0.234 ± 0.046(CL)
0.159 ± 0.087(EM)

Holstein–Friesian (56) Bényei et al., 2004

0.15 ± 0.01 Holstein (150,971) Jaton et al., 2020

0.15 ± 0.01/0.17 ± 0.01(NE)
0.14 ± 0.01/0.14 ± 0.01(VE)
(Log/Ans)

Holstein (137,446) Jaton et al., 2016a

0.145 ± 0.007/0.188 ± 0.033(NE)
0.136 ± 0.007/0.187 ± 0.034(VE)
(in vivo/vitro)

Holstein (145661/5310 records)
(in vivo/vitro)

Jaton et al., 2016b

Twinning rate 0.11 ± 0.01(parity1)
0.16 ± 0.01(parity2)
0.14 ± 0.01(parity3)

Japanese Holsteins (1,323,946)
(1053469)
(750600)

Yutaka et al., 2015

0.0192 ± 0.0009/0.142 ± 0.007
(LM/TLM)

Holsteins (658436 cows/1440540
records)

Lett and Kirkpatrick, 2018

0.1 12 multiple breeds (9272 females) Allan et al., 2007

0.013(parity1)
0.022(parity2)
0.024(parity3)
0.026(parity4)
0.031(parity5)

Israeli Holstein (671,361)
(460940)
(304213)
(188077)
(104434)

Weller et al., 2008

Mating Age of puberty 0.38 Friesian × Ethiopian Boran (399)
Jersey × Ethiopian Boran (151)

Effa et al., 2011

Age at first calving 0.4 Friesian × Ethiopian Boran (399)
Jersey × Ethiopian Boran (151)

Effa et al., 2011

0.26 ± 0.02 South African Holstein (20419) Makgahlela et al., 2008

0.20 ± 0.03/0.21 ± 0.03(uni-trait/bi-trait analysis) Brazilian Girolando (10,900) Canaza-Cayo et al., 2018

0.219 ± 0.162 multiple dairy cows (224) Ali et al., 2019

0.17 ± 0.01
0.093 ± 0.037

Holstein–Friesian
Other dairy breeds

Berry and Evans, 2014

0.15 ± 0.04 (PM)/0.16 ± 0.04 (GPM) 7 breeds (9,106) Konkruea et al., 2019

0.111 Holstein (276,573) Changhee et al., 2013

0.103 ± 0.025 German Holstein heifers (721919) Heise et al., 2017

0.01 ± 0.07 Dairy Overo Colorado breed (2,043) Montaldo et al., 2017

Non-return rate 0.1292 (NRR45)
0.1460 (NRR90)

Holstein (21,405) Ansari-Mahyari et al., 2019

0.02 (Paternal NRR90)
0.02 (Maternal NRR90)

German Holstein (1193)
(1283)

Kaupe et al., 2007

0.012 (heifer NRR56)
0.015 (cow NRR56)

Holstein (2,527) Müller et al., 2017

0.011 ± 0.001(NRR56) Holstein (386869) Zhang et al., 2019

0.027 ± 0.0004
0.020 ± 0.001

Holstein–Friesian
Other dairy breeds

Berry et al., 2014

Pregnancy rate 0.04/0.02/0.01
(DPR/CCR/HCR)

Holstein (2,107) Gaddis et al., 2016

0.04 Spanish Holstein (113375 records) Gonzálezrecio and Alenda, 2005

Calving Calving interval 0.17 Friesian × Ethiopian Boran (847)
Jersey × Ethiopian Boran (559)

Effa et al., 2011

0.16 ± 0.12
0.00 ± 0.09

Holstein (624)
Swedish Red (460)

Tarekegn et al., 2019

0.14 ± 0.211 multiple dairy cow (224) Ali et al., 2019

0.106 ± 0.015 (linear sire model)
0.103 ± 0.013 (linear animal model)
0.059 ± 0.006 (repeatability animal model)

Iranian Holstein (22,269) Chegini et al., 2019a

0.07 ± 0.013 Holstein (11674 records) Toghiani, 2012

(Continued)
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TABLE 2 | Continued.

Category Trait Heritability Breeds (Numbers/records) References

0.044 ± 0.01 Holstein (20544) Chegini et al., 2019b

0.04 ± 0.003 Iranian Holstein (129199) Hossein Salimi et al., 2017

0.04 Spanish Holstein (96346 records) Gonzálezrecio and Alenda, 2005

0.034 ± 0.001
0.029 ± 0.004

Holstein–Friesian
Other dairy breeds

Berry et al., 2014

0.002 ± 0.02 Dairy Overo Colorado breed (3,488) Montaldo et al., 2017

0.01 ± 0.02 (CI1)
0.00 ± 0.04 (CI2)
0.08 ± 0.07 (CI3)

Brazilian Girolando (5327)
(3444)
(2229)

Canaza-Cayo et al., 2018

0.03 ± 0.01(CI1)
0.04 ± 0.01(CI2)
0.04 ± 0.01(CI3)
0.03 ± 0.01(CI4)

