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Brain network hubs are both highly connected and highly inter-connected, forming a critical

communication backbone for coherent neural dynamics. The mechanisms driving this

organization are poorly understood. Using diffusion-weighted magnetic resonance imaging

in twins, we identify a major role for genes, showing that they preferentially influence con-

nectivity strength between network hubs of the human connectome. Using transcriptomic

atlas data, we show that connected hubs demonstrate tight coupling of transcriptional activity

related to metabolic and cytoarchitectonic similarity. Finally, comparing over thirteen

generative models of network growth, we show that purely stochastic processes cannot

explain the precise wiring patterns of hubs, and that model performance can be improved

by incorporating genetic constraints. Our findings indicate that genes play a strong and

preferential role in shaping the functionally valuable, metabolically costly connections

between connectome hubs.
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N
ervous systems are intricately connected networks with
complex wiring patterns that are neither completely
random nor completely ordered1,2. Numerous studies,

conducted in species as diverse as the nematode Caenorhabditis
elegans, mouse, macaque, and human, and at scales ranging from
the cellular to the macroscopic, have shown that this complex
organization is, in part, attributable to a heterogeneous distribu-
tion of connectivity across neural elements, such that a large
fraction of network connections is concentrated on a small subset
of network nodes called hubs3–7. These hubs are more strongly
interconnected with each other than expected by chance, forming
a rich-club3–5,7 that is topologically positioned to integrate
functionally diverse neural systems and to mediate a large pro-
portion of inter-regional communication5,8.

In the human cortex, hubs are predominantly located in trans-
modal paralimbic and association areas6,9 and are among the most
metabolically expensive elements of the connectome10, with rich-
club connections between hubs accounting for a disproportionate
fraction of axonal wiring costs3–5,7,11. Paralimbic and association
hubs of the human brain also show marked inter-individual
variability in connectivity and function that relates to a diverse array
of behaviors6,12–14. These brain regions are disproportionately
expanded in individuals with larger brains15 and in human com-
pared to nonhuman primates16. They also show greater topological
centrality and evolutionary divergence in the human connectome
when compared to chimpanzee17. These findings support the
view that rapid expansion of multimodal association hubs, and
the costly, valuable rich-club connections between them, underlies
the enhanced cognitive capacity of humans compared to other
species18.

What influences the way in which hub regions connect to each
other? The rapid evolutionary expansion of network hubs in
humans, coupled with evidence supporting the heritability of
many different aspects of brain organization19, suggests an
important role for genes. In the developing brain, neurons can
innervate precise targets, even over long anatomical distances, by
following genetically regulated molecular cues20,21. However, it is
unknown whether genetic influences are preferentially exerted
across specific classes of connections, such as the costly and
functionally valuable links between network hubs. Preliminary
evidence from human twin research suggests that certain prop-
erties of hub functional connectivity are strongly heritable22, and
analyses of C. elegans, mouse, and human data suggest that hub
connectivity is associated with a distinct transcriptional signature
related to metabolic function7,11,23–25. Alternatively, some have
suggested that the protracted maturation of hub regions16,26,27

may endow these areas with enhanced plasticity12, suggesting a
prominent role for environmental influences. Moreover, recent
computational models of whole-brain connectome wiring suggest
that it is possible to grow networks with complex topological
properties, including hubs, that mimic actual brains using simple,
stochastic wiring rules based on geometric constraints28–31 or
trade-offs between the wiring cost and functional value of a
connection32–34. These findings imply that the emergence of
network hubs may not require precise genetic control and may
instead result from random processes shaped by generic physical
and/or functional properties.

Here, we use a multifaceted strategy to test between these
competing views and characterize genetic influences on hub
connectivity of the human cortical connectome. Using a
connectome-wide heritability analysis (Fig. 1A, B), we show that
genetic influences on phenotypic variance in connectivity
strength are not distributed homogeneously throughout the brain,
but are instead preferentially concentrated on links between
network hubs. Then, as previously demonstrated in C. elegans11

and mouse7, we show that connected pairs of hubs in the human

brain exhibit tightly coupled gene expression related to the
metabolic demand and cytoarchitectonic similarity of these areas
(Fig. 1C). Finally, we use computational modeling to show that
stochastic network wiring models can indeed generate networks
with brain-like properties, but fail to capture the spatial dis-
tribution of hub regions and, by extension, the precise pattern of
wiring that connects them. Moreover, adding genetic constraints
to the models can improve their performance. Collectively,
these findings demonstrate a direct link between molecular
function and the large-scale network organization of the human
connectome and highlight a prominent role for genes in shaping
the costly and functionally valuable connections between network
hubs.

Results
Using diffusion-weighted imaging (DWI) data for 972 subjects
acquired through the Human Connectome Project (HCP)35 we
generate a representative group-level connectivity matrix con-
taining 12,924 unique connections between 360 brain regions
defined by the HCPMMP1 atlas36. This network contains a set of
highly connected regions, quantified using the measure of node
degree (k), which represent network hubs and span sensorimotor,
paracentral, mid-cingulate (k > 105), insula, posterior cingulate,
lateral parietal, and dorsolateral prefrontal cortices (k > 145)
(Fig. 2A). As shown previously5,6,8,10, the network exhibits rich-
club organization, with hubs being more densely and strongly
interconnected than expected by chance (Supplementary Fig. 1).
Rich-club connections also have higher average wiring cost and
communicability (Supplementary Fig. 1), indicating that they are
among the most topologically central and costly elements of the
connectome.

Genetic influences on brain connectivity are concentrated in
the rich club. To investigate whether genes preferentially influ-
ence certain classes of connections in the human brain, we per-
form a connectome-wide heritability analysis of twin data
acquired through the Human Connectome Project. For each of
234 monozygotic (MZ) twins and their 69 non-twin siblings as
well as 120 dizygotic (DZ) twins and 48 of their non-twin siblings,
we reconstruct macroscale cortical connectomes using DWI.

For each connection in the representative group connectome,
we use the classic ACTE model to estimate the proportion of
variance in connectivity strength that is attributable to additive
genetic factors (narrow-sense heritability, denoted h2). Using the
average fractional anisotropy (FA) of each connecting fiber
bundle to quantify connectivity strength, we observe a wide
range of heritability estimates across connections, spanning 0

to 0.99 (h2mean ¼ 0:45, h2SD ¼ 0:2). Non-trivial genetic influ-
ences, quantified using the A component of the ACTE model, are
observed for the majority of connections, with the AE model
showing the best fit for 86.7% of edges, ACTE for 4.3%, and ACE
for 1.3%. A total of 7.7% of connections are influenced only by
environmental factors (CE model 6.8%, E model 0.9%).
Anatomical projections of the most and least heritable edges
are shown in Supplementary Fig. 2. To examine whether genetic
influences are preferentially concentrated on specific types of
inter-regional connections, we distinguish between hub and
nonhub regions, resulting in three possible types of connections:
rich (hub-to-hub), feeder (between a hub and a nonhub), and
peripheral (nonhub-to-nonhub) links [see schematic in Fig. 1A37].
We find that mean heritability derived from the best-fitting
biometric model is highest for rich, intermediate for feeder, and
lowest for peripheral connections across nearly all values of k
(Fig. 2B, C). The increase in heritability for rich links as a
function of the hub-defining threshold, k, indicates that genetic
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influences are, on average, stronger for connections between the
most highly connected brain regions [see also Fig. 1D]. The same
pattern is replicated when taking genetic parameters from the full
ACTE model, confirming that this result is not an artifact of our
model-selection procedure (Supplementary Fig. 3B).

Contrasting with rich links between hubs, phenotypic variance
in peripheral connectivity (between nonhubs) is predominantly
influenced by unique environment (quantified by the model
parameter E, Fig. 2D), while common environmental influences
are consistently low across all link types (mean values 〈C〉 < 0.08
and 〈T〉 < 0.02 across all k thresholds). Critically, we obtain
similar evidence of preferential genetic influences on hub
connectivity when using different methods for parcellating or
thresholding our connectomes (Supplementary Fig. 4) or when
evaluating connection strength based on the number of
reconstructed streamlines (streamline count, SC) between regions
(Supplementary Fig. 3C, D).

To investigate whether genetic influences are specific to certain
functional systems of the brain, we next categorize edges
according to the major functional networks that they connect,
as defined using a network parcellation38 of the HCPMMP1
atlas36 (Fig. 2E). Figure 2F shows the proportion of nodes with
degree > k in each functional network. High-degree nodes are
present in most networks until k ≈ 120, beyond which they are
predominantly found in transmodal paralimbic and association
networks; namely, the frontoparietal, cinguolo-opercular, and
default mode systems.

