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Abstract

Background: The human oral microbiome is formed early in development. Its composition is influenced by

environmental factors including diet, substance use, oral health, and overall health and disease. The influence of

human genes on the composition and stability of the oral microbiome is still poorly understood. We studied both

environmental and genetic characteristics on the oral microbiome in a large twin sample as well as in a large

cohort of unrelated individuals. We identify several significantly heritable features of the oral microbiome. The

heritability persists in twins even when their cohabitation changes. The heritability of these traits correlates with the

cumulative genetic contributions of over half a million single nucleotide sequence variants measured in a different

population of unrelated individuals. Comparison of same-sex and opposite sex cotwins showed no significant

differences. We show that two new loci on chromosomes 7 and 12 are associated with the most heritable traits.

Results: An analysis of 752 twin pairs from the Colorado Twin Registry, shows that the beta-diversity of monozygotic

twins is significantly lower than for dizygotic or unrelated individuals. This is independent of cohabitation status.

Intraclass correlation coefficients of nearly all taxa examined were higher for MZ than DZ twin pairs. A comparison of

individuals sampled over 2-7 years confirmed previous reports that the oral microbiome remains relatively more stable

in individuals over that time than to unrelated people. Twin modeling shows that a number of microbiome

phenotypes were more than 50% heritable consistent with the hypothesis that human genes influence microbial

populations. To identify loci that could influence microbiome phenotypes, we carried out an unbiased GWAS analysis

which identified one locus on chromosome 7 near the gene IMMPL2 that reached genome-wide significance after

correcting for multiple testing. Another locus on chromosome 12 near the non-coding RNA gene INHBA-AS1 achieved

genome-wide significance when analyzed using KGG4 that sums SNP significance across coding genes.

Discussion: Using multiple methods, we have demonstrated that some aspects of the human oral microbiome are

heritable and that with a relatively small sample we were able to identify two previously unidentified loci that may

be involved.

Background
Humans support the growth and maintenance of diverse

sets of microbes in niches in contact with the environ-

ment including skin, lungs, mouth and gut [1]. Studies

of these microbes in the gut and oral cavity have uncov-

ered key interactions between bacteria and human hosts

in a wide variety of normal and pathological states [2–6].

Many of these interactions are inferred from correlations

between the composition of the microbial populations

and changes in health status. For example, in gingivitis,

an increase in Gram negative and anaerobic bacteria

causes inflammation in the mouth [2–6]. Our under-

standing of the basis for changes in microbial compos-

ition, and of how these changes influence human

phenotypes, is still a work in progress. Clearly environ-

mental factors and host genetic factors have important

influences [3, 4, 6, 7], perhaps best demonstrated to date

by studies in the gut [8].

Candidate gene studies have been most effective at iden-

tifying human genetic influences on the microbiome. By

this approach, informed hypotheses about human genes
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that may conceivably influence a particular microbiological

phenotype (i.e. susceptibility to infection) are tested with

family or population-based studies to identify human vari-

ants that are statistically consistent with the hypothesis. Ex-

amples include MHC genes [9], SLC11A1 [10], the MEFV

gene [11], FUT2 gene [12], and loci linked to susceptibility

to infectious disease [13]. While often successful, the can-

didate gene approach is limited by the ability to formulate

hypotheses given current knowledge. They are neither

comprehensive nor sufficient to identify the entire range of

human genes involved in population changes associated

with complex phenotypes (i.e. obesity, gum disease) or with

maintenance of the composition of the “normal” micro-

biome. In addition the significant inter-individual variation

in microbiome composition often masks specific effects of

human genes if insufficient numbers of individuals are

studied. Moreover, the microbiome of a niche includes

complex mixtures of organisms and is in part defined by

interactions among its members making the identification

of a “microbial phenotype” complicated.

The oral microbiome is one of the most diverse micro-

bial niches in the human body, including over 600 differ-

ent microorganisms (Dewhirst et al., 2010). It is in

continual contact with the environment, and has been

shown to be susceptible to many environmental effects.

These environmental factors include tobacco use [14–22],

romantic partners [23], and cohabitation [6, 24]. The

microbes reside in sub-niches along the oral cavity in-

cluding on the tongue, cheek, and teeth [1, 25–28].