South African Holstein (20419)
(18589)
(10681)
(15529)

Makgahlela et al., 2008

0.088 (CI1)
0.142(CI2)

Holstein (167996 records)
(128080 records)

Changhee et al., 2013

Days open/calving to
conception interval

0.102 Canadian Holstein (3,729) Nayeri et al., 2016

0.09 ± 0.121 multiple dairy cows (224) Ali et al., 2019

0.06 ± 0.03 Holstein (3,682) Saowaphak et al., 2017

0.06 ± 0.008 Holstein (15895) Toghiani, 2012

0.04 Spanish Holstein (113375 records) Gonzálezrecio and Alenda, 2005

0.04 ± 0.003 Iranian Holstein (129199) Hossein Salimi et al., 2017

0.033/0.024 (Model1/2) Korean Holstein (14,188) Lee and Han, 2004

0.026 Holstein (2,527) Müller et al., 2017

0.038 ± 0.002
0.030 ± 0.001

Holstein–Friesian
Other dairy breeds

Berry et al., 2014

Calving difficulty 0.132 ± 0.003 Holstein (734) Maryam et al., 2016

0.121 ± 0.024 (LM)
0.074 ± 0.012 (TM)

Walloon Holstein Vanderick et al., 2015

0.05 (paternal CE)
0.05 (maternal CE)

German Holstein (1267)
(1287)

Kaupe et al., 2007

0.048 (paternal CE)
0.039 (maternal CE)

Holstein (2,527) Müller et al., 2017

0.043 ± 0.0031/0.010 ± 0.0016 (LM1)
0.041 ± 0.0030/0.010 ± 0.0015 (LM2)
0.046 ± 0.0032/0.011 ± 0.0016 (LM3)
0.086 ± 0.0091/0.023 ± 0.0037 (TM)
(direct/maternal CE)

Portuguese dairy cattle (320,953
records)

Silvestre et al., 2019

0.02 ± 0.002 Iranian Holstein (132831) Hossein Salimi et al., 2017

0.015/0.030 (Model1/2) Korean Holstein (14,188) Lee and Han, 2004

Length of productive life 0.16 German Holstein (1,286) Kaupe et al., 2007

0.12 Pinzgau Cattle Egger-Danner et al., 2005

0.102 Holstein (276,573) Changhee et al., 2013

0.10 ± 0.03 Holstein (4,739) Saowaphak et al., 2017

0.06/0.10/0.18/0.25
(LPL/FPL/MPL/PPL)

Swedish Red and White dairy cattle
(538783)

Roxström and Strandberg, 2002

0.04 Hungarian Holstein (1403747) van der Linde et al., 2006

located on BBU 3, 12, 21, and 22. Also, candidate regions were
found on BBU 6, 7, 8, 9, and 15 for age at first calving and
on BBU 4, 14, and 19 for FCI. The ROCK2, PMVK, ADCY2,
MAP2K6, BMP10, and GFPT1 genes are the main candidates
for reproductive traits in water dairy buffaloes, which may be
used in the future for animal breeding programs or for gene
expression studies of the species (de Araujo Neto et al., 2020).
The GFPT1 and BMP10 genes are interesting because they have

been detected for both traits, which may be related to a possible
pleiotropic effect.

The candidate gene studies for bovine reproductive traits
mostly used genes of hormones and/or growth factors and their
receptors as candidates (Tang et al., 2011; Yang et al., 2013; Arslan
et al., 2017). For example, polymorphisms in the GnRH, GnRHR,
LEP, and LHCGR were studied for association with reproductive
traits of buffalo bulls. Notably, genes involved in IGF1 and LEP
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TABLE 3 | Heritability estimates of reproduction traits in beef cattle.

Category Trait Heritability Breeds (Numbers/Records) References

Ovulation Ovulation rate 0.12 MARC twinning herd (16,035) Allan et al., 2014

0.08 MARC 12 breeds of cattle (29485 records) Allan et al., 2007

0.02 multiple breeds Piper et al., 2017

Superovulation
responses (VE)

0.56–0.65 (1 flush)
0.20–0.26 (3 flushes)

Nellore (405)
(858)

Peixoto et al., 2004

Twinning 0.1 MARC twinning herd (16,035) Allan et al., 2014

0.1 MARC 12 breeds of cattle (9272 records) Allan et al., 2007

0.062 ± 0.093 (RThM)
0.014 ± 0.018 (RLM)

Maremmana cattle (1,260) Moioli et al., 2017

Mating Age of puberty 0.31 ± 0.05 (AFO)
0.27 ± 0.04 (SFO)
0.56 ± 0.11 (AGECL)
0.78 ± 0.10 (AGE26)

Angus cattle (1513 records)
(1588 records)
Brahman heifers (1007)
Brahman bulls (1118)

Morris et al., 2000
Fortes et al., 2012

0.57 ± 0.12
0.52 ± 0.12 (AGECL)

Brahman heifers (1007)
Tropical Composite heifers (1108)

