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Abstract

Induced pluripotent stem cells (iPSCs) have tremendous potential as a tool for disease

modeling, drug testing, and other applications. Since the generation of iPSCs “captures” the

genetic history of the individual cell that was reprogrammed, iPSC clones (even those de-

rived from the same individual) would be expected to demonstrate genetic heterogeneity.

To assess the degree of genetic heterogeneity, and to determine whether some cells are

more genetically “fit” for reprogramming, we performed exome sequencing on 24 mouse

iPSC clones derived from skin fibroblasts obtained from two different sites of the same 8-

week-old C57BL/6J male mouse. While no differences in the coding regions were detected

in the two parental fibroblast pools, each clone had a unique genetic signature with a wide

range of heterogeneity observed among the individual clones: a total of 383 iPSC variants

were validated for the 24 clones (mean 16.0/clone, range 0–45). Since these variants were

all present in the vast majority of the cells in each clone (variant allele frequencies of 40–

60% for heterozygous variants), they most likely preexisted in the individual cells that were

reprogrammed, rather than being acquired during reprogramming or cell passaging. We

then tested whether this genetic heterogeneity had functional consequences for hematopoi-

etic development by generating hematopoietic progenitors in vitro and enumerating colony

forming units (CFUs). While there was a range of hematopoietic potentials among the 24

clones, only one clone failed to differentiate into hematopoietic cells; however, it was able to

form a teratoma, proving its pluripotent nature. Further, no specific association was found

between the mutational spectrum and the hematopoietic potential of each iPSC clone.

These data clearly highlight the genetic heterogeneity present within individual fibroblasts

that is captured by iPSC generation, and suggest that most of the changes are random, and

functionally benign.
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Introduction

Pluripotent stem cells, such as embryonic stem cells (ESCs), are defined by their ability to self-

renew and differentiate into any somatic cell type. In 2006, Yamanaka and colleagues success-

fully reprogrammed mouse somatic cells into pluripotent stem cells, referred to as induced plu-

ripotent stem cells (iPSCs), by introducing a combination of four transcription factors: Oct3/4,

Sox2, c-Myc, and Klf4[1]. One year later, both the Yamanaka group and the Thomson group

successfully reprogrammed human somatic cells to iPSCs[2,3]. Like ESCs, iPSCs demonstrate

unlimited self-renewal in culture, express markers associated with pluripotency (such as alka-

line phosphatase and SSEA-1), and can generate teratomas comprised of all 3 germs layers (ec-

toderm, mesoderm and endoderm) in immunodeficient mice[1].

iPSCs reprogrammed from patient cells can be valuable reagents for studying the pathobiol-

ogy of specific diseases[4]. However, concerns over the use of iPSCs in translational studies

have been raised, including potential associations between human iPSC reprogramming and

mutations known to be linked to cancer[5,6]. Previous work from our lab suggested that many

of the mutations within iPSCs actually pre-exist in rare cells within the starting cell population

[5,7]. Using whole genome sequencing to characterize a small number of mouse iPSCs derived

from the same animal, Young et al. found a number of shared variants between individual

iPSC clones (from one of three experiments) that could be detected in<1 in 500 cells in the pa-

rental cell pool[8]. These data suggested that reprogramming, with its associated cell cloning,

“captures” the mutational history of each reprogrammed cell, and that some cells within a

given starting population may be more fit for reprogramming due to specific background

mutations.

Previous studies focused on the genetic heterogeneity of iPSCs have only evaluated a small

number of individual clones[9–11], and have been limited in their ability to fully estimate the

extent of genetic heterogeneity that results from the reprograming of a pool of somatic cells. In

this study, we used exome sequencing to define the genetic heterogeneity of 24 iPSC clones de-

rived from skin fibroblasts taken from two different sites (right and left axilla; 12 clones/site) of

the same 8 week old C57BL/6J male mouse.

Materials and Methods

Production of murine iPSC clones

TheWashington University Animal Studies Committee approved all animal experiments (pro-

tocol #20120180). Skin fibroblasts from the right and left axillae (Ax1 and Ax2) of a single

healthy 8 week old adult C57BL/6J male mouse were prepared, and iPSC clones were generated

as previously described[12]. Briefly, 2.5x105 fibroblasts were seeded on 6-well plates. The next

day, the cells were transduced with the OSK-GFP lentivirus (kindly provided by Drs. Joe Sun

and Tim Townes) at an MOI of 1:3. After 24 hours of incubation with the virus, the cells were

trypsinized and transferred to a 100-mm petri dish with a feeder mouse embryonic fibroblast

(MEF) layer and mouse embryonic stem cell (ESC) media containing recombinant LIF (Milli-

pore, Billerica, MA). Cells were grown for 2–3 weeks with daily media changes before individu-

al clones were picked and expanded on MEF feeder layers.

Pluripotency characterization

GFP and Oct3/4 expression (eBioscience, San Diego, CA) was assessed by flow cytometry after

at least 4 weeks of passaging. Alkaline phosphatase staining for all 24 clones was performed

using manufacturer’s recommendations (Stemgent, Cambridge, MA). Seven individual iPSC

clones (3 with the most robust potential, and 4 with the least robust potential in producing
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hematopoietic CFUs in vitro), were injected into the hind limbs of NSG mice (1x107 cells per

mouse, 2 recipients per clone), and teratoma formation was evaluated after 8–12 weeks by his-

tologic examination. Images were captured on the Nikon Eclipse TE300 microscope using the

Nikon DXM1200F digital camera.