The salivary microbiome has been shown to be repre-

sentative of many the oral microbiome niches, which

is thought to be due to the fact that microorganisms

from the oral cavity surfaces shed into the saliva [28, 29].

Previous salivary microbiome studies have identified spe-

cific microbiota that are present in almost all individuals,

referred to as the core microbiome [6, 28, 30]. Saliva is

also accessible, making it ideal for surveys of populations

for microbiome studies.

In this paper, we describe an unbiased approach to

studying the effects of human genes on the oral micro-

biome with a two-step strategy. The first step utilizes

twin information to establish heritable phenotypes re-

lated to the microbiome; and the second identifies DNA

sequence variation associated with the identified highly

heritable traits. From 16S rRNA sequence information, a

large number of potential phenotypes can be explored

with the twin studies to allow identification of the most

heritable and therefore the phenotypes most likely to be

mapped in the association study. A key strength of this

approach lies in the independence of the data underlying

the two steps (i.e. MZ/DZ status in the twin study and

SNP association data in the second) reducing multiple

testing and type 1 effects on the power to carry out the

test for association. The ability to refine a phenotype

prior to carrying out an association study can lead to

greater likelihood of detecting specific SNPs that influ-

ence it [3, 4, 31]. We show, with the largest oral micro-

biome twin study to date, that multiple phenotypes of

the salivary microbiome are heritable. Using these phe-

notypes, we identify promising host gene candidates in a

genome wide association study of an separate sample

that may play a role in establishing the oral microbiome.

Methods
Sample selection and DNA extraction

Twin samples were obtained from the Colorado Twin

Registry (Rhea et al. 2006, Rhea et al. 2013). The twin

sample included 366 monozygotic pairs (MZ), 263 same

sex, and 123 opposite sex dizygotic pairs (DZ). Unrelated

individuals were ascertained from community and clin-

ical samples participating in the Colorado Center for

Antisocial Drug Dependence and isolation of DNA from

saliva and characterization of their genotypes was as pre-

viously described [32].

16S ribosomal specific PCR and MiSeq sequence

determination

Pooled DNA from triplicate PCR with the 16S V4 hyper-

variable primers 515F/806R was done according to the

Earth Microbiome Project 16S rRNA amplicon Protocol,

with unique barcode indices for multiplex sequencing

on the forward primer [33–35]. Concentration of pooled

products was determined by picogreen. 240 ng from

each sample was pooled for multiplex paired-end

(2X150) sequence determination on the Illumina MiSeq

platform.

Sequencing analysis

The fastx-toolkit (http://hannonlab.cshl.edu/fastx_toolkit/

commandline.html) and ea.-utils fastq-mcf package were

used to trim and quality filter the forward and reverse

reads (https://wiki.rc.ufl.edu/doc/EA-Utils) [36]. The com-

mand join_paired_ends.py in QIIME was then used to

merge reads using the fastq-join method. Reads with qual-

ity score < 25 and that were not between 251 and 254 bps

after merging with their paired end were removed. The re-

mainder of the read processing was completed using

QIIME v1.9 (Caporaso et al., 2010b). Merged reads were

demultiplexed, filtered to remove reads with uncalled

bases and barcode mismatches. De novo and reference

based chimeras were removed using the USEARCH61 al-

gorithm [37] implemented within QIIME against the gold

database (microbiomeutil-r20110519T). Filtered reads

were then classified in QIIME against the August 2013

Greengenes 97% reference database. Using closed refer-

ence alignment at 97% rather than recently described

methods based on high-resolution sequencing methods

such as DeBlur [38], DADA2 [39] roth, or MED [40] was
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used to permit limited but important phylogenetic group-

ing of likely functionally similar OTUs. Using the higher

resolution methods would increase OTU numbers at the

cost reducing the numbers of individuals harboring each

OTU and thereby reducing power to establish heritability.

OTU quality filtering

Samples from 1504 twins of whom 111 within-twin longi-

tudinal samples with at least 3500 reads and DNA samples

from 1481 unrelated individuals with at least 3000 reads

produced 2664 and 2679 OTUs respectively. All samples

were rarefied to 2500 sequences to retain as many samples

as possible to improve power with little effect to results

[41, 42].. To avoid analyses of OTUs that were the result of

sequencing or PCR error, OTUs that were not present in

at least 2 subjects and observed at least 10 times were re-

moved, resulting in 895 OTUs in the twins and 931 OTUs

in the unrelated individuals. One of the unrelated individ-

uals was later removed during analysis due to cryptic re-

latedness leaving 1480 people in the unrelated sample.