Johnston et al., 2009

0.35/0.22/0.11
0.22/0.33
0.24/0.32 (AGECL)

Brahman (397/371/206)
Santa Gertrudis (1022/776)
Droughtmaster (222/688)

Engle et al., 2019

0.42–0.44 Nelore cattle (12964) Forni and Albuquerque, 2005

0.26 ± 0.03 Heifer Angus (629) Morris et al., 2011

0.221 ± 0.08
(univariate)
0.198 ± 0.06
(multivariate)

50% Red Angus, 25%Charolais and 25%Tarentaise
(890)

Toghiani et al., 2017

0.310 ± 0.050
(AFO)

Beef cattle Berry and Evans, 2014

0.16–0.20 1828 Beef CRC (868 Brahman and 960 Tropical
Composite)
3695 SMF (979 Brahman,1802 Santa Gertrudis and
914 Droughtmaster)

Warburton et al., 2020

Scrotal
circumference

0.37 ± 0.06(SC-8 month)
0.44 ± 0.06 (SC-10 month)
0.42 ± 0.06 (SC-12 month)

Angus cattle (1702 records)
(1691 records)
(1671 records)

Morris et al., 2000

0.48 ± 0.02 (AGE365)
0.52 ± 0.02 (AGE450)

Brazilian Nellore (27567 records) Kluska et al., 2018

0.397 ± 0.011 (AGE365) Nelore (135862 records) Schmidt et al., 2019

0.33 ± 0.07 (AGE365)
0.41 ± 0.07 (AGE450)

Guzera beef cattle (1773)
Guzera beef cattle (2091)

Tramonte et al., 2019

0.29 (AGE365) Nelore cattle (66986 records) Costa et al., 2020

0.18 ± 0.02 (AGE365) Charolais, Charbray, and Charolais-Zebu crosses
(18,972)

Martínez-Velázquez et al.,
2020

Age at first
calving

0.31 ± 0.016 Crossbred Bos taurus (64380 records) Berry et al., 2014

0.27 ± 0.12 Asturiana de los Valles (1226 records) Goyache and Gutiérrez, 2001

0.24 ± 0.04 Brazilian Nelore cattle (762) Mota et al., 2017

0.235 ± 0.018 Asturiana de los Valles (2533 records) Gutiérrez et al., 2002

0.220 ± 0.11 Jersey × Red Sindhi (313) Vinothraj et al., 2016

0.215 ± 0.026 Japanese Black Cows (24595 records) Oyama et al., 2002

0.20 Nelore cattle (1853) Costa et al., 2019

0.20–0.22 Simmental (3,063) Amaya-Martínez et al., 2020

0.17 ± 0.04 Brahman-Angus (909) Elzo et al., 2018

0.158 ± 0.039 Japanese Black cows (2,078) Setiaji and Oikawa, 2019

0.137 ± 0.008 beef cattle Berry et al., 2014

0.13 ± 0.130 Crossbred heifers (538 records) Akanno et al., 2015

0.11 ± 0.01 Brazilian Nellore (18526 records) Kluska et al., 2018

0.10 ± 0.01 (multi-trait model)
0.08 ± 0.01 (single-trait model)

Hanwoo cows (15,355) Lopez et al., 2019

(Continued)
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TABLE 3 | Continued.

Category Trait Heritability Breeds (Numbers/Records) References

0.10 ± 0.01 Nelore beef cattle (25,594) Boligon and Albuquerque,
2011

0.20/0.19/0.18/0.09
(LM/SM/PM/TLcens)

Brazilian Brahman cattle
(53703 records)

Lázaro et al., 2019

0.08 Nelore cattle (374665 records) Costa et al., 2020

0.06/0–0.15
0.13/0.06–0.13
(AMl/MHNRHOP1)

Limousine (18,500)
Charolais (4,330)

de Rezende et al., 2020

0.06–0.08 Nelore cattle (18615) Forni and Albuquerque, 2005

0.039 ± 0.039 (univariate)
0.031 ± 0.01 (multivariate)

50% Red Angus, 25%Charolais and
25%Tarentaise (1117)

Toghiani et al., 2017

Non-return rate 0.020 ± 0.029 (1st parity)
0.014 ± 0.022 (2nd parity)
0.013 ± 0.034 (3rd parity)
0.013 ± 0.017 (repeatability model)

Japanese Black cows (2,078) Setiaji and Oikawa, 2019

Pregnancy rate 0.21 ± 0.009 Angus (1,299) Doyle et al., 2000

0.14 ± 0.099 Crossbred heifers (734 records) Akanno et al., 2015

0.12 ± 0.05 (yearlings)
0.08 ± 0.064 (2-year-olds)

Angus cattle (1190 records)
(711 records)

Morris et al., 2000

0.027 ± 0.38 (1st parity)
0.023 ± 0.034 (2nd parity)
0.021 ± 0.036 (3rd parity)
0.022 ± 0.007 (repeatability model)