Across all 12 canonical functional networks, rich links both
within and between networks demonstrate significantly higher

heritability than other types of connections (Fig. 2G–I, one-sided
Welch’s t-test, comparing heritability of rich vs feeder and rich vs
peripheral connections, all p < 1.9 × 10−12), indicating that the
elevated genetic influences observed for rich links cannot be
explained by the affiliation of hub nodes to any specific functional
network. Moreover, the stronger heritability of rich links is
evident across different connection distances (Supplementary
Fig. 5A–C), suggesting that preferential genetic influences on hub
connectivity cannot be explained simply by the longer average
distance between hubs (Supplementary Fig. 1D). Other factors,
such as the number of outliers excluded from the analysis
(Supplementary Fig. 5D–F, K) or differences in the phenotypic
variance of connectivity strength estimates across different edge
types (Supplementary Fig. 5G–I), were also unable to account for
the increased heritability of rich links.

Together, these findings indicate that genetic influences on
phenotypic variance in connectivity strength are not distributed
homogeneously throughout the brain, nor are they confined to
specific functional networks or long vs short-range connections.
Instead, they are most strongly concentrated on the connections
between network hubs. These hubs are distributed throughout the
cortex, with the most highly connected regions residing in
transmodal networks.

Transcriptional coupling is elevated between connected hubs.
Next, we investigate the transcriptional correlates of hub con-
nectivity using data from the Allen Human Brain Atlas
(AHBA)39, focusing on expression profiles of 10,027 genes sur-
passing our quality-control criteria40 within the 180 cortical

Fig. 1 Workflows used to characterize genetic influences on hub connectivity. A A schematic representation of the connectome showing different

connection types in the brain. Given a distinction between hub nodes (red outline) and nonhub nodes (gray outline), we can delineate three classes of

connections: rich links—connections between two hubs (red); feeder links—connections between a hub and a nonhub (yellow); and peripheral links—

connections between two nonhubs (blue). B Connectome-wide heritability analysis. We use structural equation modeling to fit a classic ACTE biometric

model to every connection within the brain, resulting in estimates of genetic and environmental influences for each link. C Analysis of transcriptional

coupling. (I) Each of 3702 tissue samples in the Allen Human Brain Atlas (AHBA) is mapped to a given region in our brain parcellation. (II) Expression

values are then subjected to quality control and processing pipeline40 to construct a region × gene matrix of expression values. (III) We estimate correlated

gene expression (CGE) between each pair of brain regions as the Pearson correlation between region-specific gene-expression profiles. (IV) Inter-regional

CGE is corrected for spatial autocorrelation of the expression data via regression of an exponential distance trend40. D Schematic representation of how

values assigned to each edge are compared across connection types. We compare the mean of edge-level (pairwise) measures of heritability and CGE for

rich, feeder, and peripheral links across all possible hub-defining thresholds (horizontal axis). As k increases, the definition of a hub becomes more

stringent and identifies the actual hubs of the network. Thus, if a given effect is stronger for rich links, we expect the pairwise estimates to increase as a

function of k, with the increase for rich links being particularly large relative to the feeder and peripheral links.
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regions of the left hemisphere, where spatial coverage in the
AHBA is most comprehensive. Evaluating CGE across the full set
of genes allows us to quantify global expression patterns across
the brain without restricting the analysis to predefined gene
categories. We secondarily test for enrichment of certain classes
of genes, as detailed below. We quantify the transcriptional
coupling between different brain regions using spatially-corrected
correlated gene expression (CGE) (Fig. 1C and Supplementary
Fig. 6) and define inter-regional connectivity using a binary
group-representative matrix. The spatial correction is important
as prior studies of C. elegans, mouse, and human nervous systems
have shown that, across the brain, CGE decays exponentially as a
function of distance7,11,24,41. Recent analyses of the mesoscale
connectome of the mouse7 and microscale (cellular) connectome
of C. elegans11 indicate that, after considering this bulk trend,
connected pairs of hubs show the highest CGE, despite being
separated by longer anatomical distances, on average, than other
neural elements.

Figure 3A, B shows that the same effect is observed in humans:
CGE is highest for rich, intermediate for feeder, and lowest for
peripheral links. We obtain similar results under different
connectome processing options (Supplementary Fig. 7), distance
ranges (Supplementary Fig. 8), and when using connectivity data
from an independent sample (Supplementary Fig. 9A). The

consistency of this effect between human, mouse, and C. elegans
[see Supplementary Fig. 10 for comparison] is striking given the
large physiological differences between species, methods for
connectome reconstruction (DWI, viral tract tracing, electron
microscopy), analysis resolution (macroscale (mm to cm),
mesoscale (μm to mm), microscale (individual cells and
synapses)), and gene-expression assays (microarray, in situ
hybridization, curation of published reports).

As with heritability (Fig. 2C), higher CGE occurs for
connections between high-degree nodes distributed across the
brain; i.e., the effect is not confined to a single functional network
(Fig. 3C). Indeed, connected pairs of hubs demonstrate higher
CGE both within (Fig. 3D) and between (Fig. 3E) functionally
defined networks (one-sided Welch’s t-test, comparing CGE of
rich vs feeder and rich vs peripheral connections, all p ≤ 0.02).

Expression values in the AHBA are extracted from bulk tissue
samples, and thus agglomerate transcriptional information from
many different cell types. It is, therefore, possible that inter-
regional CGE may be related to similarity in regional cellular
composition [see also ref. 42]. We thus repeated the CGE analysis,
this time using only data from genes showing cell-specific
expression for seven canonical cell types: excitatory and
inhibitory neurons, oligodendrocyte progenitor cells, astroglia,
endothelial cells, microglia, and oligodendrocytes43–47.

Fig. 2 Genetic influences on connectivity strength are preferentially concentrated on rich-club links. A Anatomical locations of hubs defined at different

levels of k. B The degree distribution of the representative group-level connectome. Mean genetic (C) and unique environmental (D) influences for rich

(hub–hub), feeder (hub–nonhub), peripheral (nonhub–nonhub) connections as a function of the hub-defining threshold, k. The mean of the corresponding

measure across all network links is shown as a dotted black line. Shaded area corresponds to the standard error of the mean, circles indicate a statistically

significant increase of the measure in a given link type compared to the rest of the network (one-sided Welch’s t-test, uncorrected p < 0.05). E Regional

assignments to canonical functional network modules38, represented using color. F The proportion of nodes with degree > k in each functional network

module as a function of k. G Distributions of heritability estimates across edges within functionally defined networks38: VIS1—primary visual; VIS2—

secondary visual; SM—somatomotor; CO—cingulo-opecular; DAN—dorsal attention; LAN—language; FPN—frontoparietal; AUD—auditory; DMN—default

mode; PM—posterior multimodal; VM—ventral multimodal; OA—orbito-affective. Rich links within each module are represented as black dots, as defined

for k > 105. Heritability distributions for edges within (H) and between (I) functional modules across rich, feeder, and peripheral link types for k > 105. Rich

links show significantly higher heritability compared to both feeder and peripheral links, within and between functional modules (one-sided Welch’s t-test,

all p < 1.9 × 10−12). For distributions presented in G–I, white dots represent median values for each distribution. The interquartile range is represented with

a dark gray box, whiskers are represented with a light gray line. Source data are provided as a Source Data file.
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We find that all classes of cell-specific genes exhibit an increase
in CGE for rich links relative to peripheral (Supplementary
Fig. 11), with oligodendrocyte-related genes showing a signifi-
cantly stronger contribution to elevated CGE between connected
hubs (one-sided Welch’s t-test, p= 2 × 10−11, Fig. 3F) compared
to all other genes. These findings suggest that connected hubs
may have higher cytoarchitectonic similarity than other pairs of
regions. Given that the CGE of cell-specific genes is a relatively
indirect marker of cytoarchitecture, we conducted a more direct
test of the hypothesis that connected hubs have more similar
cytoarchitecture using the BigBrain atlas48, which is a high-
resolution Merker-stained histological reconstruction of a post-
mortem human brain that provides an opportunity to map
regional variations in cellular density as a function of cortical
depth. Following Paquola et al.49, we estimate intensity profiles
across 16 equivolumetric surfaces placed between the gray/white

and pial boundaries of the cortical ribbon and compute the inter-
regional microstructural profile covariance (MPC) as a proxy for
cytoarchitectonic similarity. Mirroring the CGE and heritability
findings, rich links exhibit elevated MPC compared to the feeder
and peripheral edges (Fig. 3H). These convergent MPC and cell-
specific CGE results indicate that connected hubs have a more
similar cytoarchitecture than other pairs of brain regions.