Beta-diversity analysis

β-diversity was analyzed via Bray Curtis and UniFrac

(Unweighted and Weighted) using QIIME (Caporaso et al.,

2010b) and R [43]. Analyses included 366 MZ pairs, 386

DZ pairs, and 37,832 unrelated pairs obtained by using age

and DNA collection year matched non-cotwin pairs from

the twin sets. β-diversity measures between groups were

compared via the Wilcoxon-Mann-Whitney test (two

tailed wilcox.test in R). P values were calculated similarly

to as previously described [8]. In short, the pair labels

(either MZ, DZ, or unrelated) were permuted 10,000 times

and the W test statistic collected from each permutation.

The P value was then calculated by dividing the number of

W test statistics greater than the observed W test statistic

plus 1 by the number of permutations plus 1. Biplot ana-

lyses were used as implemented in QIIME (Caporaso et al.,

2010b). In experiments where cohabitation was required,

only cotwins 18 and under and those over 18 who identi-

fied themselves as cohabitating were included, which re-

moved 328 subjects from the total twin sample who

were living separate from their cotwin. This population

of 588 twins pairs is referred to as the “cohabitation

sample.” Cohen’s D effect size for β-diversity measure-

ments was calculated using the R package ‘effectsize’

(command ‘cohen.d’) [44].

Categorization of microbial traits

Microbial traits included taxonomic groups, OTUs, α

-diversity measurements, and principal coordinates from

β-diversity measurements (Additional file 1: Tables S11–14),

collapsing all perfectly correlated traits. Microbial traits

were then processed within each population separately:

twin pairs, European unrelated (EUR), and Admixture

American unrelated (ADM). Traits were transformed to

z-scores and then categorized as either continuous (at

least 85% subjects must have a value >0 and Shapiro Wilk

P value greater then 1E-28) or categorical (all other traits).

Shapiro Wilk test was performed use the R packaged

‘stats’ (command ‘shapiro.test’) [44]. Categorical traits

were then binned based upon z-score transformation on

all non-zero values (zeros not transformed): zero counts,

less than or equal to −1, greater than −1 and equal or less

than 0, greater than 0 and less than or equal to 1, greater

than 1). Some traits failed to categorize due to lack of vari-

ation, resulting in the final trait counts: twins (41 continu-

ous and 955 categorical), EUR unrelated (55 continuous,

945 categorical), ADM unrelated (98 continuous, 807 cat-

egorical). Only the continuous traits were used in the EUR

and ADM populations so data is provided only for those

traits. Descriptions of all traits can be found in Additional

file 1: Tables S11–14.

Intraclass correlation coefficient

The MZ and DZ ICC values were calculated using the R

package ‘irr’ (icc command) [44] and were compared using

the Wilcoxon Signed Rank Sum test function in the R

package ‘stats’ (wilcox.test) [43]. The ICC values were cal-

culated for all taxonomic groups that were categorized to

be treated as continuous traits (24 taxonomic groups,

Additional file 1: Tables S4 and S11). P value was calculated

as similarly to as previously described in which the zygosity

labels of the twin pairs were randomized 10,000 times and

the ICC values then calculated [8]. This analysis compared

the overall distribution of the ICC values for the MZ twin

pairs compared to the DZ twin pairs. Because the entire

distribution was compared and not each taxa individually

multiple testing correction was not needed. In addition the

ICC values for the remaining 17 continuous traits were de-

termined (Additional file 1: Tables S4 and S11).

ACE twin modeling

The ACE/ADE univariate twin modeling used the

OpenMx package as implemented in R [43, 45, 46] (see

Additional file 2: Supplemental Methods). The following

covariates were included in the model: age, sex, sequen-

cing run (1–5), and year DNA was collected. The appro-

priate twin model was selected by analyzing the ratio of

2rDZ to rMZ (if 2rDZ > rMZ use ACE, if 2rDZ < rMZ

use ADE). The standardized A was reported as the herit-

ability estimate calculated from the appropriate twin

model for each trait (Additional file 1: Tables S5 and S6).