Japanese Black cows (2,078) Setiaji and Oikawa, 2019

0.025/0.014/0.023/0.014
(model 1/2/3/4)

Sistani beef cattle (1489 records) Faraji-Arough and Rokouei,
2016

Calving Calving interval 0.222 ± 0.101 Jersey × Red Sindhi (522) Vinothraj et al., 2016

0.125 ± 0.020 Asturiana de los Valles (2007 records) Gutiérrez et al., 2002

0.12 ± 0.03 Asturiana de los Valles (1851 records) Goyache and Gutiérrez, 2001

0.105 ± 0.008 Nelore (33735 records) Schmidt et al., 2019

0.09 ± 0.02 (CI1) Brahman-Angus (447) Elzo et al., 2018

0.02 ± 0.02 (CI1)
0.02 ± 0.04 (CI2)
0.06 ± 0.03 (mean CI)

Nelore (2642)
(1437)
(2888)

do Amaral Grossi et al., 2016

0.049 ± 0.048 (CI1)
0.043 ± 0.045 (CI2)
0.048 ± 0.042 (CI3)
0.047 ± 0.009 (repeatability model)

Japanese Black cows (2,078) Setiaji and Oikawa, 2019

0.047 ± 0.009 Japanese Black Cows (72740 records) Oyama et al., 2002

0.032 ± 0.004 beef cattle Berry et al., 2014

0.056/0.040/0.033/0.032
(model 1/2/3/4)

Sistani beef cattle (1489 records) Faraji-Arough and Rokouei,
2016

0.01 ± 0.05 (CI1)
0.04 ± 0.02 (CI2)
0.07 ± 0.03 (CI3)
0.03 ± 0.01 (multi-trait model)

Hanwoo cows (1936)
(11144)
(8201)
(32599)

Lopez et al., 2019

0.02 ± 0.004 Crossbred Bos taurus (101864 records) Berry and Evans, 2014

Days open/calving
to conception
interval

0.192 (model 1)
0.091 (model 2)
0.168/0.197/0.170/0.091
(model3)
0.154/0.132 (model4)
0.135/0.090/0.086 (model5)

Asturiana de los Valles (21349 records)
(3250/3416/13783/900 records)
(6666/14683 records)
(21349 records)

Goyache et al., 2005

0.110 ± 0.04 beef cattle Berry et al., 2014

0.110 ± 0.04 Angus (1680 records) Morris et al., 2000

0.09/0.045/0.096/0.049
(model 1/2/3/4)

Sistani beef cattle (1489 records) Faraji-Arough and Rokouei,
2016

0.047 ± 0.009 Japanese Black cows (72740 records) Oyama et al., 2002

(Continued)
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TABLE 3 | Continued.

Category Trait Heritability Breeds (Numbers/Records) References

0.042 ± 0.044 (1st parity)
0.034 ± 0.052 (2nd parity)
0.034 ± 0.033 (3rd parity)
0.036 ± 0.021 (repeatability model)

Japanese Black cows (2,078) Setiaji and Oikawa, 2019

0.02 ± 0.05 (1st parity)
0.09 ± 0.02 (2nd parity)
0.08 ± 0.03 (3rd parity)
0.03 ± 0.01(multi-trait model)

Hanwoo cows (1726)
(7308)
(5888)
(32465)

Lopez et al., 2019

Calving difficulty 0.42 Asturiana de los Valles (7298 records) Goyache and Gutiérrez, 2001

0.325 ± 0.022 Asturiana de los Valles (35,395 records) Cervantes et al., 2010

0.32 ± 0.174 Crossbred heifers (543 records) Akanno et al., 2015

0.29 ± 0.10 multi breeds (5,795) Ahlberg, 2014

0.250 ± 0.018 Crossbred Bos taurus (100445 records) Berry and Evans, 2014

Length of
productive life

0.096 ± 0.001 Multiple breeds (21,895) Brzáková et al., 2019

pathways were reported to affect multiple reproductive traits. For
example, IGF1 could affect a variety of ovulation- and mating-
related traits. LEP and LEPR showed significant effects on both
breeding- and calving-related traits. Moreover, long non-coding
RNA and ribosomal RNA could be future research directions
since non-coding RNAs (U6 spliceosomal RNA) were reported
to affect reproductive traits (Fortes et al., 2013; Nascimento
et al., 2016; Buzanskas et al., 2017). The combination of GWAS
and other omics studies are becoming more useful, as they
provide a broad space for exploring candidate gene functions and
related mechanisms.