Finally, a gene set enrichment analysis of gene groups
related to elevated CGE between hubs identifies significant
enrichment of 48 GO categories, notably featuring genes related
to purine metabolism, ATP biosynthesis and metabolism, and
mitochondrial function (pFDR < 0.05, Supplementary Table 1)
that mirror those previously reported in the mouse brain7.
These results suggest a close genetic link between hub
connectivity and metabolic function [for additional considera-
tions, see ref. 50].

Fig. 3 Transcriptional coupling is elevated for connected brain network hubs. A The degree distribution of the representative group-level connectome of

brain regions in the left cortical hemisphere. Degree is computed from whole-brain connectivity. B Mean correlated gene expression (CGE) for rich

(hub–hub), feeder (hub–nonhub), peripheral (nonhub–nonhub) connections as a function of the degree threshold, k, used to define hubs. The mean CGE

across all network links is shown as a dotted black line. The shaded area corresponds to the standard error of the mean, circles indicate a statistically

significant increase in CGE in a given link type compared to the rest of the network (one-sided Welch’s t-test, uncorrected p < 0.05). CGE estimates are

corrected for distance effects, as detailed in the Methods section. C CGE within functionally defined networks as in Fig. 2E. Black dots represent CGE values

for rich links (k > 105). CGE values within (D) and between (E) functional modules in the left hemisphere across different link types (rich, feeder, and

peripheral). Inter-module rich links show significantly higher CGE compared to both feeder (one-sided Welch’s t-test, p= 0.03) and peripheral links (p=

1.5 × 10−4). Within functional modules, rich links show higher CGE compared to peripheral (p= 1.2 × 10−4) but not to feeder links (p= 0.5). F Gene

contribution score t-statistic values (GCSt-stat) for cell-specific gene groups quantifying the contribution of individual genes towards increased CGE for rich

compared to peripheral links. Neuronal gene groups (excitatory—excitatory neurons; inhibitory—inhibitory neurons) are colored blue; glial gene groups

(OPC—oligodendrocyte progenitor cells, astroglia, endothelia—endothelial cells, microglia, oligodendrocytes) colored green; values for all other genes

presented in light orange. Oligodendrocyte-related genes show a statistically significant increase in GCC compared to all other genes (one-sided Welch’s

t-test, p= 2 × 10−11). For distributions presented in C–F white dots represent median values for each distribution. The interquartile range is represented

with a dark gray box, whiskers are represented with a light gray line. G The degree distribution of the representative group-level cortical connectome. H

Mean microstructural profile covariance (MPC) for rich (hub–hub), feeder (hub–nonhub), peripheral (nonhub–nonhub) connections as a function of degree

threshold, k used to define hubs. The MPC across all network links is shown as a dotted black line. Shaded area corresponds to the standard error of the

mean, circles indicate a statistically significant increase in MPC in a given link type compared to the rest of the network (one-sided Welch’s t-test,

uncorrected p < 0.05). Inset near the degree distribution shows examples of the intermediate surfaces used to assay microstructure across the cortical

depth (reproduced with permission from49). Source data are provided as a Source Data file.
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Stochastic models of brain wiring do not capture the spatial
topography of degree. The results above imply strong genetic
control of hub connectivity, which seems at odds with recent
modeling studies suggesting that simple stochastic wiring rules
can generate networks with complex, brain-like topologies,
including heavy-tailed degree distributions that signify the exis-
tence of hubs29,30,32,33. Investigating variability in the binary
topology of connectivity—that is, the specific pattern of wiring
between regions—is challenging, as such variations at the level of
macroscale human connectomes are limited. It is thus possible
that stochastic processes may give rise to the basic binary
topology of hub connectivity, with variations in connectivity
strength subsequently being influenced by genetic factors.

To investigate the role of stochastic processes in shaping hub
connectivity, we fitted 13 different generative models of network
wiring to the HCP connectome data. Under each model, synthetic
connectomes are generated using probabilistic wiring rules. The
models we consider here have been explored extensively in prior
work33 and have the general form:

θij ¼ d
η
ij ´ t

γ
ij; ð1Þ

where θij is a score that weights the probability of connecting
nodes i and j, dij is the Euclidean distance between node pairs,
and tij is a topological property of an edge that may confer
functional value to the network. Each of the 13 models substitutes
a different topological property for tij (definitions in Table 2). The
exponents η and γ are free parameters fitted to the data to
optimally match the topological properties of the actual human
connectome, as defined using nodal distributions of degree,
clustering, and betweenness, and the edge-level distribution of
connection distances33.

In line with prior work33, we find that models in which
connections form according to both spatial (wiring cost) and
topological rules can fit the distributions of empirical network
properties better than a model based on wiring cost alone (i.e., the
“sptl” model), as shown in Fig. 4A. The best-fitting model, “deg-
avg”, modulates a pure wiring cost term by favoring connectivity
between pairs of nodes that already have a high average degree,

and shows a good fit to the data (i.e., all fits, indexed by the
Kolmogorov–Smirnov statistic, were KS < 0.21).

Despite this adequate fit to four key network properties of the
human connectome (Fig. 4B–E), we find that node degree in the
empirical and model networks have very different spatial
distributions. As shown in Fig. 4F, hubs in the empirical data
are distributed throughout the brain, whereas hubs in the
network that demonstrates the best fit to data across 130,000
model runs are predominantly confined to the temporal cortex.
As a result, the correlation between the degree sequences of the
empirical and model networks is very low (ρ=−0.05, Fig. 4G).
This low correlation is observed consistently across all models
(Fig. 4H), and even when we fit model parameters to explicitly
optimize the correlation between empirical and model degree
sequences (Supplementary Fig. 12); across 260,000 model runs,
the degree sequence correlation with the empirical data never
exceeds ρ= 0.3.

Together, these findings indicate that while stochastic models
of brain network wiring can capture the statistical properties
(node- and edge-level distributions) of connectomes, they cannot
reproduce the way in which these properties are spatially
embedded and thus do not accurately replicate the precise
pattern of wiring between connectome hubs.

Genetically constrained models offer improved fits to topolo-
gical and topographical properties of the connectome. The
limitations of stochastic models, coupled with our evidence for a
strong genetic influence on hub connectivity, raise the question of
whether models that include genetic information may show better
performance than models based on cost and/or topology alone.
To address this question, we focus on the best-fitting cost-
topology model, “deg-avg”, and examine its performance relative
to model variants that include a bias to form connections between
pairs of regions with high CGE. We focus specifically on CGE,
given our evidence for elevated CGE between pairs of hubs
regions (Fig. 3).

Figure 5 compares model fit statistics for the original “deg-avg”
model (denoted “ST” in Fig. 5A), and models in which

Fig. 4 Generative brain network models do not reproduce the spatial topography of brain network hubs. A Each distribution represents estimates of

model fit, as quantified by the maximum KS value of the top 100 networks (out of 10,000) produced by the model optimization procedure. The color of each

box indicates conceptually related models, as determined by the specific topology metric used in the model [Table 2]. White dots represent median values for

each distribution. The interquartile range is represented with a dark gray box, whiskers are represented with a light gray line. Models favoring homophilic

connectivity between node pairs are shown in red, those favoring clustering in orange, those based on the degree in light blue, and a purely spatial model

considering wiring costs alone is in dark blue. The specific wiring-rule names are shown along the horizontal axis, with formal definitions provided in Table 2.

Cumulative distributions of: B node degree, k; C betweenness centrality, b; D clustering coefficient, c; and E edge length, d, for the empirical connectome (darker

line) and 100 runs (lighter lines) of the best-fitting “deg-avg” model corresponding to the data points shown in A. F Anatomical locations of hubs defined for a

single hemisphere at selected k thresholds for the empirical data (top) and the single run of the optimized “deg-avg” generative model demonstrating the best

model fit across 10,000 runs (bottom). G Correlation between the degree sequences of the empirical data and the best-fitting generative model within a single

hemisphere (Spearman’s ρ=−0.05, p=0.49). H The distribution of correlation values quantifying the relationship between left hemisphere degree sequences

of the empirical data and synthetic networks generated using the top 100 best-fitting parameter combinations for each of the 13 considered models,

corresponding to the data points shown in A. Source data are provided as a Source Data file.
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connections are formed according to CGE alone (denoted “G”),
wiring cost alone (denoted “S”), an interplay between CGE and
wiring cost (denoted “SG”), and an interplay between CGE and
topological constraints, as defined in the “deg-avg” model (denoted
“TG”). We find that a model incorporating both topology and
genetic information, such that connections are favored between
regions with both high average degree and high CGE (“TG”model),
shows the best fits, on average, to network topology, even
surpassing the “deg-avg” (“ST”) model.