In vitro hematopoietic differentiation from iPSC

The iPSC hematopoietic differentiation assay is modified from a human iPSC hematopoietic

differentiation protocol[13]. Briefly, 1x105 single iPSC or mESCs were seeded in gel-coated

100-mm petri dish with OP9 stromal cells overgrown for 8–10 days in differentiation media

containing 10% fetal bovine serum (FBS), 100 μMmonothioglycerol (Sigma-Aldrich, St. Louis,

MO), and 50 μg/ml ascorbic acid (Sigma-Aldrich, St. Louis, MO). Media was changed daily for

7 days, at which time all the cells in the dish, including OP9s, were collected. Up to 1x107 un-

sorted cells were stained with the following monoclonal antibodies: Lineage cocktail (B220,

CD3ε, Gr-1, Ter119), Kit, Sca-1, CD34, and CD16/32 (FCgamma) (eBioscience, San Diego,

CA) and analyzed by flow cytometry. 1x105 unsorted cells were plated into 1.1 ml of methylcel-

lulose media containing Erythropoietin (Epo), SCF, IL-3, and IL-6 (MethoCult GF M3434;

Stem Cell Technologies, British Columbia, Canada) in 60-mm petri-dishes in triplicate. Colony

numbers were counted after 7–8 days of culture. After dissolving the MethoCult in warm

media, cells were stained with the myeloid and erythroid lineage markers CD34, CD11b, Kit,

Gr-1, and Ter119 (eBioscience, San Diego, CA) and analyzed by flow cytometry. 1x105 unsort-

ed cells were stained with Wright-Giemsa stain (Sigma-Aldrich, St. Louis, MO) for morpholog-

ic examination, both after 7 days of OP9 culture and after another 7 days in MethoCult.

Multiple lots of OP9 cells from ATCC and multiple lots and brands of FBS were systematically

tested, and neither had a significant influence on hematopoietic differentiation efficiency

(S1 Table).

Illumina library construction and exome sequencing

Genomic DNA from all 24 iPSC clones and the two parental fibroblast lines were fragmented

using a Covaris LE220 DNA Sonicator (Covaris, Woburn, MA) within a size range between

100–400 bp using the following settings: volume = 50 μL, temperature = 4°C, duty cycle = 20,

intensity = 5, cycle burst = 500, time = 120 seconds. The fragmented samples were transferred

from the Covaris plate and dispensed into a 96 well BioRad Cycle plate by the CyBio-SELMA

instrument. Small insert dual indexed Illumina paired end libraries were constructed with the

KAPA HTP sample prep kit according to the manufacturer's recommendations (KAPA Biosys-

tems, Woburn, MA) on the SciClone instrument according to the manufacturer's recommen-

dations (Perkin Elmer, Waltham, MA). Dual indexed adaptors were incorporated during

ligation; the same 8bp index sequence is embedded within both arms of the library adaptor. Li-

braries were enriched with a single PCR reaction for 8 cycles. The final size selection of the li-

brary was achieved by a single AMPure XP paramagnetic beads (Agencourt, Beckman Coulter

Genomics, Beverly, MA) cleanup targeting a final library size of 300–500bp. The libraries un-

derwent a qualitative (final size distribution) and quantitative assay using the HT DNA Hi

Sens Dual Protocol Assay with the HT DNA 1K/12K chip on the LabChip GX instrument (Per-

kin Elmer, Waltham, MA). Twenty-six libraries (from the 24 iPSC clones and the two parental

fibroblast pools), at 192 ng per library, were pooled pre-capture on the Ep5075 platform, cap-

tured (see Exome capture, and validation capture), and sequenced on an Illumina HiSeq 2000

using 100 bp paired-end reads. Exome sequencing coverage for the 24 iPSC clones and the fi-

broblast preparations from which they were derived are included in Table 1.
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PLOSONE | DOI:10.1371/journal.pone.0120585 March 23, 2015 3 / 15



The sequencing data for all 26 exomes has been deposited in the Short Read Archive (http://

trace.ncbi.nlm.nih.gov/Traces/study/?acc=SRP051818); the SRA study accession number is

SRP051818.

Variant detection pipeline

Sequence data was aligned to mouse reference sequence mm9 (with the OSK vector sequence

added) using bwa version 0.5.9[14] (params:-t 4-q 5::). Bam files were deduplicated using pi-

card version 1.46.

Single Nucleotide Variants (SNVs) were detected using the union of three callers: 1) sam-

tools version r963[15] (params:-A-B) intersected with Somatic Sniper version 1.0.2[16]

(params:-F vcf-q 1-Q 15) and processed through false-positive filter v1 (params:—bam-read-

count-version 0.4—bam-readcount-min-base-quality 15—min-mapping-quality 40—min-so-

matic-score 40) 2) VarScan version 2.2.6[17] filtered by varscan-high-confidence filter version

v1 and processed through false-positive filter v1 (params:—bam-readcount-version 0.4—bam-

readcount-min-base-quality 15—min-mapping-quality 40—min-somatic-score 40), and 3)

Strelka version 0.4.6.2[18] (params: isSkipDepthFilters = 1).

Indels were detected using the union of 4 callers: 1) GATK somatic-indel version 5336[19]

filtered by false-indel version v1 (params:—bam-readcount-version 0.4—bam-readcount-min-

Table 1. Whole exome sequencing coverage.