Further, we visualized the chromosomal distribution of
quantitative trait loci (QTL) in cattle related to each reproductive
trait using the Cattle Quantitative Trait Locus Database (Cattle
QTLdb) (Hu et al., 2019) (Supplementary Figures 1–3). Only 11
QTL related to ovulation-related traits were identified, and four
of these were located on chromosome 5, where the IGF1 gene
is placed (Miller et al., 1992) (Supplementary Figure 1). The
QTL for mating-related traits were spread throughout different
chromosomes (Supplementary Figure 1A). The most abundant
chromosome is BTX with 10237 QTL (96.4%) related to puberty.
BTA2 (21QTLs, 19.6%) and BTA14 (15 QTLs, 14.0%) had
the most associated loci for AFC (Supplementary Figure 1B).
Most of the QTL for NRR were located on BTA17 (233421
QTLs, 94.7%). However, QTL for PR-related were scattered
(Supplementary Figure 2). About 37.1% of QTL related to
calving interval were enriched in BTA25 (17.5%) and BTA29
(19.6%). Whereas, BTA 21 enriched the most QTLs (44.8%)
related to CD, and BTA18 had 30.7% of QTL related to the length
of productive life.

Undoubtedly, these significantly enriched chromosomes (BTX
related to puberty, BTA related to NRR, and BTA related to CD)
could be directions for future research. Moreover, certain areas
that affect multiple traits of different species also deserve further
attention. For example, McClure et al. (2010) found one SNP
related to CD at 49.1 Mb of BTA 20 in Angus cattle (McClure
et al., 2010), while Ke et al. (2014) reported SNP in a similar
region in dairy cattle affecting age at first calving. The relationship

between these highly enriched chromosomal regions and various
traits is worthy of further investigation.

Based on morphological and behavioral criteria, the domestic
Asian water buffalo has two types (Macgregor, 1941). The
two types have different chromosome numbers: river buffalo
(Bubalus bubalis, 2n = 50) and swamp buffalo (Bubalus
bubalis carabanesis, 2n = 48) (Ulbrich and Fischer, 1966).
In addition, the chromosomal karyotype of hybrid buffalo is
more complicated. Although presenting different species, buffalo
and bovine share highly homologous chromosomes banding,
as well as gene mapping (Amaral et al., 2008; Michelizzi
et al., 2010; Kale et al., 2014). It is also reported that river
buffalo and bovine chromosomes can be matched arm for
arm at the cytogenetic level (Williams et al., 2017; Du et al.,
2019). Despite the complicated genomic background of buffalo,
candidate genes or their chromosome locations identified for
the bovine reproductive traits could be considered as a valuable
reference for buffalo.

GENOMIC SELECTION FOR
REPRODUCTIVE TRAITS IN BOVINE
AND BUFFALO

Phenotypic records for a trait of individuals and their relatives
are used to estimate breeding values by employing the best linear
unbiased prediction (BLUP) to facilitate animal selection for
economically important traits (Henderson, 1984). It is believed
for genetic selection that information at the DNA level can
quicken the genetic progression compared to phenotypic data
alone. The sparse map of genetic markers can be used to
detect QTL (Georges et al., 1995). Combining genetic marker
information with BLUP (Fernando and Grossman, 1989) showed
an increase in the genetic gain by 8–38% (Fernando and
Grossman, 1989; Goddard, 1996). The effectiveness of sparse
markers in outbreeding species was limited, as an establishment
of linkage phase between a marker and QTL is necessary for
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TABLE 4 | Heritability estimates of reproduction traits in buffalo.

Trait Heritability Breeds
(Numbers/records)

References

Age at first
calving

0.28 ± 0.03 Murrah buffalo (827) Kumar et al., 2015

0.226 ± 0.154
0.16

Surti buffalo (48)
Murrah water buffalo

(2290 records)

Rathod et al., 2018
de Araujo Neto

et al., 2020

0.16 ± 0.04 Murrah buffalo (2389
records)

Barros et al., 2016

0.16 ± 0.12 Murrah buffalo (167) Thiruvenkadan
et al., 2010

0.17 ± 0.02 Murrah buffaloes
(3,431 records)

Camargo et al.,
2015

0.135 ± 0.035 Indian Murrah buffalo
(1,456 records)

Gupta et al., 2015

0.11 ± 0.06 Egyptian buffalo
(1911 records)

El-Bramony, 2011

0.07 ± 0.05 Murrah buffalo
(1,578)

Seno et al., 2010

calving
interval

0.55 ± 0.131 Surti buffalo (158) Rathod et al., 2018

0.234 ± 0.175 Indian Murrah buffalo
(1,456 records)

Gupta et al., 2015

0.14 ± 0.07 (CI1) Murrah buffalo
(1,578)

Seno et al., 2010

0.09 ± 0.13 Murrah buffalo (506) Thiruvenkadan
et al., 2010

0.085 ± 0.134 Iranian Khuzestan
buffalo (146 records)

Morammazi et al.,
2007

0.07 ± 0.05 Egyptian buffalo
(1911 records)

El-Bramony, 2011

0.06 ± 0.01 Egyptian buffalo
(2,066)

El-Bramony and
Reclamation, 2014

0.06 ± 0.01 Murrah buffaloes
(4729 records)

Camargo et al.,
2015

0.05 ± 0.08 Mehsana buffalo
(812 records)

Galsar et al., 2016

0.05 ± 0.01 Murrah buffalo (5672
records)

Barros et al., 2016

0.03(CI1) Murrah water buffalo
(765 records)

de Araujo Neto
et al., 2020

Days open 0.14 ± 0.03 Murrah buffaloes
(6894 records)

Camargo et al.,
2015

Calving
difficulty

0.16/0.19/0.06/0.08/
0.09/0.04/0.11

(parity1–7)

Iraqi Buffalo (360) Al-Khuzai et al.,
2019

every family in which the marker is to be used for selection
(Meuwissen et al., 2001).