Moreover, the spatial distribution of hubs in the “TG” model
network demonstrating the best fit is more dispersed across the
brain (Fig. 5F) compared to the classical “deg-avg” model,
resulting in a higher correlation between degree sequences of
the empirical and model networks (Fig. 5G). Overall, models
including topology and CGE or CGE alone demonstrate more
positive degree sequence correlations compared to models that
do not include CGE (Fig. 5H). Our findings thus indicate that
incorporation of genetic constraints into stochastic models of
the connectome can improve fits to both network topology and
spatial topography.

Discussion
The complex topology of neural networks is thought to have been
sculpted by competitive selection pressures to minimize wiring
costs and promote complex, adaptive function10,51. Across
diverse species, rich-club connections between hubs are among
the most costly and topologically central links of the
connectome3–5,7 and thus play a major role in determining how
cost-value trade-offs are negotiated within a given nervous sys-
tem. Here, we combine a multifaceted genetic analysis with
mathematical modeling to examine the mechanisms that shape
hub connectivity of the human connectome. We find that: (i)
genetic influences on phenotypic variation in connection strength
are principally concentrated on the rich links between hubs; (ii)
connected hubs have highly correlated gene-expression patterns
that are related to similarity in regional cytoarchitecture and
energy metabolism; (iii) current stochastic models of network
growth cannot reproduce the spatial topography of hubs; and (iv)

adding genetic constraints to these models can improve perfor-
mance. Together, these findings support a major role for genes in
shaping the rich-club organization of the brain.

Our connectome-wide heritability analysis presents evidence for
a non-uniform distribution of genetic influences across the brain,
characterized by a gradient in which genetic influences are weak for
peripheral connections between nonhubs, intermediate for feeder
connections between hubs and nonhubs, and strongest for rich links
between hubs. Critically, this effect cannot be attributed to con-
nection distance or network affiliation, suggesting some degree of
specificity to hubs located throughout the brain.

The most strongly connected hubs in our connectomes were
located in transmodal paralimbic and association networks,
which show disproportionate expansion in size and connectivity
in human compared to nonhuman primates16–18. Given the
high centrality and cost of these connections (Supplementary
Fig. 13–5,7), the preferential genetic influence on rich-club con-
nectivity that we observe supports the hypothesis that natural
selection favors wiring patterns that provide high value for low
cost and that selection pressures are strongly concentrated on the
valuable, costly links between hubs2,10. This view is also sup-
ported by recent evidence that genes demonstrating accelerated
divergence between humans and chimpanzees show elevated
expression in transmodal networks52.

In contrast to rich-club connectivity, phenotypic variance in
peripheral connections between nonhubs is primarily influenced
by unique environment. Topologically peripheral connections are
more strongly conserved between human and chimpanzee
connectomes17. Moreover, the spatial topography and function of
nonhub sensory areas are highly consistent across primates,
presumably being specified early in development by evolutiona-
rily conserved transcriptional gradients18. These conserved gra-
dients may couple with simple physical processes to give rise to
predominantly short-range connectivity between topologically
peripheral pairs of regions31,53. Subsequent modifications to
peripheral connectivity may be driven by activity-dependent
mechanisms, resulting in a greater environmental influence on
phenotypic variance in connection strength.

Fig. 5 Adding genetic constraints to generative models can improve fits to network topology and topography. A Each distribution represents estimates

of model fit, as quantified by the maximum KS value of the top 100 networks (out of 10,000) produced by the model optimization procedure. The color of

each box indicates conceptually related models, as determined by the specific metric used in the model: models favoring connectivity between regions with

similar gene expression are in green, a model based on degree and wiring cost is in light blue, and a purely spatial model considering wiring costs alone is in

dark blue. “S”, “T”, “G” stand for space (wiring cost), topology, and gene expression, respectively. White dots represent median values for each distribution.

Interquartile range is represented with a dark gray box, whiskers are represented with a light gray line. Cumulative distributions of B node degree, k;

C betweenness centrality, b; D clustering coefficient, c; and E edge length, d, for the empirical connectome (darker line) and 100 runs (lighter lines) of the

best-fitting “TG” model corresponding to the data points shown in A. F Anatomical locations of hubs defined for a single hemisphere at selected k

thresholds for the empirical data (top) and the single run of the optimized “TG” generative model demonstrating the best model fit across 10,000 runs

(bottom). These networks contain 177 regions (instead of 180 presented in Fig. 4F) due to the limited coverage of gene-expression data. G Correlation

between the degree sequences of the empirical data and the best-fitting generative model within a single hemisphere (Spearman’s ρ= 0.23, p= 3.3 ×

10−5). H The distributions of correlation values quantifying the relationship between left hemisphere degree sequences of the empirical data and synthetic

networks generated using the top 100 best-fitting parameter combinations for each of the 6 considered models, corresponding to the data points shown in

A. Source data are provided as a Source Data file.
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It has been proposed that evolutionary expansion of multi-
modal hubs untethers these regions from transcriptional anchors
in sensory areas, resulting in distinctive, non-canonical anato-
mical and functional properties18. Our findings suggest that,
despite this putative untethering, genes still play an important
role in shaping phenotypic variance of hub connectivity. This
result aligns with evidence that non-conserved network properties
reflect evolutionary innovations that are driven by structural
variation of DNA, yielding greater phenotypic variation within a
species12 and higher trait heritability when compared to more
strongly conserved properties54.

In addition to being highly heritable, pairs of connected hubs
also show the highest levels of transcriptional coupling, as pre-
viously observed in the mesoscale mouse connectome7 and cel-
lular connectome of C. elegans11 (Supplementary Fig. 10). In C.
elegans this result is not explained by the developmental proxi-
mity (i.e., similarity in neuron birth time or cell lineage distance),
neurochemical identity, or anatomical position of neuron pairs,
but is instead related to the functional identity of hub neurons,
which tend to be command interneurons. Our analysis of cell-
specific genes suggests a similar result at the regional level in
humans, as rich-link CGE was elevated for gene markers of seven
different cell types, suggesting that network hubs have enhanced
similarity in regional cytoarchitecture. This conclusion was sup-
ported by our MPC analysis of the BigBrain atlas. Our results
align with the structural model of cortical connectivity, in which
regions with similar cytoarchitecture are more likely to connect
with each other, even over long distances55. More specifically, our
findings suggest that hub areas are the most similar in their
cellular composition, and that this similarity may play a critical
role in how genes preferentially sculpt long-range inter-con-
nectivity between hubs.

We also show that current stochastic models of network
growth, despite capturing key statistical network properties of
the connectome, do not reproduce the spatial locations of
network hubs. Indeed, while the actual hubs of the human brain
have a widespread anatomical distribution, hubs in the best-
fitting (“deg-avg”) model network are concentrated around
centrally located regions. In line with this result, recent work
has shown that cost-neutral randomizations of brain con-
nectivity, in which connections are progressively randomized
while preserving total wiring cost and the existence (but not
position) of hubs, almost always degrade the functional com-
plexity of the network, disconnect high-cost hubs, and lead to a
distinct hub topography in which the most highly connected
nodes cluster near the center of the brain56. These findings
suggest that actual brains are very close to optimally balancing
wiring cost with topological complexity, and that hub con-
nectivity plays a critical role in determining how this balance is
realized [see also ref. 57].

Notably, we find that incorporating genetic constraints into the
models improves their capacity to reproduce both network
topology and the spatial topography of hubs. While there is still
room for considerable further improvement, our findings indicate
that combining topological, genetic, and possibly spatial infor-
mation may offer a fruitful way forward for generative models of
the human connectome. Indeed, some models suggest that ran-
dom growth of connections, when coupled with changes in
brain geometry and heterochronicity of connection formation
across regions, can yield brain-like networks with realistic
features29, including connectivity between regions with similar
cytoarchitecture58,59. Although genes likely influence hetero-
chronous development, future work that extends such models so
that they can be directly fitted to empirical data in humans, and
which considers which genes may be most relevant in shaping
network wiring, will be important for delineating the precise roles

of genetic, environmental, stochastic, and physical mechanisms in
shaping connectome architecture.

Methods
Imaging data acquisition. We examined DWI data from two independent
cohorts. The first was obtained from the Human Connectome Project (HCP35). We
used the minimally processed DWI and structural data from the HCP for 972
participants (age mean ± standard deviation: 28.7 ± 3.7, 522 females), including a
cohort of MZ and DZ twin pairs together with their non-twin siblings. Data were
acquired on a customized Siemens 3T “Connectome Skyra” scanner at Washington
University in St Louis, Missouri, USA using a multi-shell protocol for the DWI:
1.25 mm3 isotropic voxels, repetition time (TR) = 5520 ms, echo time (TE) = 89.5
ms, field-of-view (FOV) of 210 × 180 mm, 270 directions with b = 1000, 2000,
3000 s/mm2 (90 per b value), and 18 b = 0 volumes. Structural T1-weighted data
were collected using 0.7 mm3 isotropic voxels, TR = 2400ms, TE = 2.14 ms, FOV
of 224 × 224 mm. Subject recruitment procedures and informed consent forms,
including written informed consent to share de-identified data, were approved by
the Washington University institutional review board. The full details can be found
elsewhere60.