Sample NimbleGen, mean NimbleGen, median Agilent, Mean Agilent, Median

Ax1-2 50.97 39.91 71.24 58.69

Ax1-3 50.72 37.85 67.02 55.19

Ax1-5 53.99 42.99 75.18 60.49

Ax1-7 47.38 35.97 65.11 53.14

Ax1-8 49.87 38.76 68.97 57.88

Ax1-10 42.04 31.79 59.70 48.90

Ax1-11 50.68 38.94 67.58 55.65

Ax1-14 49.18 37.68 66.41 55.68

Ax1-16 71.62 55.49 102.50 83.39

Ax1-18 52.35 40.72 73.54 59.80

Ax1-23 46.82 35.28 63.74 52.18

Ax1-35 65.58 50.83 90.71 74.75

Ax1 parental fibroblast 39.76 31.21 51.00 42.39

Ax2-4 51.18 40.33 72.68 60.48

Ax2-6 53.40 42.19 75.34 61.58

Ax2-11 51.03 39.96 73.56 59.24

Ax2-16 47.93 36.47 66.50 54.69

Ax2-20 44.55 33.72 62.85 51.43

Ax2-24 47.22 36.68 68.59 56.31

Ax2-26 54.30 42.27 73.54 62.44

Ax2-27 48.11 36.59 64.76 53.11

Ax2-30 43.88 33.61 60.87 49.81

Ax2-34 41.62 32.17 60.06 49.29

Ax2-39 56.74 44.10 80.00 64.48

Ax2-48 45.28 34.37 61.48 50.22

Ax2 parental fibroblast 67.05 53.26 91.18 75.36

Mean 50.89 39.35 70.54 57.95

doi:10.1371/journal.pone.0120585.t001
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base-quality 15), 2) pindel version 0.5[20] filtered with pindel false-positive and vaf filters

(params:—variant-freq-cutoff = 0.08), 3) VarScan version 2.2.6[17] [filtered by varscan-high-

confidence-indel version v1 then false-indel version v1 (params:—bam-readcount-version

0.4—bam-readcount-min-base-quality 15), and 3) Strelka version 0.4.6.2[18] (params:

isSkipDepthFilters = 1).

Variants were filtered to remove non-homozygous or heterozygous sites using an R script

(https://github.com/genome/gms-core/blob/f00200864a9d0b87e6b6257c5e6bcadab4e6f685/

lib/perl/Genome/Model/Tools/Analysis/RemoveContaminatingVariants.R)

Viral integration sites were detected using Breakdancer version 1.4.1[21] and when possible,

assembled using TIGRA-SV (http://gmt.genome.wustl.edu/tigra-sv). Integration “hotspots”

were defined as 50 kbp regions containing integration events in more than one sample.

Exome capture and capture validation

Two library pools were made for exome capture, each containing all 26 libraries and a total

input of*5ug into capture. One pool was captured using the Agilent SureSelect Mouse All

Exon Library Kit according to manufacturer's recommendations with these exceptions:

1. 5 μg Mouse Cot DNA and 1mM library adapter blockers were added to the

hybridization reaction.

2. Each sample was amplified in the PCR using 20μl of enriched ssDNA library fragments,

KAPA HotStart Polymerase, and 200nM each forward primer and reverse primer.

The other pool was captured using the Nimblegen SeqCap EZ Library reagent with the

same exceptions. Both products have a probe space of*50Mb. The final concentration of each

capture pool was verified through qPCR utilizing the KAPA Library Quantification Kit—Illu-

mina/LightCycler 480 kit according to the manufacturer's protocol (Kapa Biosystems, Woburn,

MA) to produce cluster counts appropriate for the Illumina HiSeq2000 platform. Each capture

pool was loaded across 5 lanes of the HiSeq2000 version 3 flow cell according to the manufac-

turer's recommendations (Illumina, San Diego, CA). 2 X 101bp read pairs were generated for

each sample, yielding approximately 6–7 Gb of data per sample.

For the validation array, genomic DNA of all 24 miPSC clones was isolated from sorted

GFP positive iPSCs to minimize MEF contamination. The custom capture reagent (Nimble-

Gen) contained all predicted somatic mutations from all 24 iPSC clones, as well as 25 probes

that tiled the OSK sequence to map the integration sites. Capture was performed as described

above for the NimbleGen exome reagent.

Results

Genetic heterogeneity among miPSC clones derived from the same
parental fibroblasts

24 miPSC clones were generated from the same adult male C57BL/6J mouse using a polycis-

tronic lentivirus containing cDNAs encoding OCT3/4, SOX2, KLF4 (OSK)[12], and an IRES-

GFP cassette to mark stably transduced cells. These clones were generated at the same time

from two independent fibroblast pools from the right and left axillae; 12 clones were expanded

from each pool (Fig. 1A). All clones were GFP positive, and expressed Oct3/4 and alkaline

phosphatase (Fig. 1B and S2 Table). Seven of the 24 iPSC clones (Ax1-10, Ax1-18, Ax1-35,

Ax2-26, Ax2-34, Ax2-39, and Ax2-48) were evaluated for pluripotency by injection into immu-

nodeficient mice; all clones produced teratomas containing tissues derived from the endoderm,

mesoderm and ectoderm (Fig. 1C).
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Exome sequencing on all 24 iPSC clones, as well as the two parental fibroblast pools from

which they were derived, was then performed to comprehensively define the genetic heteroge-

neity within iPSCs generated from the same mouse at the same time. Each sample was se-

quenced with two different exome reagents (Agilent SureSelect Mouse Exon, mean coverage

70.5X, and Nimblegen SeqCap EZ, mean coverage 50.9X) to ensure adequate coverage across

the exome space (Table 1). Using genomic DNA collected from iPSCs purified by flow cytome-

try (GFP-positive), all putative variants from both platforms were then validated using a liquid

phase custom capture array and deep digital sequencing (mean coverage>600X), which also

allowed us to accurately determine the variant allele frequency (VAF) of each variant (Table 2

and S3 Table).

