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Isolated noncompaction of the ventricular myocardium (INVM), sometimes referred to as spongymyocardium,
is a rare, congenital, and also acquired cardiomyopathy. It appears to divide the presentation into neonatal,
childhood, and adult forms, of which spongy myocardium and systolic dysfunction is the commonality. The
disorder is characterized by a left ventricular (LV) hypertrophy with deep trabeculations, and with diminished
systolic function with or without associated LV dilation. In half or more of the cases, the right ventricle is
also affected. The sporadic type, however, in some patients, may be due to chromosomal abnormalities and
the occurrence of familial incidence. Isolated noncompaction of the LV myocardium in the majority of adult
patients is an autosomal dominant disorder. The familial and X-linked disorders have been described by
various authors. We describe here the genetic background of this disorder: some of the most mutated genes
that are responsible for the disease are (G4.5 [tafazzin gene]: α-dystrobrevin gene [DTNA]; FKBP-12 gene; lamin
A/C gene; Cypher/ZASP [LIM, LDB3] gene); and some genotype-phenotype correlations, (i.e., Becker muscular
dystrophy, Emery-Dreifuss muscular dystrophy, or Barth syndrome [BTHS]) based on the literature review.

Key words: ventricular noncompaction cardiomyopathy, G4.5 (tafazzin gene), α-dystrobrevin gene (DTNA),
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Background
Isolated noncompaction of the ventricular myocardium
(INVM), sometimes referred to as spongy myocardium,
is a rare, congenital, and also acquired cardiomyopathy.1,2

It appears more often in children than in adults. Isolated
noncompaction of the ventricular myocardium may mani-
fest itself from infancy through young adulthood with a
high mortality rate. However, the rates of complications
are different in adult, childhood, and neonatal forms;
some neonatal forms resolve spontaneously.3 Both sexes
are affected.4,5 The disorder may be associated with
facial dysmorphism and familial recurrence.5 Isolated
noncompaction of the ventricular myocardium occurs
in the absence of other structural heart diseases and,
hypothetically, it is due to the arrest of myocardial
morphogenesis.4 The disorder is characterized by left
ventricular (LV) hypertrophy with deep trabeculations,
and with diminished systolic function, with or without
associated LV dilation. In half or more of the cases,
the right ventricle is also affected.4,6,7 This disease is
accompanied by depressed ventricular function, systemic
embolism and ventricular arrhythmia.5–7 Noncompaction
of the ventricular myocardium can be present with a
variety of symptoms, but usually includes signs of LV
systolic dysfunction, even to the point of heart failure.7–9

Left ventricular noncompaction (LVNC) may be isolated
or associated with congenital heart anomalies such as
ventricular septal defects, pulmonic stenosis, and atrial
septal defects.10 Typical symptoms of INVM have also been
described in a patient with Becker muscular dystrophy,
and INVM was suggested as a part of this systemic
myopathy.11 The familial, as well as the sporadic form

of INVM, may coexist with dysmorphic facial appearance
such as prominent forehead, strabismus, gothic palate,
or micrognatia.5 The sporadic type, however, in some
patients may be due to chromosomal abnormalities and the
occurrence of familial incidences. Isolated noncompaction
of the LV myocardium in the majority of adult patients is an
autosomal dominant disorder.12 The familial and X-linked
disorder have been described by Chin et al.,5 Hamamichi
et al.,13 Bleyl et al.,14 Ritter et al.,15 Matsuda et al.16

Genes Responsible for the Disease
The first gene responsible for INVM, tafazzin (G4.5) is local-
ized on chromosome Xq28, and expressed at high levels in
cardiac and skeletal muscle; plays a role in the maintenance
of mitochondria, is involved in maintaining levels of cardi-
olipin, promotes differentiation and maturation of osteoblast
cells, and prevents adipocytes from maturing.17 This local-
ization is in the proximity of other genes responsible for
myopathies such as Emery-Dreifuss muscular dystrophy or
Barth syndrome.18

Bleyl et al.18 screened the G4.5 gene for mutations in
a family with isolated noncompaction of LV myocardium
by single-stranded conformation polymorphism (SSCP)
analysis and direct sequencing, and found a novel glycine-
to-arginine substitution at position 197 of the tafazzin gene.