The second DWI data set came from individuals recruited as part of ongoing
research conducted at Monash University. The experimental protocol was
approved by Monash University’s Human Research Ethics Committee and was
carried out in accordance with the approved guidelines. Written informed consent
was obtained from all participants before testing. The Monash sample was used for
replication of the CGE analysis, and comprised 439 participants with MRI data
obtained on a Siemens Skyra 3T scanner at Monash Biomedical Imaging in
Clayton, Victoria, Australia using the following parameters: 2.5 mm3 voxel
size, TR = 8800 ms, TE = 110 ms, FOV of 240 × 240 mm, 60 directions with b =
3000 s/mm2 and seven b = 0 volumes. In addition, a single b = 0 s/mm2 was
obtained with the reverse-phase encoding so distortion correction could be
performed. T1-weighted structural scans were acquired using: 1 mm3 isotropic
voxels, TR = 2300 ms, TE = 2.07 ms, FOV of 256 × 256 mm. Data for 15 subjects
were excluded due to: low connectome density (n= 10, connectome density more
than 3 standard deviations lower than the mean) or issues with cortical surface
segmentation (n= 5), resulting in a final sample of 424 participants (age mean ±
standard deviation: 23.5 ± 5.3, 190 females).

Image pre-processing. HCP DWI data were processed according to the HCP
minimal pre-processing pipeline, which included normalization of mean b0 image
across diffusion acquisitions, and correction for EPI susceptibility and signal
outliers, eddy-current-induced distortions, slice dropouts, gradient-nonlinearities,
and subject motion. T1-weighted data were corrected for gradient and readout
distortions prior to being processed with Freesurfer (full details can be found in
ref. 60).

Pre-processing for T1-weighted structural images in the Monash Sample
consisted of visual screening for gross artifacts followed by the reconstruction of
the gray/white matter interface and the pial surface using FreeSurfer
v5.3.0 software. Surface reconstructions for each subject were visually inspected,
with manual corrections performed as required to generate accurate surface
models60.

Distortions in the Monash DWI data were corrected with TOPUP in FSL, using
the forward and reverse-phase-encoded b= 0 images to estimate the susceptibility-
induced off-resonance field61,62. We corrected for eddy-current distortions,
volume-to-volume head motion, within-volume head motion, and signal outliers
using the eddy tool in FSL (version 5.0.1163–65). This implementation of EDDY
significantly mitigates motion-related contamination of DWI connectivity
estimates66. DWI data were subsequently corrected for B1 field inhomogeneities
using FAST in FSL62,67.

Connectome reconstruction. For both the HCP and Monash data sets, network
nodes for each individual were defined using a recently-developed, data-driven
group average HCPMMP1 parcellation of the cortex into 360 regions (180 per
hemisphere36). An advantage of this parcellation is that it uses diverse structural
and functional information to derive a consensus partition of the cortex into
different areas. Each region has also been assigned to a distinct canonical functional
network38, allowing us to examine results in relation to the organization of these
classic systems. However, the resulting areas can vary considerably in size, which
can affect regional connectivity estimates since larger regions are able to accom-
modate more connections. To ensure that our results were not driven by the use of
this specific parcellation, we replicated our main findings using a random cortical
parcellation consisting of 500 approximately equally sized regions (250 per
hemisphere, generated using the approach described in ref. 68; code available at
https://github.com/miykael/parcellation_fragmenter). This approach offers a
stringent test of the generalizability of our findings, as the parcellations vary in
terms of both methods for construction (data-driven vs random) and resolution
(360 vs 500 nodes).

We focus our analysis on cortical connectivity for simplicity, as we know of no
unified parcellation of cortical and subcortical areas. Moreover, positional
differences between cortex and subcortex can affect DWI connectivity estimates,
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and there are major differences between cortical and subcortical patterns of gene
expression in the AHBA data that can be difficult to appropriately accommodate40.

Subsequent processing of the DWI data for both the HCP and Monash data was
performed using the MRtrix369 and FMRIB Software Library70. Tractography was
conducted in each participant’s T1 space using second-order integration over fiber
orientation distributions (iFOD2)71. To further improve the biological accuracy of
the structural networks, we applied Anatomically Constrained Tractography
(ACT), which uses a tissue segmentation of the brain into cortical gray matter,
subcortical gray matter, white matter, and cerebrospinal fluid to ensure that
streamlines are beginning, traversing, and terminating in anatomically plausible
locations72. Tissue types were determined using FSL software70. A total of 10
million streamlines were generated on a probabilistic basis using a dynamic seeding
approach that evaluates the relative difference between the estimated and current
reconstruction fiber density and preferential samples from areas of insufficient
density73. This method helps mitigate biases related to the poor reconstruction of
tracts from certain parts of the brain due to insufficient seeding. The resulting
tractogram was then combined with the cortical parcellation for each subject to
produce a network map of white matter connectivity. Streamline termination
points were assigned to the closest region within a 5 mm radius.

Connection weights were quantified using both streamline count (number of
streamlines connecting two regions, SC) and the mean fractional anisotropy (FA)
of voxels traversed by streamlines connecting two regions, which is commonly used
as a marker of white matter microstructure. We focused on SC and FA as measures
of connectivity strength because they are the most widely used in the literature, but
note that they can be influenced by numerous factors that are not directly related to
physiological measures of communication capacity between two regions74.
Moreover, while diffusion tractography remains the only available tool for in vivo
connectivity mapping in humans, tractography algorithms can vary in their
specificity and sensitivity for tract reconstruction75,76. To mitigate these effects, our
data processing pipeline has been designed to limit contributions from spurious
streamlines72 and head motion66. While the accuracy of all tractography methods
remains an open challenge for the field77, we note that any errors in tract
reconstruction should reduce our chances of identifying stronger genetic effects for
rich links through heritability analysis, since noisy connectivity values will inflate
estimates of the E parameter (which also accounts for measurement error) in our
biometric models, and rich links tend to be long-range connections, which are
more prone to tractography errors78. Our findings may thus provide a conservative
estimate of genetic influences on hub connectivity.

Connectome thresholding. As connectomes are estimated with some degree of
noise, it is common practice to threshold weak or inconsistent edges to focus on
connections that can be more reliably estimated79. We, therefore, selected edges
that were: (i) present in at least 30% of subjects; and (ii) were amongst the τ%
strongest edges (based on the median streamline count) to achieve the desired
connectome density. We note that multiple other thresholding approaches are
available79–81, and there is no consensus as to which works best for different data
sets. Since the desired connection density is arbitrary, we examined our main
results across a range of densities: τ= 15%, 20%, 25% for 360 region parcellation,
and τ= 5%, 10%, 15% for the higher resolution parcellation of 500 regions. We
note that the actual connection density of the human connectome remains
unknown, and we chose these thresholds to span a range commonly studied in the
literature.

The connection matrix resulting from our thresholding procedure was then
used as a binary mask for selecting edges for the heritability, gene-expression
analyses, and generative modeling. This masking procedure thus restricted
individual variability in the binary topology of connectomes across individuals
(indeed, in healthy individuals such topology should be highly conserved). For
heritability analysis, we used this group-representative connectome as a mask to
extract FA-based connection weights and also repeated the analysis using
streamline count as a measure of connection strength.

Rich-club organization. The connectivity of each region (node) in a network can
be quantified by counting the number of connections to which it is attached. This
measure is known as node degree. At a particular degree threshold, k, nodes can be
labeled as hubs (degree > k) or nonhubs (degree ≤ k), subsequently classifying all
connections within the network as “rich” (connection between two hubs), “feeder”
(connection between a hub and a nonhub), and “peripheral” (connection between
two nonhubs) (Fig. 1A5). To quantify the inter-connectivity between hub regions
within a binary brain connectivity network, we used the topological rich-club
coefficient ϕ(k):

ϕðkÞ ¼ 2E> k

N> kðN> k � 1Þ ; ð2Þ

where N>k is the number of nodes with degree > k, and E>k is the number of edges
between nodes with degree > k82. Therefore, the rich-club coefficient quantifies the
density of the subgraph comprising nodes with a degree higher than the hub-
defining threshold k.