Host genome genotyping and imputation

Genotypes were obtained as previously described [32].

Ancestry was determined by weighting 43,413 SNPs

(MAF > 5%, no AT or GC, low LD) against 1000

Genomes principal components using PCo plots [47]. 469
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subjects were identified as Admixture (ADM) and 830

were identified as European (EUR). SNPs were filtered by

removing: AT or GC SNPs (107,670), allele switches in-

ferred by the imputation server (1733 SNPs), MAF < 1%

(ADM = 25,586, EUR = 76,142), and HWE failure thresh-

old of 0.0001 (ADM = 469, EUR = 25). No filtering based

upon missing subject or genotype was needed, because

there were no SNPs or subjects with a missing rate greater

than 10%. The remaining SNPs (561,204 ADM, 510,818

EUR) were then submitted to the Michigan imputation

server using the phase3 reference panel with SHAPEIT for

each of the two ancestry groups. The imputation analysis

produced 47,072,408 variants for both samples. SNPs with

MAF < 1% (based upon dosages), RSQ value <0.8, and

multiallelic SNPs were discarded. One ADM and 2 EUR

subjects with excessive or limited heterozygosity were re-

moved (heterozygosity ~4 standard deviations from the

mean). The imputed SNPs were then pruned for LD with

the INDEP function (window size = 50, number of SNPs

shift per step = 5, variance inflation factor = 2.0). This LD

pruning resulted in deletion of 634,065 SNPs in the ADM

population, and 437,921 SNPs in the EUR. These pruned

imputed SNPs were then used to calculate the first 10

principal components and the estimated identity by des-

cent (IBD) was used to delete one from each pair of sub-

jects with an IBD > 0.185 (estimated with PLINK v1.9,

[48] (number removed ADM = 12 and EUR = 0). In

addition subjects that were identified as outliers in the first

10 PCAs were removed (number removed: ADM = 111,

EUR = 0). Lastly, analyses were limited to subjects that

had no “missingness” for all of the covariates removed in

the model (number removed: ADM = 1, EUR = 5). There

were then 8,172,048 SNPs to be analyzed in the ADM

sample (n = 344) and 6,862,363 SNPs in the EUR sample

(n = 823).

Genome complex trait analysis

Genome Complex Trait Analysis (GCTA) was performed

on all traits categorized as continuous in both the twin and

unrelated populations using the GCTA software [49]. The

GCTA analysis was performed on the cleaned imputed ge-

notypes described above in the European sample (all IBS

estimates <0.025, n = 818). The following covariates were

included in the model: age; sex; sequencing run (1–5); year

DNA was collected; saliva collection method for 16S se-

quencing; DNA collection method for host genotyping;

and the first 10 PCs to control for population stratification.

GCTA estimates for the Admixture American sample were

not reported due to the small sample size after the thresh-

old of IBS estimates less than 0.025 were applied.

Genome wide association study

Genome wide association study analyses were performed

using the software EPACTS [50]. The Q.EMMAX function

was used, analyzing the dosage information for each vari-

ant. The GWAS analyses were performed in the ADM and

EUR ancestry groups separately. For both analyses a kin-

ship matrix and first 10 principal components were in-

cluded to control for population stratification within each

ancestry sample (described above). In addition to control-

ling for population stratification the following covariates

were included in the model: age; sex; sequencing run (1–

5); year DNA was collected; saliva collection method for

16S sequencing; DNA collection method for host genotyp-

ing; and tobacco use (for specific analyses). The kinship

matrix was created based upon all 22 autosomes using the

kinship function in EPACTS. To rule out the possibility

that stratification or computational method influenced re-

sults, three additional methods utilizing different programs

and methods for controlling for population stratification

were carried out. These were: EPACTS with only the kin-

ship matrix made from all SNPs (EPACTS kinship); PLINK

with the first 10 PCs (PLINK 10 PCs); and GCTA with the

leave-one-out kinship matrix (GCTA kinship loco). For all

methods the following covariates were included in the

model: age; sex; sequencing run (1–5); year DNA was col-

lected; saliva collection method for 16S sequencing; and

DNA collection method for host genotyping.