We sought to specifically identify variants present in the single cell that was reprogrammed

by the OSK virus, rather than detecting rare variants that arose during the reprogramming pro-

cess or the post-reprogramming expansion and culture. Thus, we focused exclusively on vari-

ants present in nearly all of the cells of an iPSC clone (heterozygous variants at a variant allele

frequency [VAF] of 40–60%, or homozygous variants with VAFs>80%, with a coverage

threshold of>100x). Using these criteria, no differences were detected between the two paren-

tal fibroblast pools from the same mouse, as expected. In contrast, when comparing the iPSCs

Fig 1. Generation of iPSC clones from a single mouse C57BL/6 male mouse. A. Schematic of experimental approach (see Material and Methods for full
protocol).B. Representative bright-field images (left) and alkaline-phosphastase stains (right) of B6/BLU ESCs (top) and a representative iPSC (bottom, Ax1-
10). All images at 100x magnification. C. Images from the teratoma derived from Ax1-10 demonstrating ectoderm (neural tissue), mesoderm (cartilage) and
endoderm (ciliated respiratory epithelium).

doi:10.1371/journal.pone.0120585.g001
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to their parental fibroblasts, a total of 383 iPSC variants were detected in the 24 clones (mean

16.0, range 0–45) (Fig. 2A-B). The majority of these variants (343 of the 383 total variants) had

no supporting reads at a mean coverage depth of 320x in the Ax1 parental fibroblasts, and

462x in the Ax2 parental fibroblasts, while the remaining 40 variants could be detected at very

low VAFs in the parental fibroblasts (S3 and S4 Tables). In total, the mean VAF of the iPSC

variants in the parental fibroblasts was 0.08% (median 0.00%, range: 0.00–4.69%).

Only 1 variant was shared among different clones: 4 clones (Ax1-5, Ax1-23, Ax2-24 and

Ax2-34) harbored the identical missense substitution in Dcbld1 (Chr10, 52024482 A>G) re-

sulting in an I216M amino acid change. Analysis of the sequencing data from the parental fi-

broblasts detected this variant at a VAF of 4.69% in Ax1, and 3.11% in Ax2 fibroblasts,

suggesting that a small fraction of cells within each independent skin sample (between 5 and

10% of cells) contained this mutation; it probably represents mosaicism within the skin of this

animal. This variant was present in the majority of the cells in the four iPS clones (VAF range

48.02–52.13%), clearly demonstrating how preexisting mutations in parental cells are captured

by iPSC reprogramming. To determine whether this mutation improved fitness for reprogram-

ming, we analyzed a total of 96 iPSC clones from the skin fibroblasts of this mouse, and found

the variant in a total of 9 clones (9.4%). From the combined VAF of the primary skin samples

(32 out of 855 total reads, VAF = 3.74%), we estimate that*7.5% of the skin cells contained

Table 2. Validation array coverage.

Sample Mean Coverage Median Coverage

Ax1-2 571.98 431.46

Ax1-3 800.73 606.67

Ax1-5 618.36 465.09

Ax1-7 853.38 652.16

Ax1-8 532.74 401.38

Ax1-10 495.42 371.31

Ax1-11 946.35 727.55

Ax1-14 928.85 703.41

Ax1-16 597.40 452.26

Ax1-18 480.24 348.80

Ax1-23 470.90 350.81

Ax1-35 404.18 303.20

Ax1 parental fibroblast 417.30 303.40

Ax2-4 665.04 500.78

Ax2-6 538.68 403.43

Ax2-11 447.50 335.88

Ax2-16 450.58 338.16

Ax2-20 694.01 532.81

Ax2-24 562.92 422.89

Ax2-26 530.64 396.95

Ax2-27 549.81 414.58

Ax2-30 916.81 695.59

Ax2-34 556.11 417.81

Ax2-39 531.33 396.36

Ax2-48 533.86 398.94

Ax2 parental fibroblast 621.84 454.89

Mean 604.50 454.87

doi:10.1371/journal.pone.0120585.t002
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this heterozygous variant. In total, these observations suggest that the Dcbld1 variant had little

if any effect on the fitness of fibroblasts for reprogramming.