The total number of SNP estimated at millions and the advent
of DNA Chip technology made genotyping of many animals
for many of these markers feasible and cost-effective. However,
a dense marker map improved precision for QTL mapping by
traditional linkage analysis (Darvasi et al., 1993). Therefore, a
search for a different approach to efficiently use all this marker
information remained necessary.

Considering a denser marker map, not only could some
markers be close to QTL but also, in linkage disequilibrium

with it, it was anticipated that some markers could have a
positive effect on the quantitative traits across all families
and be used for selection without the need to establish
a Linkage phase in each family. Close markers can also
be combined into a haplotype. Chromosome bearing the
rare marker haplotype is likely to be identical by descent
and hence carry the same QTL allele. Meuwissen et al.
(2001), estimated the effect of the quantitative trait of the
small chromosome segment defined by the haplotype of the
allele that they carry. They concluded that it’s possible to
accurately estimate the breeding value of animals that have no
phenotypic records by estimating a large number of haplotype
effects. Using least squares, all haplotype effects could not be
estimated simultaneously. Even when only the largest effects
were included, they were overestimated and the accuracy of
predicting breeding value was low. Methods that assumed prior
distribution for the variance associated with each chromosome
segment gave a more accurate prediction of breeding values
even when the prior was not correct. Selection based on
breeding values predicted from markers could substantially
increase the rate of genetic gain in animals and plants,
especially if combined with reproductive techniques to shorten
the generation interval. Selection based on pedigree has played
an important role in the selective breeding improvement in
domestic animals.

Quantitative traits are usually affected by many genes and,
consequently, the benefits from the MAS are limited by the
proportion of the genetic variance explained by the QTL.
Hence, it is warranted to utilize all the QTL affecting the
traits in MAS. Nevertheless, a dense marker map defines a
very large number of chromosome segments and so there
will be many effects to be estimated, probably more than
there are phenotypic data points from which to estimate them
(Meuwissen et al., 2001).

With the emergence of high-density SNP chips, such as
Illumina chips [BovineHD BeadChip SNP, BovineSNP50 chip,
High-Density Bovine SNP chip (777K)] and Axiom R© Buffalo
Genotyping Array (90K), GS methods are improving livestock
genetic evaluation systems. They have the advantages of
high accuracy, short interval between generations, and rapid
genetic progress.

At present, GS has been applied in cattle on a large scale, but
mainly focus on milk production and carcass traits (Silva et al.,
2014; Weller et al., 2017). The GS studies on reproductive traits
in dairy and beef cattle, including AFC, puberty, NRR, PR, days
open, and CD, are listed on Table 5.

For AFC, the accuracy of genomic prediction was varied
among different populations and methods. In the Nellore breed,
the accuracy of prediction for AFC was 0.64 (Boddhireddy
et al., 2014); however, another scholarly journal reported
that the accuracy ranged between 0.38 and 0.42 by three
different models (Costa et al., 2019). The prediction accuracy
is around 0.23–0.33 in another Nellore cow population (Mota
et al., 2018). Using the ssGBLUP model, the accuracy of
prediction for AFC was 0.299 in the Thai native breed (Laodim
et al., 2019), and was 0.56 in the Gyr dairy cattle breed
(Boison et al., 2017).
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TABLE 5 | A summary of genomic selection studies for reproductive traits.

Traits studied Breed (country) Chip size Validation
population
size

Models Response
variable

Accuracy of
prediction

Regression
coefficients

References

Age at first
calving

Nelore (Brazil) Illumina
BovineHD

1,853 GBLUP
BAYESCπ

IBLASSO

dEBV 0.38(GBLUP),
0.39(IBLASSO)
0.42(BAYESCπ)

0.88(GBLUP),
1.14(IBLASSO)
0.81(BAYESC)

Costa et al.,
2019

Nelore (Brazil) Illumina Bovine
70 K

714 BayesA
BayesB
BayesCπ

BLASSO
BRR

dEBV 0.24(BayesA)
0.23(BayesB)
0.33(BayesCπ)
0.24(BLASSO)
0.38

0.62
0.63
0.65
0.83
0.65

Mota et al.,
2018

Nelore (Brazil) Illumina
BovineHD

2,241 BayesC EBVs 0.64 0.9 Boddhireddy
et al., 2014

crossbred animals
(Thai)

GeneSeek 80k
chip

8,361 ss GBLUP
ssGBLUPS1
ssGBLUPS2

EBV 0.297
0.298
0.264

Laodim et al.,
2019

Gyr dairy cattle
(Brazil)