Genome wide association study meta-analysis across

ancestry

ADM and EUR GWAS analyses were combined in a

meta-study using the METAL package. METAL analyses

were performed on overlapping SNPs with the “sample-

size” scheme in which the P value and direction of effect

for each variant is weighted by sample size correcting

the test statistics for population stratification with the

“genomiccontrol” option. The results of the METAL

analysis were then re-run through the program to confirm

that population stratification was properly controlled for

as suggested by the METAL guidelines. QQ-plots were

created in R using the package “qq-man” [43, 51].

Data access

The 16S rRNA gene sequencing data from this study

has been submitted to the EMBL-EBI under study

numbers ERP023086, ERP023087, ERP023088, ERP023089,

ERP023090, and ERP023091. The host genome sequencing

data used in this study was made publically available by

Derringer et al. 2015.

Results

Twin analysis of the host genetic contribution to

microbiome composition

We performed an analysis of 752 twin pairs from the

Colorado Twin Registry [52, 53] to estimate host genetic

and environmental contributions to salivary microbiome

composition. The sample included 366 monozygotic
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pairs (MZ), 263 same sex, and 123 opposite sex dizygotic

pairs (DZ) that ranged from 11 to 24 years of age. Taxo-

nomic analyses using sequencing of variable region IV of

the 16S rRNA amplicon prepared from the saliva of each

twin was carried out using QIIME [54] on high-quality

Illumina MiSeq paired end reads as previously reported

[8, 54]. We determined phyla abundances to be Firmi-

cutes (56%), Proteobacteria (13%), Bacteriodites (13%),

Actinobacteria (12%), and Fusobacteria (6%) from the

2664 operational taxonomic units (OTUs) found, which is

consistent with the “core” salivary microbiome we and

others have previously reported [1, 6, 25–28, 55]. All of

our analyses included only OTUs that were present in at

least 2 subjects and observed at least 10 times in total after

rarefying at 2500 reads. This filtering yielded 895 OTUs

that were considered for all subsequent experiments.

Measurements comparing mean β-diversity among

MZ, DZ and unrelated individuals allows for assessment

of microbial population differences between groups.

With either Bray-Curtis [56] or Weighted UniFrac

[57, 58] measures of β-diversity among MZ twin pairs

were significantly more similar to each other than DZ

twin pairs, and for all 3 β-diversity measurements

(Bray-Curtis, Unweighted and Weighted Unifrac) MZ

and DZ twin pairs were significantly more similar to each

other than to unrelated individuals (see Fig. 1a). This

analysis was also carried out with abundant OTUs (i.e.

present in at least 50% of the subjects) and all OTUs (i.e.

no filtering or rarefaction) with very similar results

(Additional file 2: Figures S1 and S2). Rarefaction at 2500

reads produced consistent results across all rarefactions

(Additional file 2: Figure S5), so for subsequent analyses,

one rarefaction to 2500 reads is shown. We could detect

no significant effect on any β-diversity measure due to

sex when comparing same sex vs opposite sex dizygotic

twin pairs perhaps because the sample size did provide

enough power to differentiate sex effects from inter-

individual variation (see Additional file 2: Figure S6). In

subsequent DZ analyses therefore, opposite sex pairs

were included.

The Colorado Twin Registry [52, 53] includes highly

detailed phenotypic information that is invaluable in
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identifying and controlling for environmental con-

founders that may play an important role. Living to-

gether is a covariate influencing microbial populations in

humans [6, 24]. It is well-known that MZs tend to coha-

bitate longer than DZs [59, 60] and indeed our previous

work has shown that shared environment influences the

oral microbiome [6]. Therefore, it was possible that the

tendency of MZ cotwins to live together longer could be

driving the observed heritability. To examine this poten-

tial confounder, we reanalyzed the data in Fig. 1a based

on questionnaire data from the sample in which we re-

stricted the analysis to only cohabitating pairs (i.e.

18 years age or younger and removal of cotwins report-

ing living apart). While ideally we would have also ana-

lyzed only twin pairs living apart, our sample size did

not permit it. As seen in Fig. 1b, MZs remained signifi-

cantly more similar to each other than DZ twin pairs for

the Bray-Curtis and Weighted UniFrac measurement,

and was also observed in the abundant and unfiltered/

unrarefied OTU tables described above (Additional file 2:

Figures S3 and S4). We conclude that cohabitation does

not play a significant role in the observed microbiome

heritability.