Ichida et al.10 identified a cys118-to-arg (C118R) missense
mutation in the exon 4 of the tafazzin gene in a 5-month-
old male with isolated LVNC associated with a dilated,
mildly hypertrophic heart with poor systolic function on
echocardiogram, and clinical heart failure. Neutropenia and
3-methylglutaconicaciduria were also identified. The mother
was healthy but was found to be heterozygous for the same
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mutation along with a splice donor mutation (IVS10 + 2T
→A) in intron 10. In a family with cardiomyopathies
ranging from Barth syndrome (BTHS), or fatal infantile
cardiomyopathy to asymptomatic dilated cardiomyopathy
(DCM), a splice acceptor mutation in exon 2 of G4.5 (398-2
A →G) was identified, and a 1-bp deletion in exon 2 of G4.5,
resulting in a stop codon after amino acid 41, was found in a
sporadic case of BTHS.10

Chen et al.19 identified a novel splice acceptor site
mutation of intron 8 of G4.5 in a family with severe infantile
X-linked LVNC, without the usual findings of BTHS. This
mutation results in deletion of exon 9 from the mRNA, and
is predicted to significantly disrupt the protein product.19

Genotype–phenotype correlation of G4.5 mutations in all 38
cases that were reported in the literature up-to-date revealed
that there was no correlation between a location or a type of
mutation, and either cardiac phenotype or disease severity.
They suggested that males linked with cardiomyopathy,
particularly during infancy, even in the absence of the
typical signs of Barth syndrome, should be evaluated for
mutations in G4.5.19

Kenton et al.20 identified a splice site acceptor mutation
in intron 10 of G4.5 resulting in the deletion of exon 10 from
the mRNA. The 13 mutations affiliated with G4.5 have so far
been reported.21

The second gene responsible for INVM is called α-
dystrobrevin, which is a cytoskeletal protein found in the
dystrophin-associated glycoprotein complex (DAPC)10 and
localized in 18q12.1-q12.2 by in situ hybridization.22

Ichida et al.10 screened the α-dystrobrevin gene in a
Japanese family in which members of 4 generations were
affected, 5 of them with LVNC associated with congenital
heart defects, and 1 with isolated LVNC. The missense
mutation in the DTNA gene, P121L, was found. A 362C>T
mutation was also identified in this gene in a family with
nonisolated LVNC.23

Furthermore, isolated noncompaction of LV myocardium
is observed in mice, among the FK506-binding protein 1A
gene (FKBP1A), has been ‘knocked out’ by embryonic stem
cell technology. The FKBP1A gene maps to 20p13.24

The fourth gene associated with LVNC is lamin A/C gene
related sequence mapped to human chromosomes 1q12.1-
q23 and 10.25 The human LMNA gene, when mutated,
has been shown to cause at least 7 human diseases:
a dilated cardiomyopathy, an Emery-Dreifuss muscular
dystrophy, a limb girdle muscular dystrophy, a familial
partial lipodystrophy, Charcot Marie tooth disease type
II, mandibuloacral dysplasia, and a Hutchinson-Gilford
Progeria.26 The human LMNA gene mutations have been
associated with familial or sporadic dilated cardiomyopathy
(DC), with or without conduction system disease.26,27

Hermida–Prieto et al.27 studied the LMNA gene in
67 consecutive patients with DC. Two disease-causing
mutations were found in 2 families. In family A, a novel R349L
mutation was present in the mother and her identical twin

daughters. In family B, the R190W mutation was present in
2 cousins with DC and without conduction system disease,
and in 2 of their sons. One of the carriers fulfilled diagnostic
criteria for isolated LV noncompaction. These data which
associate with the R349L and R190W mutations in LMNA
have severe forms of familial DC.27 The human LMNA
gene mutations should be taken into consideration during
the genetic screening of patients with familial DC without
conduction system disease. Isolated LV noncompaction may
be part of the phenotypic spectrum of the laminopathies.27

Forissier et al.28 found a new LMNA mutation (1621C
>T, R541C) in 2 members of a French family with a history
of ventricular rhythm disturbances and an uncommon form
of systolic LV dysfunction. The 2 patients: the proband and
his daughter, were affected and exhibited an atypical form of
dilated cardiomyopathy with an unexplained LV aneurysm
revealed by ventricular rhythm disturbances without atrio-
ventricular block.28

Charniot et al.29 found a missense mutation (R377H) in
the lamin A/C gene that cosegregated with the disease in
the family. Sebillon et al.30 found a new missense (E161K)
mutation in a family with an early atrial fibrillation, and
a previously described (R377H) mutation in another family
with a quadriceps myopathy associated with DCM. Arbustini
et al.31 identified five novel LMNA mutations (K97E, E111X,
R190W, E317K, four base pair insertion at 1,713 cDNA) in 5
cases of familial autosomal dominant DCM with AVB (5/15:
33%). The LMNA expression of the myocyte nuclei was
reduced or absent.31