Since nodes with a higher degree make more connections, and can thus be
expected to have a higher connection density compared to other nodes, we
compared the ϕ(k) of the empirical network to the mean value across a 1000

randomized null networks, ϕrand(k), generated by rewiring the edges of the
empirical network while retaining the same degree sequence, using the
randmio_und function from the Brain Connectivity Toolbox83, rewiring each
edge 50 times per null network. This randomization method is commonly used in
the literature3–5,7. Alternative approaches that preserve both the degree sequence
and connectome wiring cost56,84,85 can be used to test rich-club organization in
relation to geometric influences on connectome organization.

To assess whether the connections between high-degree nodes were also more
likely to have stronger connection weights than expected by chance, we evaluated
the weighted rich-club coefficient86:

ϕwðkÞ ¼ W> k

∑
E> k

l¼1 w
rank
l

; ð3Þ

whereW>k is the sum of weights in the subgraph with degree higher than k, and the
denominator is the total sum of l strongest weights in the network. As a null model
for the weighted rich-club coefficient, we separate the definitions of weighted and
topological rich-club coefficients by randomly reassigning weights within the
network while preserving the binary topology87 (instead of rewiring the links).

In both binary and weighted cases, we computed the normalized rich-club
coefficient ϕnorm(k) as the ratio between the rich-club coefficient in the empirical
network and the mean rich-club coefficient in the set of the corresponding
randomized networks:

ΦnormðkÞ ¼
ϕðkÞ

hϕrandðkÞi
: ð4Þ

Values of Φnorm > 1 indicate rich-club organization, where high-degree nodes are
more densely interconnected (in the case of the topological rich-club) or have
higher weights (in the case of the weighted rich-club) than be expected by chance.
The statistical significance of the result is assessed by computing a p-value directly
from the empirical null distribution of the 1000 randomized networks, ϕrand(k), as
a permutation test5. We note that in all our analyses, we estimated the
representative group connectome and consequently the node degree using SC-
weighted connectomes. Where indicated, FA-weighted connectomes were used in
analyses of connectivity weights.

Communicability. We investigated the topological centrality of rich links using a
measure called communicability88, estimated across a range of degree thresholds.
The communicability, Cij, between a pair of nodes i and j, is calculated by
accounting for all possible paths of length l between the nodes, weighted as 1/l!, so
that shorter paths make a stronger contribution to the overall score. The com-
municability, Cij, for a binary matrix A is formally defined as:

Cij ¼ ∑
1

l¼0

ðAlÞij
l!

¼ ðeAÞij: ð5Þ

In a weighted network, communicability, Cw
ij , is defined using a weighted adjacency

matrix W:

Cw
ij ¼ ðeS

�1
2WS�

1
2 Þij; ð6Þ

where S�
1
2 is the diagonal matrix with elements 1ffiffiffi

si
p and si is the strength of node i.

We estimated the mean binary and weighted communicability for rich links, as a
function of the hub-defining threshold k, to evaluate whether rich links are
topologically central within the human connectome (Supplementary Fig. 1E, F). An
advantage of communicability is that, unlike classic measures of centrality, it does
not assume that information is routed exclusively along the shortest paths in the
network, which is likely to be an inappropriate assumption for brain networks2,89.

Heritability analysis. The HCP diffusion imaging data set includes 117 pairs of
genetically confirmed monozygotic (MZ) twin pairs together with 69 of their non-
twin siblings, as well as 60 dizygotic (DZ) same-sex twin pairs and 48 of their non-
twin siblings. For each twin pair with more than one non-twin sibling, we selected
one sibling at random (demographic details summarized in Table 1). Only twin
pairs where both twins had genetically verified zygosity were included in the
heritability analysis.

Table 1 Demographic data for twin groups and their non-

twin siblings.

Zygosity Number of subjects Sex (F/M) Age

MZ twins 117 pairs 69/48 29.3 ± 3.3
MZ non-twin siblings 69 34/35 29.1 ± 4.2
DZ twins 60 pairs 33/27 28.8 ± 3.5
DZ non-twin siblings 48 24/24 29.1 ± 4.0

Age is displayed in years: mean ± SD.

MZ monozygotic twins, DZ dizygotic twins.
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Heritability analysis relies on the assumption that both shared genetic factors
and common environment contribute to the phenotypic similarity between twins
within a pair, whereas unique environmental factors and non-shared genetic effects
contribute to the differences observed between them. In the classical twin design,
MZ twins are assumed to be genetically identical whereas DZ twins on average
share half of their DNA, which is similar to non-twin siblings. Structural equation
modeling can thus be used to decompose phenotypic variance and covariance in
any particular trait into additive genetic (A), common environmental (C), and
unique environmental (E) influences. Considering that twins raised together might
have experienced a more similar environment compared to their non-twin siblings,
including a set of non-twin siblings into the analysis allows us to separate the
common environmental contributions into twin-specific (T) and twin non-specific
(C) common environmental factors.

We used the binary group-representative cortical connectome mask described
above to extract FA-weighted edges and applied standard structural equation
modeling (SEM) to every connection in the connectome using OpenMx
software90,91 in R. The analysis reported in the main text was performed on the 360
region36 cortical connectome at 20% density (12,924 unique connections) using FA
as a connection weight. The analyses were subsequently reproduced using SC
(Supplementary Fig. 3C, D) and at different connectome densities (Supplementary
Fig. 4A–C) and using a higher resolution 500-region random cortical parcellation
at 5%, 10%, and 15% densities (Supplementary Fig. 4D–F).

A range of biometric models—ACTE, ACE, AE, CE, E—were fitted to each edge
defined by the group connectome mask in order to find connection-specific
maximum likelihood estimates of additive genetic (A), twin-specific common
environmental (T), twin non-specific common environmental (C) and unique
environment (E) factors, using age and sex as covariates. Outlying connection
weights for each analysis were removed using the boxplot function in R by
keeping data points (w) in a range Q1− 1.5 × IQR <w <Q3+ 1.5 × IQR where Q1
and Q3 are the first and third quartiles respectively and IQR is the interquartile
range. The Akaike information criterion (AIC)92 was used to compare the
goodness of fit of all tested models in order to find the most parsimonious model.
For each edge, the model with the lowest AIC was selected. Consequently, the
narrow-sense heritability (the proportion of variance attributable to additive
genetic factors, referred to as heritability) was estimated for each connection using
the best-fitting model. We also show heritability results using parameter estimates
from the full ACTE model to ensure that our findings cannot be explained by our
model-selection procedure (Supplementary Fig. 3B) and verify that outlier
exclusion did not affect our findings (Supplementary Fig. 5D–F, K). We also
replicated the finding when evaluating differences in heritability relative to a null
model in which edge labels were permuted (Supplementary Fig. 13). The increase
for rich links is also observed for the mean genetic variance, which quantifies the
non-normalized variance attributable to genetic factors (Supplementary Fig. 14).

Gene-expression data. We used brain-wide gene-expression data from the Allen
Human Brain Atlas (AHBA), which consists of microarray expression measures in
3702 spatially distinct tissue samples taken from six neurotypical postmortem adult
brains39. Different brain regions were sampled across each of the six AHBA donors
to maximize spatial coverage, resulting in ~400–500 tissue samples in each brain.
The samples were distributed across cortical, subcortical, brainstem, and cerebellar
regions, measuring the expression levels of 58,692 probes quantifying the tran-
scriptional activity of 20,737 genes. Considering that only two out of six brains
were sampled from both left and right hemispheres whereas the other four brains
had samples collected only from the left hemisphere, we focused our analyses on
the left cortex only.

The pre-processing procedures applied to the data are outlined below and the
choices detailed in ref. 40. Briefly, probe-to-gene annotations were first updated
using the Re-Annotator toolbox93 resulting in the selection of 45,821 probes
corresponding to the total of 20,232 genes. Second, tissue samples annotated to the
brainstem and cerebellum were removed. Then, intensity-based filtering40 was
applied in order to exclude probes that do not exceed background noise in more
than 50% of samples, excluding 13,844 probes corresponding to 4486 unique genes.
Afterward, a representative probe for each gene was selected based on the highest
correlation to RNA sequencing data in two of the six brains94. Gene-expression
samples were assigned to regions-of-interest by generating donor-specific gray
matter parcellations and assigning samples located within 2 mm of the parcellation
voxels. To increase the accuracy of assigning samples to regions, the samples were
first divided into four separate groups based on their location: hemisphere (left/
right) and structure assignment (cortex/subcortex), so samples listed as coming
from the left cortical hemisphere in the AHBA ontology are only mapped to left
cortical voxels of the parcellation (applying a 2 mm distance threshold, almost 90%
of all cortical and subcortical samples were assigned to a non-zero voxel of the
parcellation). Then, samples assigned to the subcortical regions as well as the right
hemisphere were removed. Finally, gene-expression measures within a given brain
were normalized first by applying a scaled robust sigmoid normalization for every
sample across genes and then for every gene across samples in order to evaluate the
relative expression of each gene across regions, while controlling for donor-specific
differences in gene expression [see ref. 40 for a validation]. Normalized expression
measures in samples assigned to the same region were averaged within each donor
brain and aggregated into a region × gene matrix consisting of expression measures

for 10,027 genes over 180 (left hemisphere, HCP parcellation) and 250 regions (left
hemisphere of the random parcellation), respectively.