To quantify the differences between groups the

Cohen’s D effect size was calculated for all β-diversity

measurements (Additional file 1: Tables S1 and S2) for

both the full sample and the sample limited to twin pairs

who were cohabitating (Cohen 1992). Comparisons be-

tween the unrelated and twin pairs yielded medium to

large effect sizes. All other comparisons were either

small or negligible, the largest of which being between

MZ and DZ pairs for Bray Curtis. To quantify the effect

cohabitation had on β-diversity measurements the effect

size between all twin pairs (either MZ or DZ) and just

pairs living together (either MZ or DZ) were compared

for all measurements yielding only negligible effect sizes

(Additional file 1: Table 3) consistent with a conclusion

that cohabitation was not driving observed heritability.

The stability of the oral microbiome over time in

adults is reported to be remarkably high relative to that

of other body sites [1, 30, 55, 61]. To confirm and ex-

tend this observation, we assessed the stability of the

oral microbiome in longitudinal samples from our co-

hort for 111 individuals, 2–7 years apart (mean = 5 yrs).

The mean β-diversity measurements between longitu-

dinal samples were compared to the mean of unrelated

individuals of different ages. For all three β-diversity

measurements examined (Bray Curtis, Unweighted and

Weighted UniFrac) subjects were significantly more

similar to themselves than were unrelated individuals

(Additional file 2: Figure S7).

Intraclass correlation coefficients (ICCs) are useful for

estimating heritability of individual observations within a

group of related observations (i.e. the abundance of

specific salivary taxa between MZ pairs); the higher the

ICC values for MZ pairs compared to DZ pairs, the

greater the heritability [62]. As shown in Fig. 2, ICC

values for essentially all abundant taxa are significantly

greater in MZ than DZ pairs. No significant difference

was observed between the same sex and opposite sex

DZ pairs across the taxa analyzed (Additional file 2:

Figure S8) [8]. The set of taxa analyzed were those that

were categorized as continuous (see Methods). Signifi-

cance was established with Wilcoxon Signed Rank tests

strongly supporting the heritability of taxon abundance

in this twin set. We also tested 4 different alpha diversity

measures (Shannon Index, Chao1, Observed OTUs, PD-

Whole Tree), the first 3 principal coordinates (PCo) for

three different β-diversity measurements (Bray Curtis,

Unweighted and Weighted UniFrac) and saw that most

traits were consistent with the conclusion that MZ cot-

wins are more similar than DZ cotwins. A complete list

of the 41 phenotypes tested and their ICC values can be

found in Additional file 1: Tables S4 and S11.

ACE modeling identifies heritable microbiome

phenotypes

Twin modeling approaches are used to estimate the

amount of variance attributable to additive genetics (A),

common environment (C) or dominance (D), and

unique environment (E) [46]. An ACE or ADE model

was constructed for each of 946 traits including alpha

diversity, principal coordinates (PCos) of β-diversity of

taxonomic groups, and individual OTUs. A complete list

of the A, C/D, and E values for each of these phenotypes

can be found in Additional file 1: Table S5. A power ana-

lysis shows that our sample is well powered to model

continuous traits but is underpowered for categorical

traits (Additional file 2: Figure S9). Traits that were not

categorized as continuous were treated as categorical

traits (see Methods). Therefore, while still of interest,

the categorical traits should be viewed with lower confi-

dence (see Additional file 2: Supplemental Methods). In

the twin models both C and D cannot be modeled at the

same time since each captures the same variance, but

the genetic contribution (A) can be compared between

phenotypes modeled with ACE or ADE models.