An average of 3 OSK lentiviral integration sites (range 1–8) were identified in the 24 miPSC

clones (S5 Table). All of the 24 clones had a unique set of integration events, establishing their

unique clonal identities. Ax2-11 and Ax2-30 shared one identical integration site on the X

chromosome (S6 Table), yet Ax2-30 had 8 total integration sites compared to only 2 for Ax2-

11. These two clones also did not have any common variants when compared to the Ax2 fibro-

blast pool. In fact, we did not identify any coding variants in Ax2-11. Overall, there was no as-

sociation between the number of integration sites and the number of variants identified by

exome sequencing (data not shown). No insertion events were identified in genes known to be

important in ESC/iPSC function or hematopoietic development (data not shown). Several inte-

gration “hotspots” were identified: Chr2: 98502394–98507455 (14 clones from both Ax1 and

Ax2), Chr9: 3000297–3034834 (15 clones from both Ax1 and Ax2), and ChrX: 100516717–

100525474 (5 clones from both Ax1 and Ax2). Of these, only the hotspot on Chromosome 2

has previously been reported [22] (S7 Table).

Fig 2. Sequencing of iPSC clones. A. Number of variants identified per iPSC clone. B. Variant allele frequencies of all validated mutations for each clone.
Samples are ranked by the number of variants in decreasing order. No mutations were identified in Ax2-11, thus it is not listed in panel B.

doi:10.1371/journal.pone.0120585.g002
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Functional heterogeneity among miPSC clones derived from the same
parental fibroblasts

To determine whether functional heterogeneity existed among the 24 iPSC clones derived

from the same parental cells, we modified a protocol for hiPSC hematopoietic differentiation

to induce the production of murine hematopoietic stem/progenitor cells (HSPCs) from ESCs

and iPSCs. As described in Methods and Materials, after co-culture on OP9 stromal cells for

one week, control wild type mESC lines derived from C57BL/6 mice (B6/BLU or B6/GFP) con-

sistently differentiated into hematopoietic progenitors, as determined by morphologic exami-

nation (Fig. 3A). These cells also had immunophenotypic characteristics of KLS cells

(Kit+Lin−Sca-1+), common myeloid progenitors (CMPs), granulocyte-macrophage progenitors

(GMPs), and megakaryocyte-erythroid progenitors (MEPs) (Fig. 3B-D). The iPSC clones were

capable of differentiating into KLS cells, GMPs, CMPs, and MEPs with variable efficiencies

compared to ESCs. Only Ax1-18 consistently failed to produce immunophenotypically-defined

hematopoietic progenitors (Fig. 4).

To assess the hematopoietic potential of these immunophenotypically-defined hematopoi-

etic progenitors, cells grown for 1 week on OP9 feeder cultures were then grown in methylcel-

lulose with hematopoietic cytokines (SCF, IL-3, IL-6, and Epo) for 7 days, and colony forming

units (CFUs) were enumerated. In two independent experiments, the 24 miPSC clones exhib-

ited variable but reproducible potentials in their ability to produce functional hematopoietic

progenitor cells (Fig. 5A). Further, erythrocytes and mast cells were readily identified by mor-

phologic examination in the methylcellulose cultures (Fig. 5B); cells expressing CD34, Kit,

Ter119, and CD11b were also detected at variable levels (Fig. 5C-E). Consistent with the results

from the progenitor studies above, Ax1-18 was incapable of forming colonies in cytokine-sup-

plemented methylcellulose. There was no correlation between the hematopoietic differentia-

tion potential of the iPSC clones and the number of mutations (r2 = 0.01339) (Fig. 5F) or the

number of integration sites (data not shown).

Discussion

The generation of iPSCs starts with a single somatic cell. All of the cells in the resulting iPSC

clone would therefore be expected to harbor the somatic alterations present in that individual

founding cell, in essence “capturing” the mutational history of that cell. The genetic heteroge-

neity that results from this cloning of individual cells has been addressed in some studies using

small numbers of iPSC clones. To more comprehensively address the degree of genetic hetero-

geneity that can result from iPSC generation, we characterized the exomic mutations in 24

iPSCs generated from the same C57BL/6 male mouse, using two independent preparations of

skin fibroblasts. We found that there was a wide range in the number of mutations in the

exomes of individual iPSC clones when compared to the pool of fibroblasts that served as the

cell source for iPSC production, highlighting the genetic heterogeneity inherent in

iPSC generation.

In this study, we limited our analysis to genetic alterations present in nearly all the cells of

the iPSC clone (variants with VAFs of*50%), since these would most likely have been present

in the individual fibroblasts that were reprogrammed. In contrast, mutations present in a sub-

set of the cells of the iPSC clone would most likely arise during cell expansion, and were there-

fore excluded from this analysis. This approach was chosen based on our previous study,

which strongly suggested that most variants present in an individual iPSC were carried forward

from the reprogrammed cell [8]. Most of the variants detected in this study had few if any vari-

ant reads in the parental fibroblasts. We favor the hypothesis that these variants were pre-exist-

ing in the rare cells that were reprogrammed, and were below our limit of detection by
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sequencing. However, we cannot exclude the possibility that they occurred during the initial

stages of reprogramming. Another possibility is that these mutations arose during expansion,

and that specific mutations provided clones with a strong proliferative advantage; if this were

the case, we would expect to see recurring patterns of mutations in genes that are known to

provide a proliferative signal (e.g. activating mutations in Ras, tyrosine kinase receptors, etc.).