Distances between region pairs that were subsequently used to account for the
spatial effects on transcriptional coupling were estimated on the cortical surface
(pial) using the annotation files for each parcellation mapped onto the spherical
representation of the fsaverage cortical surface. First, all the vertices that
correspond to a particular region of interest in the spherical representation were
identified and their centroid coordinates were calculated. Then the centroid
coordinates were mapped to the fsaverage cortical surface and the distances
between each pair of regions were calculated using the toolbox
fast_marching_toolbox in MATLAB.

Transcriptional coupling. The result of the above mapping of AHBA data was an
expression profile for each brain region, quantifying transcriptional activity across
10,027 genes. We used these profiles to quantify transcriptional coupling, or cor-
related gene expression (CGE), between every pair of regions. We defined CGE as
the Pearson correlation between the normalized expression measures of the genes
available after pre-processing (n= 10,027). As shown in Supplementary Fig. 6A
and described in ref. 40, CGE exhibits a strong spatial autocorrelation that can be
approximated as an exponential relationship with separation distance, such that
regions located in close proximity to each other share more similar gene expres-
sion. To investigate whether CGE differs between different topological classes of
connections beyond any low-order spatial effect, we need to ensure that the dis-
tance between regions alone is not informative of their CGE. Otherwise, any
similarity between region pairs will be driven by a mixture of two factors: the CGE
signature that is reflective of the spatial gradient and CGE signature that corre-
sponds to the edge-specific properties. To account for the low-order spatial
effect we fitted an exponential function with form r(d)= Ae−d/n+ B. The para-
meters A= 0.64, B=−0.19 and n= 90.4 capture the trend well, allowing us to
retain the residuals for further analysis (Supplementary Fig. 6B), defined as
dCGEij ¼ CGEij � rðdijÞ. These distance-corrected residual CGE values were used in

all CGE analyses.
To evaluate transcriptional coupling for different connection types, for every

edge within the connectivity matrix, we assigned a distance-corrected CGE
measure. At each degree threshold, k, for defining hubs (nodes with degree > k), we
then computed the average CGE of rich, feeder, and peripheral links. Significant
increases in the CGE for a given link type compared to the rest of the network were
evaluated using a one-sided Welch’s t-test (p < 0.05). Note that our CGE analysis
focused on examining differences between connected pairs of regions, following
prior work7,11, and thus only considers a fraction of the full matrix of CGE values.
The development of more accurate diffusion MRI estimates of inter-regional
connectivity will facilitate more precise comparisons between the
transcriptional properties of connected and unconnected pairs of regions.

Gene contribution score. To determine which functional gene groups contribute
the most to any observed differences in CGE across different link types in the brain,
we quantified the degree to which each gene contributes to the overall CGE
between a pair of regions, following prior work7:

dCGEij ¼ CGEij � rðdijÞ ¼
1

N
∑
N

a¼1
½egai eg

a
j � rðdijÞ� ¼

1

N
∑
N

a¼1
GCSaij; ð7Þ

where N is the number of genes (N= 10,027), egai eg
a
j the product of the z-score

normalized expression values for gene a in regions i and j, and r(dij) is the pre-
viously defined spatial autocorrelation effect approximated as an exponential line
(Supplementary Fig. 6). Therefore, the gene contribution score between a pair of
regions i and j for gene a was defined as GCSaij ¼ egai eg

a
j � rðdijÞ.

We then assigned each gene a t-statistic quantifying the increase in GCS for rich
compared to peripheral links (GCSt-stat), as these two groups constitute the most
distinct link types. A high value indicates increased CGE in rich compared to
peripheral links. These t-statistic measures were used in the enrichment analyses as
gene scores for determining whether any functional gene groups made a stronger
contribution to CGE than others.

Cell-specific genes. Given that the AHBA assays gene expression using bulk tissue
samples, it is possible that regional variations in cellular architecture drive differ-
ences in CGE between different link types. To test this hypothesis, we conducted a
second CGE analysis focused on subsets of genes that have previously been
identified as cell-specific markers. The set of cell-specific genes was compiled based
on data from five different single-cell studies that used postmortem cortical sam-
ples of human postnatal subjects. Genes identified in each study as a cell-specific
marker or as specifically enriched within a cell type were aggregated into study-
specific lists44–47. In the case of ref. 43, where the normalized gene-expression
values were available for each cell type, we identified enriched genes as those with
an average Fragments per kilobase million, FPKM > 5 and at least a four-fold
enrichment over other cell types, as per authors recommendations. We then
assigned genes within each of the resulting study-specific gene lists to one of seven
canonical cell classes: astroglia, endothelial cells, excitatory neurons, inhibitory
neurons, oligodendrocytes, and oligodendrocyte progenitor cell restricting each
cell-class list to only contain genes unique to that class.
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Gene-set enrichment analysis using gene score resampling. Gene-set enrich-
ment analyses assess whether any functionally related groups of genes, annotated using
Gene Ontology (GO), are associated with a selected phenotype. Every gene in our
sample (n= 10,027 genes) was assigned a t-statistic score quantifying its contribution
towards the increase in GCS for rich links relative to peripheral (GCSt-stat). Using these
scores, we determined which specific functional groups of genes contributed to the
observed increase in correlated gene expression. Functional gene group analysis was
performed using version 3.2 of ErmineJ software95. Gene ontology annotations were
obtained from GEMMA96 https://gemma.msl.ubc.ca/arrays/showArrayDesign.html?
id=735 as Generic_human_ncbiIds_noParents.an.txt.gz on April 29,
2021. Gene Ontology terms and definitions were automatically downloaded by
ErmineJ on April 29, 2021 as go.obo (data version 2021-02-01) and can be
downloaded from http://release.geneontology.org/2021-02-01/ontology/index.html.
We performed gene score resampling (GSR) analysis on the GCSt-stat scores testing the
biological process GO categories with 5–100 genes available using the mean t-statistic
score across genes to summarize the GO category and applying full resampling with
106 iterations. The resulting p-values were corrected across 5892 GO categories,
controlling the false discovery rate (FDR) at 0.05 using the method of Benjamini and
Hochberg97.

Recent work indicates that the default null models used in such analyses are
insufficiently constrained for spatially embedded transcriptomic atlas data50. This
problem can lead to inflated significance for some GO categories when testing for
spatial correlations between regional variations in gene-expression patterns and
measures of brain structure or function. The extent to which this problem
generalizes to phenotypes defined for pairs of regions, such as the connectivity
metrics considered here, is unclear. We nonetheless suggest caution in interpreting
the findings of this analysis, as appropriate null models for the analysis of pairwise
phenotypes have not yet been developed. We report the enrichment findings to test
for consistency with prior findings in the mouse7.

Microstructural profiles. Our CGE analysis of cell-specific genes indicated that
connected hubs have more similar cellular composition than other region pairs. To
independently verify this result, we estimated the microstructural profile covariance
(MPC) between each pair of regions using the BigBrain atlas, which is a Merker-
stained 3D volumetric histological reconstruction of a human brain48,49. MPC was
estimated using methods described in ref. 49 (https://github.com/MICA-MNI/
micaopen/tree/master/MPC). In brief, the MPC procedure involved constructing
16 equivolumetric surfaces between the pial and white matter boundaries, followed
by systematic sampling of the intensity values along these surfaces at 163,842
matched vertices per hemisphere. The intensity profiles, reflecting depth-wise
changes in cellular density and soma size, were corrected for the midsurface y-
coordinate to account for an anterior–posterior increase in intensity values across
the BigBrain related to coronal slicing and reconstruction. Standardized residual
intensity profiles were averaged within areas of the HCPMMP1 (n= 360)36 and
random (n= 500) parcellations. We quantified cytoarchitectural similarity between
cortical areas by correlating areal intensity profiles (covarying for cortex-wide
mean intensity profile), thresholding to retain only positive values (r > 0) and
applying a log transformation, resulting in the measure of microstructural profile
covariance (MPC)49. We repeated the same analysis using the 500-region random
parcellation.