Of the 946 traits 55% were modeled as ACE and 44%

ADE. Averaging heritability estimates (A) for traits

within each phenotype category described above (i.E.

alpha diversity, β-diversity PCos, OTUs, taxa) a trend

that PCos of measurements have the highest mean herit-

ability estimates emerged for either the full sample or to

just twin pairs that are cohabitating (Additional file 2:

Figure S10). The most heritable were OTU4483015 that

corresponds to an unnamed species of Granulicatella

(55.8% heritable, 95% CI: 0.282–0.634, corrected P value

0.0405) and PCo 2 for Bray-Curtis (46.3% heritable, 95%
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CI: 0.233–0.551, corrected P value 0.0405) (see Additional

file 1: Table S5). To better understand which taxa were

driving this PCo a QIIME biplot analysis [54] identified

the genus Streptococcus as the most abundant taxon on

the first 3 principal coordinates from Bray-Curtis

(Additional file 2: Figure S12). Repeating the ACE models

excluding twin pairs who reported that they had moved

out after age 18 (i.e. modifying effects of C and/or E in the

model) did not greatly alter the heritability estimates or

other components of the model (Additional file 1: Table S6,

Additional file 2: Figures. S10 and S11). The unique envir-

onment (E) accounted for most of the variation of the traits

tested in both the full and cohabitation sample (Additional

file 2: Figure S11). Little change in the common environ-

ment (C) was observed between the full and cohabit-

ation sample analyses (Additional file 2: Figure S11).

We compared phenotypes deemed to be heritable in

our study (44 traits with Benjamin-Hochberg corrected

P values of less than 1) with phenotypes seen to be herit-

able in 5 studies of gut [63–67] and 1 in dental plaque,

D
Z

M
Z

Actinobacteria(phyla)

Actinobacteria(class)

Actinomycetales(order)

Bacteroidetes(phyla)

Bacteroidales(order)

Prevotella(genus)

Firmicutes(phyla)

Bacilli(class)

Gemellales(order)

Gemellaceae(family)

un. genus of Gemellaceae

Lactobacillales(order)

Carnobacteriaceae(family)

Granulicatella(genus)

Streptococcaceae(family)

Streptococcus(genus)

Clostridiales(order)

Veillonellaceae(family)

Veillonella(genus)

Fusobacteriales(order)

Proteobacteria(phyla)

Gammaproteobacteria(class)

Pasteurellaceae(family)

Haemophilus(genus)

0
.0

0
.1

0
.2

0
.3

0
.4ICC Value

Actinobacteria 
Bacteroidetes 

Firmicutes 
Fusobacteria 

Proteobacteria

DZ ICC Value

M
Z

 I
C

C
 V

a
lu

e

0.30.2 0.4

0.2

0.3

0.4

DZ vs MZ ICC Value

Mean Abundance

250

500

750

1000

1250

Fig. 2 Intraclass correlation coefficient comparison: Intraclass correlation coefficient values for MZ and DZ twin pairs of taxa abundances(n = 752
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[68]. We found that 14 of the 44 traits were mentioned

with heritability estimates of at least 1% in one or an-

other study, though none showed high statistical signifi-

cance (Additional file 1: Table S16, Additional file 2:

Supplemental Methods). This is consistent with the possi-

bility that genes that may drive the heritability in the saliv-

ary microbiome may also have more general influences in

other human niches.

SNPs correlate with observed heritability

It is assumed that host genes interacting with the oral

microbiome are responsible for the observed heritability.

The best way to identify them is by the analysis of an as-

sociation between genetic variation (i.e. SNPs) and traits.

The power to detect this is a function of the number of

individuals, the number of tests and the number and

types of SNPs available. The greatest power to uncover

association given a fixed sample size is obtained by ana-

lyzing a limited number of phenotypes (hypotheses)

based on prior information rather than repeatedly test-

ing multiple hypotheses on the same data [69]. To limit

hypotheses to test we focused on the traits found most

heritable in twin studies. Traits found to be most herit-

able are expected to produce the best results in a

genome-wide association (GWAS) study.

DNA was previously prepared from saliva and blood

of 1480 individuals unrelated to the twins and to each

other [32]. Human DNA from this sample was sub-

jected to Affymetrix Chip-based genotype analysis

that resulted in 696,388 validated human SNP geno-

types per individual [32]. The age of subjects ranged

from 11 to 33 years and 29% were female. Ancestry

was assigned by weighting a subset of the genotyped

SNPs against the 1000 genomes dataset and assigning

individuals to ancestry group using principal coordinate

analysis plots [47]. The genotyped SNPs were then quality

filtered and submitted to the Michigan Imputation Server

(https://imputationserver.sph.umich.edu/index.html#!run/)

for phasing and imputation (see Methods). After quality

filtering this produced 6,862,363 European (EUR) and

8,172,048 American Admixed (ADM) imputed vari-

ants respectively that were used in all subsequent

analyses. Imputed SNPs from two different randomly

selected chromosomal areas in 68 individuals were

resequenced with Sanger sequencing to validate im-

putation. We found that 65/68 imputed calls validated

completely with 3 apparently incorrectly imputed

(data not shown). We conclude that imputation pro-

vides significantly greater resolution to SNP-based

maps at little cost to accuracy.