However, no mutations of this class were identified in any of the clones. For some variants,

Fig 3. Hematopoietic differentiation frommurine ESCs. A.Morphology of wild type ESC-derived cells after 7 days of OP9 coculture (unsorted) byWright-
Giemsa staining. A scale bar of 20 μm is shown. (B-D). Immunophenotyping of hematopoietic progenitor cells fromwild-type mouse bonemarrow cells (panel
B), murine ESCs after 7 days of OP9 coculture (panel C), and iPSC clone Ax1-14 after 7 days of OP9 coculture (panel D). Lineage− (Lin−), KLS (Lin−Kit+Sca-1+),
progenitors (Lin−Kit+Sca-1−), CMPs (Lin−Kit+Sca-1−CD34+FCγ−), GMPs (Lin−Kit+Sca-1−CD34+FCγ+), and MEPs (Lin−Kit+Sca-1−CD34−FCγ-).

doi:10.1371/journal.pone.0120585.g003
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such as the A>G transition in Dcbld1, our results convincingly demonstrate that these variants

were present in a subset of cells in the fibroblast pools used for iPSC generation, and that the

mutation likely provided no fitness advantage for reprogramming.

Functional heterogeneity in iPSCs has been documented by several other studies [9,23–25],

but all have examined only a small number of clones. Our experimental design allowed us to

test the extent of functional heterogeneity among a large set of iPSCs and to determine if there

was an association with genetic alterations. We did observe a range in the ability of individual

iPSCs to differentiate into hematopoietic cells. Other studies have likewise demonstrated vari-

able potentials of iPSCs derived from a common source to differentiate into a specific lineage,

such as neurons [26,27], hematopoietic progenitors [9,27], or hepatocytes [24]. In this study,

only one of 24 clones was unable generate hematopoietic progenitors. This clone, Ax1-18, had

a similar number of exomic mutations (n = 22) to other clones in the set, and none were in

genes that are currently known to be important for hematopoietic differentiation or develop-

ment (S3 Table). In addition, this clone was capable of forming teratomas in vivo, confirming

its pluripotency. It is possible that epigenetic differences captured in the reprogrammed cell

may have influenced its functional properties [26–28].

While our data clearly show there is little association between functional and genetic hetero-

geneity in this group of 24 iPSCs, it is not yet clear how genetic heterogeneity will impact

Fig 4. Comparison of hematopoietic potential of iPSCs to mouse ESCs. Fractions of Lin− cells (A), KLS cells (B), Kit+Lin-Sca-1- Progenitors (C), GMPs
(D), CMPs (E), and MEPs (F) from iPSCs relative to mouse ESCs after 7 days of OP9 coculture (unsorted).

doi:10.1371/journal.pone.0120585.g004
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disease-specific, patient-derived iPSCs. This may especially be true in iPSCs derived from prima-

ry, patient-derived tumor samples, which are inherently heterogeneous in their genetic makeup,

containing not only a set of passenger mutations acquired over the life of the transformed cell,

but also mutations that influence cell growth and differentiation. Indeed, we have shown that

primary AML samples consist of different populations of cells with mutations that can confer

unique functional properties [29]. Considering these data, it would not be surprising if the func-

tional heterogeneity of iPSCs is more prominent when derived from tumor samples—or even

from patients with cancer predisposition syndromes, which may have altered background

mutation rates.

In summary, we characterized the mutational landscape of 24 iPSC clones derived from the

same mouse. While we found a substantial amount of genetic heterogeneity, only one of the

clones was incapable of hematopoietic differentiation, and there was no correlation between

the number of mutations and the ability to generate functional hematopoietic progenitors.

Fig 5. Hematopoietic differentiation potential of the 24 iPSC clones. 100,000 cells from OP9 cocultured mESCs (B6/BLU) or iPSCs were plated in
methylcellulose media containing hematopoietic cytokines (SCF, IL-3, IL-6, and Epo).A. CFUs were counted after 7 additional days of culture. The relative
number of CFUs per 100,000 cells plated from Day7 iPSC-derived progenitors vs. Day7 ESC (B6/BLU)-derived progenitors are shown. iPSC clones are
ranked from the highest to the lowest average of two independent experiments. Error bars represent the means +/− one standard deviation. B.Morphology of
day 7 OP9 cocultured ESC-derived cells after 7–8 days of additional culture in MethoCult media containing hematopoietic cytokines (SCF, IL-3, IL-6, and
Epo). A scale bar of 20 μm is shown. (C-E). Fractions of CD11b+ (C), CD34+Kit+ (D), and Ter119+ (E) cells obtained after 7 days of methylcellulose culture
containing hematopoietic cytokines (SCF, IL-3, IL-6, and Epo), comparing iPSC-derived progenitors relative to ESC-derived progenitors, in the same order
as panel A. F. Lack of correlation between the number of mutations and the hematopoietic differentiation potential of the iPSC clones (r2 = 0.0006065).

doi:10.1371/journal.pone.0120585.g005
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Future studies are clearly warranted with different initial cell sources for iPSC generation (e.g.

bone marrow/peripheral blood mononuclear cells and patient-derived primary samples), and

different lineage differentiation strategies. Regardless, these data provide a large database and

reference material for future iPSC experiments focused on heterogeneity among iPSC clones.

Supporting Information

S1 Table. OP9 and FBS lot compatibility with the hematopoietic differentiation assay,

based on number of CFUs produced by B6 ESC-derived hematopoietic progenitors.

(DOCX)

S2 Table. GFP and Oct3/4 expression miPSC clones as measured by flow cytometry.

(DOCX)

S3 Table. Validated variants in all 24 miPSC clones.

(XLSX)

S4 Table. Variants detected at low VAFs in the parental fibroblasts.