Vatta et al.32 evaluated the role of the fifth gene
Cypher/ZASP (LIM, LDB3) in the pathogenesis of dilated
cardiomyopathy with or without isolated noncompaction
of the LV myocardium. By polymerase chain reaction
(PCR) and radiation hybrid analysis, Faulkner et al.33

localized the ZASP gene to 10q22.2-q23.3. Vatta et al.32

determined that the LDB3 gene consists of 16 exons
and spans approximately 70 kb. By screening a muscle
complementary deoxyribonucleic acid (cDNA) library using
a muscle expressed sequence tag (EST) sequence as the
probe, Faulkner et al.33 obtained cDNAs encoding mouse
and human ZASP. Northern blot analysis detected a major
1.9-kb ZASP transcript that was most abundant in skeletal
muscle and heart but absent in other tissues tested. RT-
PCR analysis detected wide expression of ZASP, with weak
or undetectable expression in liver, pancreas, and spleen.
Western blot analysis showed expression of 32- and 78-kD
proteins in heart and muscle.34

Vatta et al.32 evaluated the role of Cypher/ZASP in the
pathogenesis of dilated cardiomyopathy with or without
isolated noncompaction of the LV myocardium. They
screened 100 probands with LV dysfunction and found 5
mutations in 6 probands (6%). By in vitro studies, they
showed cytoskeleton disarray in cells transfected with
mutated Cypher/ZASP. In a 40-year-old man with dilated
cardiomyopathy associated with mild LV hypertrophy and a
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trabeculated left ventricle on echocardiogram, Vatta et al.32

identified heterozygosity for a 587C-T transition in exon
4 of the LDB3 gene, resulting in a ser196-to-leu (S196L)
substitution. Four other family members were affected:
the proband’s 68-year-old mother, his 2 brothers, 1 of whom
died with severe dilated cardiomyopathy at age 41 years, and
the deceased brother’s 7-year-old daughter, who presented
with a mildly dilated left ventricle. The mutation was only
identified in affected family members.32

In a 15-month-old Latin-American male with profound
bradycardia, atrial ventricular block, and depressed ventric-
ular function with mild LV dilation, Vatta et al.32 identified a
638C-T transition in exon 4 of the LDB3 gene, resulting in
a thr213-to-ile (T213I) substitution. Thr213 is conserved in
mouse and rat. Neither parent had the substitution.

In 2 unrelated sporadic cases of dilated cardiomyopathy
withLVNC, Vatta et al.32 identified a 349G-A transition
in exon 6 of the LDB3 gene, resulting in an asp117-
to-asn (D117N) mutation. One patient was a 44-year-old
female, diagnosed at 41 years of age with DCM, heart
failure, left bundle branch block, and dilated left ventricle
with deep trabeculations. The other was a 33-year-old
male, diagnosed with DCM at 30 years of age during a
family echocardiographic screening after sudden death
had occurred within the family. Echocardiographic and
MRI screening identified both left and right ventricular
trabeculations, with an intraventricular conduction delay
and ventricular bigeminy on electrocardiogram, as well as
echocardiographic evidence of borderline systolic function
and a dilated left ventricle. In the other family members,
neither DCM nor isolated noncompaction of the LV
myocardium was identified.34

In 2004, Sasse-Klaassen et al.,35 discovered novel gene
locus for autosomal dominant LVNC. They have mapped a
locus for autosomal dominant LVNC to a 6.8-megabase
region on human chromosome 11p15. Identification of
the disease gene will allow genetic screening and provide
fundamental insight into the understanding of myocardial
morphogenesis.35

Conclusion
This statement is in agreement with that of Stollberger
et al.36 In this review it is stated that: (i) left ventricular
hypertrabeculation (LVHT) has a higher prevalence than
previously thought, and the prevalence of LVHT seems
to increase with the improvement of cardiac imaging; (ii)
because LVHT is most frequently diagnosed primarily by
echocardiography, echocardiographers should be aware
and trained to recognize this abnormality; (iii) LVHT is
frequently associated with other cardiac and extracardiac,
particularly neuromuscular disorders; (iv) there are indica-
tions that the cause of LVHT is usually genetic and quite
heterogeneous; and (v) controversies exist about diagnos-
tic criteria, nomenclature, prognosis, origin, pathogenesis,

and the necessity to classify LVHT as a distinct entity and
cardiomyopathy by the World Health Organization.36
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