GeneSeek
SGGP-20Ki
Illumina
BovineSNP50
GeneSeek
GGP-75Ki
Illumina
BovineHD

422 bulls and
1582 cows

GBLUP dEBVs 0.380 0.968/0.960
0.966/0.958
0.967/0.959
0.968/0.970
(bulls/bulls and
cows)

Boison et al.,
2017

CGC:
50%Red Angus
25%Charolais
25%Tarentaise

BovineSNP50
chip

1117 records BayesA
BayesB
BayesCπ

EBVs 0.148
0.143/0.154/0.146
(π = 0.99/0.95/0.90)
0.150

Toghiani et al.,
2017

Scrotal
circumference

Braford and Hereford
(Brazil)

Illumina
BovineSNP50K
Illumina
BovineHD

3680 (2997
Braford and
683 Hereford)

tsGBLUP/
ssGBLUP

EBVs/
dEBVs

0.28–0.33
0.15–0.17

0.50–1.10
0.55–1.13

Piccoli et al.,
2020

Brangus GGP−LDV3
chip (1074)
GGP−LDV4
chip (1535)
Illumina
BovineSNP50
(261)
GGP−HDT
(295)
GGP−UHD
(628)
Illumina Bovine
HD (4)

3,797 tsGBLUP
ssGBLUP

EBVs/
dEBVs

0.717
0.634

Lopes et al.,
2018

Nelore cattle (Brazil) Illumina
BovineHD (763)
Illumina
BovineSNP50
(1478)

2,241 BayesC EBVs 0.59/0.59
(AGE365/450)
0.57/0.56
(AGE365/450)

0.95/0.93
(AGE365/450)
0.89/0.86
(AGE365/450)

Boddhireddy
et al., 2014

Nelore bulls (Brazil) Illumina
BovineHD

691 GBLUP
Bayes C
BLASSO

dEBV 0.68(GBLUP0)
0.71(GBLUP20)
0.72(Bayes C)
0.72(BLASSO)

1.27 (GBLUP0)
1.44(GBLUP2)
1.68(BAYESC)
1.65(BLASSO)

Neves et al.,
2014

Angus’ sires
(America)

Illumina
BovineSNP50

439 BayesC dEBVs 0.487 (K-means)/0.600
(Random)

0.916 (K-means)/
0.983 (Random)

Saatchi et al.,
2011

Puberty (age
at first corpus
luteum)

Beef CRC: (882
Brahman and 990
Tropical Composite)
Smart Futures: (974
Brahman, 1798
Santa Gertrudis, and
910 Droughtmaster)

Illumina
BovineSNP50
chip
GeneSeek
GGP-LD array

1,872
3682

GBLUP EBVs 0.49 ± 0.06
(Tropical Composite)
0.52 ± 0.07
(Brahman)
(80% CRC + SF)

Engle et al.,
2019

(Continued)
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TABLE 5 | Continued.

Traits studied Breed (country) Chip size Validation
population
size

Models Response
variable

Accuracy of
prediction

Regression
coefficients

References

50%Red Angus
25%Charolais
25%Tarentaise

BovineSNP50
chip

890 BayesA
BayesB
BayesC

EBVs 0.237
0.188/0.235/0.242
(π = 0.99/0.95/0.90)
0.226

Toghiani et al.,
2017

CRC(2174) and
Validation cows
(4286)

Illumina
BovineHD
Illumina 7K
Illumina
BovineSNP50K

6,460 GBLUP EBVs 0.33 (Brahman)
0.15 (Tropical
Composite)

Zhang et al.,
2014

Non-return
rate

Holstein (Canada) Illumina Bovine
SNP50

317 (first) and
489 (later)

ssGBLUP
msGBLUP

GEBV
DGV

0.39/0.33
(first/later)

0.63–0.97 (first)
0.81–1.35 (later)

Guarini et al.,
2018

Heifer
pregnancy rate

Angus sires (America) Illumina
BovineSNP50

133 BayesC dEBVs 0.269 (K-means)/0.378
(Random)

1.337
(K-means)/1.580
(Random)

Saatchi et al.,
2011

Nelore (Brazil) Illumina
BovineHD (763)
Illumina
BovineSNP50
(1478)

2,241 BayesC EBVs 0.64
0.64

0.89
0.87

Boddhireddy
et al., 2014

Days open Holstein (North
America)

Illumina Bovine
SNP 50 TM
Chip

6,515 GBLUP dEBV 0.50 0.9 Forutan et al.,
2018

Calving ease
direct/maternal
(CED/CEM)

Brangus (CED/CEM) GGP−LDV3
chip (1074)
GGP−LDV4
chip (1535)
Illumina
BovineSNP50
(261)
GGP−HDT
(295)
GGP−UHD
(628)
Illumina Bovine
HD (4)

3,797 tsGBLUP
ssGBLUP

EBVs
dEBVs

0.451/0.512
0.337/0.266
(CED/CEM)

Lopes et al.,
2018

Holstein (Canada)
(calving ease)