(XLSX)

S5 Table. OSK lentiviral integration sites.

(DOCX)

S6 Table. Common OSK lentiviral integration sites.

(DOCX)

S7 Table. Integration “hotspots”.

(DOCX)

Acknowledgments

Technical assistance was provided by the Alvin J. Siteman Cancer Center Tissue Procurement

Core, the High Speed Cell Sorting Core, and the Molecular and Genomic Analysis Core at

Washington University School of Medicine and Barnes-Jewish Hospital in St. Louis, MO,

which are all supported by the National Cancer Institute Cancer Center Support Grant

P30CA91842. The authors also thank Mieke Hooke for invaluable animal husbandry, and Dr.

Suellen Greco from the Division of Comparative Medicine at Washington University School of

Medicine for assistance in imaging and teratoma evaluation.

Author Contributions

Conceived and designed the experiments: C. Li JMK TJL. Performed the experiments: C. Li

JMK NMHDRG JLM RFMO CF. Analyzed the data: C. Li JMK CAM C. Lu. Contributed re-

agents/materials/analysis tools: C. Li NMH DRG JLM CAM C. Lu RKW. Wrote the paper: C.

Li JMK TJL.

References
1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells frommouse embryonic and adult fibro-

blast cultures by defined factors. Cell. 2006; 126: 663–676. PMID: 16904174

2. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861–872. PMID: 18035408

3. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent
stem cell lines derived from human somatic cells. Science. 2007; 318: 1917–1920. PMID: 18029452

Genetic Heterogeneity in iPSCs

PLOSONE | DOI:10.1371/journal.pone.0120585 March 23, 2015 13 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120585.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120585.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120585.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120585.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120585.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120585.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0120585.s007
http://www.ncbi.nlm.nih.gov/pubmed/16904174
http://www.ncbi.nlm.nih.gov/pubmed/18035408
http://www.ncbi.nlm.nih.gov/pubmed/18029452


4. Bellin M, Marchetto MC, Gage FH, Mummery CL. Induced pluripotent stem cells: the new patient? Nat
Rev Mol Cell Biol. 2012; 13: 713–726. doi: 10.1038/nrm3448 PMID: 23034453

5. Gore A, Li Z, Fung H-L, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations
in human induced pluripotent stem cells. Nature. 2011; 471: 63–67. doi: 10.1038/nature09805 PMID:
21368825

6. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, et al. Dynamic changes in the copy number
of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time
in culture. Cell Stem Cell. 2011; 8: 106–118. doi: 10.1016/j.stem.2010.12.003 PMID: 21211785

7. Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L, et al. Somatic copy number mosai-
cism in human skin revealed by induced pluripotent stem cells. Nature. 2012; 492: 438–442. doi: 10.
1038/nature11629 PMID: 23160490

8. Young MA, Larson DE, Sun C-W, George DR, Ding L, Miller CA, et al. Background mutations in paren-
tal cells account for most of the genetic heterogeneity of induced pluripotent stem cells. Cell Stem Cell.
2012; 10: 570–582. doi: 10.1016/j.stem.2012.03.002 PMID: 22542160

9. Mills JA, Wang K, Paluru P, Ying L, Lu L, Galvão AM, et al. Clonal genetic and hematopoietic heteroge-
neity among human-induced pluripotent stem cell lines. Blood. 2013; 122: 2047–2051. doi: 10.1182/
blood-2013-02-484444 PMID: 23940280

10. Cahan P, Daley GQ. Origins and implications of pluripotent stem cell variability and heterogeneity. Nat
Rev Mol Cell Biol. 2013; 14: 357–368. doi: 10.1038/nrm3584 PMID: 23673969

11. Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for ap-
plication. Cell Stem Cell. 2013; 13: 149–159. doi: 10.1016/j.stem.2013.07.001 PMID: 23910082

12. Chang CW, Lai YS, Pawlik KM, Liu K, Sun CW, Li C, et al. Polycistronic Lentiviral Vector for “‘Hit and
Run’” Reprogramming of Adult Skin Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells. 2009;
27: 1042–1049. doi: 10.1002/stem.39 PMID: 19415770

13. Vodyanik MA, Slukvin II. Hematoendothelial differentiation of human embryonic stem cells. Curr Protoc
cell Biol; 2007. Chapter 23: Unit 23.6.

14. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformat-
ics. 2009; 25: 1754–1760. doi: 10.1093/bioinformatics/btp324 PMID: 19451168

15. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map for-
mat and SAMtools. Bioinformatics. 2009; 25: 2078–2079. doi: 10.1093/bioinformatics/btp352 PMID:
19505943

16. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, Dooling DJ, et al. SomaticSniper: identification
of somatic point mutations in whole genome sequencing data. Bioinformatics 2012: 28(3): 311–317:
doi: 10.1093/bioinformatics/btr665 PMID: 22155872

17. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and
copy number alteration discovery in cancer by exome sequencing. Genome Res 2012; 22: 568–576.
doi: 10.1101/gr.129684.111 PMID: 22300766

18. Saunders CT, WongWSW, Swamy S, Becq J, Murray LJ, Cheetham RK. Strelka: accurate somatic
small-variant calling from sequenced tumor-normal sample pairs. Bioinformatics 2012: 28: 1811–1817.
doi: 10.1093/bioinformatics/bts271 PMID: 22581179

19. McKenna A, HannaM, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis
Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res
2010; 20: 1297–1303. doi: 10.1101/gr.107524.110 PMID: 20644199

20. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points
of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 2009: 25:
2865–2871. doi: 10.1093/bioinformatics/btp394 PMID: 19561018

21. Chen K, Wallis JW, McLellan MD, Larson DE, Kalicki JM, Pohl CS, et al. BreakDancer: an algorithm for
high-resolution mapping of genomic structural variation. Nat Methods 2013; 6: 677–681.