Notably, this analysis did not replicate the elevated MPC for rich links seen with
the HCPMMP1 atlas (compare Fig. 3H with Supplementary Fig. 9B). This
discrepancy likely reflects the fact that the HCPMMP1 parcellation more closely
approximates boundaries between functional zones of the cortex, as it is based on a
fusion of multimodal imaging data36. The random parcellation makes no attempt
to capture such boundaries and may blur different cytoarchitectonic regions within
the same network node, thus resulting in noisier MPC estimates. In this way, the
MPC results appear to depend on the accurate approximation of cytoarchitectonic
boundaries in the cortex.

Models of brain network wiring. To evaluate the role of stochastic processes in
shaping connectome architecture, we evaluated a series of generative models of
network wiring that have the general form:

θij ¼ d
η
ij ´ t

γ
ij; ð8Þ

where θij is a score that weights the probability of connecting nodes i and j, dij is the
Euclidean distance between nodes i and j, and tij is some topological property of nodes
i and j or an edge between them. This topological term modulates the probabilities of
forming an edge along with wiring cost (operationalized as dij). The exponents η and
γ, act as weights on the distance and topological terms, respectively32,33. Numerous
topological properties have been evaluated for tij in past work32,33, and we consider
these same models here. A summary is provided in Table 2.

At each iteration, the computed connection score, θij, is used to calculate the
probability of a given edge, (i, j), being formed in that iteration, as Pij= θij/Θ, where
Θ is the sum of θij over all edges that have not yet been formed. Thus, at a given
iteration, the model calculates the probability of each edge forming based on its
distance and the current value of its topological term, tij. This topological value is
recalculated at each iteration. Edges are added iteratively until the total number of
edges is equal to the number of edges in the empirical connectome. Due to
computational burden, and in line with prior analyses33, we fitted models to a

single (left) hemisphere connectome defined using the HCPMMP136 parcellation,
containing 5025 unique edges (20% whole cortex connectome density).

As per prior work33, we quantified model performance using the
Kolmogorov–Smirnov (KS) statistic. The KS statistic quantifies the distances
between distributions of key topological statistics of the network; as such, lower
values indicate better model fit. We focused on four key metrics: node-level
distributions of degree, clustering, and betweenness, and the edge-level distribution
of connection distance33. The quality of model fit was defined as the maximum KS
value across all four distributions; that is, model performance is defined by the
property that is fitted most poorly. In principle, any number of other topological
parameters could be used in this objective function, but these are some of the most
widely used to characterize brain networks and were employed in prior work
evaluating the same models32,33.

We optimize the free parameters η and γ as per the previous work33.
Specifically, we randomly sample the parameter space and evaluate the fits of the
resulting networks. We consider η values in the range from −4 to 4, allowing both
positive and negative contributions for the topological terms, whereas wiring cost is
always penalized with γ values ranging from −15 to 0. After sampling 2000 points
in this space, Voronoi tessellation is then used to identify areas—or cells—of this
space where the parameters produce networks with the best fits, as defined by the
KS statistic. We then preferentially sample from cells with better fits. This
procedure is repeated four times so that the algorithm gradually converges on an
optimum. We ran each generative model on the group connectome 10,000 times
and then evaluated each different model by comparing the 100 lowest energy values
obtained from the optimization procedure.

For our analysis, we draw a critical distinction between the distribution and
sequence of a topological property. The distribution refers to how a property is
statistically distributed across the nodes of the network. The sequence refers to the
exact assignment of a particular value to individual nodes or edges; in other words,
how the property is spatially embedded in the brain. It is possible that two
networks may have similar distributions for a given property, but very different
underlying sequences.

The models we consider here are optimized to match distributions, not
sequences. As we are specifically interested in understanding the mechanisms
driving the precise way in which hubs are connected, and given evidence that the
specific anatomical location of network hubs has important implications for
network dynamics56, we seek to evaluate whether the models can not only generate
networks with hubs, which would be shown by the accurate fitting of the degree
distribution, but also whether the models yield hubs in the same anatomical regions
as the empirical data, which would be shown by the accurate fitting of the degree
sequence. To this end, we additionally evaluate the correlation between the degree
sequences of the empirical and synthetic networks using the Spearman correlation
coefficient, ρ. A high correlation between the model and data implies that hubs are
located in the same anatomical regions across the two networks. Conversely, a low
correlation indicates that the model does not accurately capture the spatial
embedding of connectivity in the connectome and that hubs in the model network
reside in anatomical locations that differ from the actual connectome.

An important consideration is that the correlation between model and
empirical degree sequences was not a part of the objective function used in model
fitting. We fitted the models using topological distributions and then evaluated
their performance in capturing the empirical degree sequence. This procedure
allows us to examine how well these models, as traditionally implemented, capture
spatial properties of hub connectivity. However, this procedure also raises the
question of whether it is possible to obtain a higher degree sequence correlation if

Table 2 A list of topological terms, tij, used in the generative

models [Eq. (8)].

Name tij

clu-avg
ci
2
þ cj

2

clu-diff ∣ci− cj∣

clu-max max½ci; cj�
clu-min min½ci; cj�
clu-prod cicj
deg-avg ki

2
þ kj

2

deg-diff ∣ki− kj∣

deg-max max½ki; kj�
deg-min min½ki; kj�
deg-prod kikj

matching
jNinj\Njni j
jNinj ∪Njni j

neighbors ∑lAilAjl

sptl 1

c is the local clustering coefficient, k represents node degree, A is the adjacency matrix, and

Ni\j refers to neighbors of the node i excluding node j.
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model parameters are chosen to optimize this specific quantity. We, therefore,
repeated the analysis after replacing the objective function with one that maximized
the similarity between model and empirical degree sequences. Specifically, we
optimized the Spearman correlation between model and empirical degree
sequences with no other constraints to give the models the best possible chance of
reproducing the empirically observed spatial topography of hub regions. The
results of this analysis are shown in Supplementary Fig. 12. Qualitatively similar
results were obtained when optimizing the Pearson correlation between model and
empirical degree sequences.

Across the 13 models evaluated in our analysis, we find that the best-fitting model
is the “deg-avg” model, which involves a trade-off between forming connections
between highly connected nodes (i.e., node pairs with high average degree) and
penalizing long-range connections (i.e., minimizing wiring cost). This result differs
from past work, in which a homophilic attachment trade-off model that balances
wiring cost with a preference for forming connections between nodes with similar
neighbors offered the best fit to empirical connectome data32,33. This discrepancy may
be related to our use of a higher resolution network parcellation, a connectome
mapped at a different connection density, using a different tractography algorithm,
and/or a different diffusion MRI processing pipeline. Investigating the effect of these
factors on modeling results is an important direction of future work, but these
potential effects do not change the substantive point of our results that current
stochastic models do a poor job of reproducing the spatial embedding of hub
connectivity, as across 260,000 runs of the 13 different models considered, no degree
sequence correlation exceeded ρ= 0.3. We also note that our model fits (Fig. 4B–E)
are in the same range as those reported by Betzel et al.33, indicating that our
discrepant results are not due to differences in model accuracy.

Models incorporating transcriptional information are constructed using the
same general form (Eq. (8)) while replacing one of the terms with pairwise
distance-corrected CGE values gij, weighted using a parameter λ varying in the
range [0, 200] that favors forming connections between regions with higher CGE.

Whereas our analysis mimics prior comprehensive evaluations of generative
network models based on cost-value trade-offs32,33, other formulations and
approaches are also possible98–100. It is also possible to define 3-parameter or
higher-order models that incorporate spatial, topological, and genetic constraints,
but we have focused on the simpler 2-parameter form here to enable efficient
optimization and fair model comparison. It is also possible that alternative
topological properties and non-genetic wiring rules may yield improved model
performance, and so we cannot completely rule out a role for stochastic processes,
or a more complex interaction between CGE, wiring cost, and topology, in shaping
hub connectivity. Indeed, more abstract models suggest that stochastic wiring,
acting in concert with developmental changes in brain geometry and
heterogeneous timing of connection formation across regions, can indeed generate
networks with brain-like properties34,59,101. However, a framework for directly
fitting such models to human DWI data has not yet been developed.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
Structural brain networks were mapped from Human Connectome Project data35, which

are freely available (https://db.humanconnectome.org/). Gene-expression data were

acquired from the Allen Human Brain Atlas, which is also freely available (https://

human.brain-map.org/static/download). Microstructural profiles were derived from the

freely accessible BigBrain Project (https://bigbrainproject.org/). Gene ontology

annotations were obtained from GEMMA96 https://gemma.msl.ubc.ca/arrays/

showArrayDesign.html?id=735 as Generic_human_ncbiIds_noParents.an.

txt.gz on April 29, 2021. Gene Ontology terms and definitions were automatically

downloaded by ErmineJ on April 29, 2021 as go.obo (data version 2021-02-01) and can

be downloaded from http://release.geneontology.org/2021-02-01/ontology/index.html.

Data necessary to generate the figures in this work are available at the associated
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