Illumina Bovine
SNP50

438 (first) and
363 (later)

ssGBLUP
msGBLUP

GEBV
DGV

0.76/0.69
(first/later)

0.71–1.09 (first)
0.56–0.82 (later)

Guarini et al.,
2018

Angus bulls
(America)
(CED/CEM)

Illumina
BovineSNP50
BeadChip

3180 BayesC dEBVs CED:0.488/0.617
CEM:0.416/0.571
(K-means/Random)

CED:0.942/1.007
CEM:1.181/1.277
(K-means/
Random)

Saatchi et al.,
2011

Norwegian Red bulls
(calving ease)

Affymetrix 25K
MIP-SNP chip

500 GBLUP
BayesB
MIXTURE

GW-EBV 0.406/0.382
0.411/0.392
0.429/0.401
(Cohort//Random
masking)

1.192/1.104
0.932/0.953
0.998/0.862
(Cohort//Random
masking)

Luan et al.,
2009

Genomic selection studies on puberty (scrotal circumference
and age at first corpus luteum) showed that the accuracy
performance of different models is above 0.6 (Boddhireddy et al.,
2014; Neves et al., 2014; Toghiani et al., 2017; Lopes et al.,
2018; Engle et al., 2019). However, the accuracy was decreased
dramatically in crossbred populations (Zhang et al., 2014; Piccoli
et al., 2020). The limited reference population in the hybrid
population and the general traits of the reference population have
no direct counterpart in the validation population, which may be
the reason for this decrease.

In the PR studies, the accuracy of prediction was 0.269 in the
Angus population (Saatchi et al., 2011) and 0.64 in Nelore cattle
(Boddhireddy et al., 2014). For CD, the highest accuracy was
0.516 in Brangus using GBLUP models (Lopes et al., 2018), and
the prediction accuracy of different beef cattle breeds is around
0.45 among different models (Luan et al., 2009; Saatchi et al.,
2011), while the accuracy in dairy cows was lower by 0.24–0.34
(Guarini et al., 2018).

Regarding buffalo studies, genomic evaluation reports are very
limited either for productive or reproductive traits. There is only
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one published study for AFC and CI in buffalo (de Araujo Neto
et al., 2020). Genomic evaluation studies in buffalo are still in
the developing stage. The main limitation of applying genomic
evaluation in buffalo is the lack of a well-structured reference
population. Since the number of individuals with both genotypic
and phenotypic information in each country is still limited, a
multi-breed genomic evaluation would be the best alternative
(Liu et al., 2018; Abdel-Shafy et al., 2020a,b).

CONCLUSION AND PERSPECTIVES

Reproductive traits were depreciated during selection indexes to
improve the genetic potential of livestock. Hence, the recently
desired gains are being practiced to ensure that the all TMI
(total merit index) traits show a positive response or, at the very
least, no negative response. However, the statistical data from
the Council on Dairy Cattle Breeding (CDCB)1 indicated that,
without severely slowing genetic gain for milk production, the
daughter PR has stabilized and the declining trend has been
reversing since 2003. A similar trend has also been demonstrated
by García-Ruiz et al. (2016). Moreover, several pregnancy-related
SNPs with neutral associations with milk production in Holstein
bulls were identified (Cochran et al., 2013). It elicits the possibility
of increasing fertility without reducing productive performance
during selection.

Unlike dairy and beef cattle, few studies have been performed
so far for reproductive traits in buffalo. Methods such as GWAS
and GS require a large group size, well-structured pedigree, and
accurate phenotypic records, which are big challenges for buffalo
populations. The first reference for buffalo genome sequencing
was released in 2017 (Williams et al., 2017), lacking the sequence
in the chromosome and genes annotation, which was completed
and updated in 2019 (Low et al., 2019; Mintoo et al., 2019). It will
quicken the GS research and be significantly helpful in promoting
buffalo breeding.

Dissimilar to dairy production traits, GWAS for reproductive
traits seems to be underpowered and has difficulty in finding
major QTL. It still provides genetic variability across many
genome-wide genes and intragenic regions for complex trait
studies, which greatly increases the understanding of complex
traits’ molecular genetic mechanisms.
1 https://queries.uscdcb.com/eval/summary/trend.cfm

For reproductive traits with low heritability, the genetic gain
using GS is improved three to four times per year compared to
traditional methods (García-Ruiz et al., 2016). However, GS is
also facing some difficulties, especially for buffalo, such as lacking
an optimum population structure with record and some species
having no dense marker maps yet. Its accuracy is limited by
the reference population’s size and SNP marker density, which
is obvious in some hybrid populations. In developing countries,
there is a lack of complete historical records, and the number of
genotyped animals has limited the development of GS. Also, for
those traits with low to high heritability (such as puberty, age at
first calving, and CD), multivariate GS can performed on multiple
traits to improve prediction accuracy. In addition, multi-breed
genomic evaluation can be used for populations with limited size.
Besides, multi-omics data integration and analysis are gaining
more attention from fields such as genomics, transcriptomics,
and epigenomics.
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