22. Yang SH, Cheng PH, Sullivan RT, Thomas JW, Chan AW. Lentiviral integration preferences in trans-
genic mice. Genesis 2008; 46: 711–718. doi: 10.1002/dvg.20435 PMID: 18821598

23. Boulting GL, Kiskinis E, Croft GF, AmorosoMW, Oakley DH,Wainger BJ, et al. A functionally character-
ized test set of human induced pluripotent stem cells. Nat Biotechnol 2011; 29: 279–288. doi: 10.1038/
nbt.1783 PMID: 21293464

24. Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, et al. Donor-dependent variations in
hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci 2012; 109:
12538–12543. doi: 10.1073/pnas.1209979109 PMID: 22802639

25. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, et al. Reference Maps of human ES
and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 2011: 144:
439–452. doi: 10.1016/j.cell.2010.12.032 PMID: 21295703

Genetic Heterogeneity in iPSCs

PLOSONE | DOI:10.1371/journal.pone.0120585 March 23, 2015 14 / 15

http://dx.doi.org/10.1038/nrm3448
http://www.ncbi.nlm.nih.gov/pubmed/23034453
http://dx.doi.org/10.1038/nature09805
http://www.ncbi.nlm.nih.gov/pubmed/21368825
http://dx.doi.org/10.1016/j.stem.2010.12.003
http://www.ncbi.nlm.nih.gov/pubmed/21211785
http://dx.doi.org/10.1038/nature11629
http://dx.doi.org/10.1038/nature11629
http://www.ncbi.nlm.nih.gov/pubmed/23160490
http://dx.doi.org/10.1016/j.stem.2012.03.002
http://www.ncbi.nlm.nih.gov/pubmed/22542160
http://dx.doi.org/10.1182/blood-2013-02-484444
http://dx.doi.org/10.1182/blood-2013-02-484444
http://www.ncbi.nlm.nih.gov/pubmed/23940280
http://dx.doi.org/10.1038/nrm3584
http://www.ncbi.nlm.nih.gov/pubmed/23673969
http://dx.doi.org/10.1016/j.stem.2013.07.001
http://www.ncbi.nlm.nih.gov/pubmed/23910082
http://dx.doi.org/10.1002/stem.39
http://www.ncbi.nlm.nih.gov/pubmed/19415770
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1093/bioinformatics/btr665
http://www.ncbi.nlm.nih.gov/pubmed/22155872
http://dx.doi.org/10.1101/gr.129684.111
http://www.ncbi.nlm.nih.gov/pubmed/22300766
http://dx.doi.org/10.1093/bioinformatics/bts271
http://www.ncbi.nlm.nih.gov/pubmed/22581179
http://dx.doi.org/10.1101/gr.107524.110
http://www.ncbi.nlm.nih.gov/pubmed/20644199
http://dx.doi.org/10.1093/bioinformatics/btp394
http://www.ncbi.nlm.nih.gov/pubmed/19561018
http://dx.doi.org/10.1002/dvg.20435
http://www.ncbi.nlm.nih.gov/pubmed/18821598
http://dx.doi.org/10.1038/nbt.1783
http://dx.doi.org/10.1038/nbt.1783
http://www.ncbi.nlm.nih.gov/pubmed/21293464
http://dx.doi.org/10.1073/pnas.1209979109
http://www.ncbi.nlm.nih.gov/pubmed/22802639
http://dx.doi.org/10.1016/j.cell.2010.12.032
http://www.ncbi.nlm.nih.gov/pubmed/21295703


26. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, et al. Cell type of origin influences the mo-
lecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 2010; 28:
848–855. doi: 10.1038/nbt.1667 PMID: 20644536

27. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem
cells. Nature 2010; 467: 285–290. doi: 10.1038/nature09342 PMID: 20644535

28. Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, et al. Donor cell type can influence the epigen-
ome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol 2011; 29:
1117–1119. doi: 10.1038/nbt.2052 PMID: 22119740

29. Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O'Laughlin M, et al. Functional heterogeneity
of genetically defined subclones in acute myeloid leukemia. Cancer Cell 2014; 25: 379–392. doi: 10.
1016/j.ccr.2014.01.031 PMID: 24613412

Genetic Heterogeneity in iPSCs

PLOSONE | DOI:10.1371/journal.pone.0120585 March 23, 2015 15 / 15

http://dx.doi.org/10.1038/nbt.1667
http://www.ncbi.nlm.nih.gov/pubmed/20644536
http://dx.doi.org/10.1038/nature09342
http://www.ncbi.nlm.nih.gov/pubmed/20644535
http://dx.doi.org/10.1038/nbt.2052
http://www.ncbi.nlm.nih.gov/pubmed/22119740
http://dx.doi.org/10.1016/j.ccr.2014.01.031
http://dx.doi.org/10.1016/j.ccr.2014.01.031
http://www.ncbi.nlm.nih.gov/pubmed/24613412