The salivary microbiome of the 1480 individuals was

characterized by 16S RNA sequencing identifying 2679

OTUs, where again as in the twin study, the most preva-

lent phyla were Firmicutes (55%), Proteobacteria (14%),

Bacteriodetes (14%), Actinobacteria (11%), and Fusobac-

teria (6%). Filtering by prevalence and abundance as de-

scribed above produced a total of 931 OTUs used for

our studies. The SNP-based heritability of microbiome

phenotypes in the unrelated population was assessed

using Genome Complex Trait Analysis (GCTA) [49] that

estimates the amount of phenotypic variance that can be

explained by SNP-based composite genetic variance. To

avoid false positives, the genetic relationship matrix was

limited to subjects that were estimated to have

IBD < 0.025. The first 10 ancestry principal components

from LD-pruned (linkage disequilibrium) SNPs were in-

cluded to control for population stratification (see

methods). Given the relatively small sample size, single

trait heritability estimates were not evaluated but rather

gross trends were observed across all continuous traits. A

positive correlation was observed between the heritability

estimates from AC/DE twin models and the European

GCTA analyses (Fig. 3) with a disattenuated correlation of

0.831 (Additional file 2: Supplemental Methods). The

mean heritability estimates across all continuous traits in

the European sample was 0.0563 (SE = 0.371, n = 55

traits). OTU4446902 (unnamed species of the family

Gemellaceae) and its corresponding taxa levels (order,

family, and genus) showed suggestive significant GCTA

heritability estimates after controlling for multiple testing

(OTU4446902 V(G)/Vp = 0.944 SE = 0.357 P value-BH

corrected = 0.053, see Additional file 1: Table S15,

Additional file 2: Supplemental Methods). However, these
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Fig. 3 Heritabiltiy estimate comparison: Twin model heritability

estimates vs amount of variate accounted for by common single

nucleotide (“heritability”) via GCTA for the Euoropean population

(n = 818) for traits continuous in both samples (n = 40). The correlation

between the estimates is significant with a P value of 0.00609
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traits were not observed to be heritable in the twin models

(Additional file 1: Tables S11, S13, S15). The small sample

size was not expected to result in significant GCTA P

values although it has been noted that the meaning of

such P values is limited but even in small samples observ-

able trends can be meaningful [70]. Nevertheless, it is

striking that both twin studies and GCTA on separate

samples show heritability across the same continuous

traits (Fig. 3). This is consistent with the expectation

that genome sequence variation is a basis of observed

heritability.

Genome wide association study with heritable

phenotypes

We ranked the continuous traits based on their herit-

ability (the top trait showing a significant Benjamin-

Hochberg corrected P value of 0.0405 shown in

Additional file 1: Table S5) and performed a genome-

wide association of the top six with the Efficient and

Parallelizable Association Container Toolbox (EPACTS)

[50]. This would be expected to reduce the loss of power

due to multiple testing of hundreds of phenotypes. The

family Carnobacteriacea was excluded from the GWAS

analyses since it was highly correlated with the genus

Granulicatella (R2 = 1) and the latter has a more refined

taxonomic resolution. It is well established that continu-

ous traits afford greater power in both twin studies and

in GWAS [71, 72]. Therefore, although some categorical

phenotypes (i.e. not observed to be continuously distrib-

uted) showed high twin heritability (see Additional file 1:

Table S5), for GWAS we only studied continuous traits.

The analyses were all controlled for age, sex, and se-

quencing run among other covariates (see methods).

Analysis was done independently with individuals from

the two major different ancestry groups of the unrelated

sample, European (n = 823) and Admixture (n = 344)

[71]. Due to the limited size of the admixture sample,

only the European sample is discussed and the admix-

ture was only considered for the meta-GWAS discussed

below.

To control for population stratification a kinship

matrix created from all the chromosomes and the first

ten principal components from the LD-pruned SNPs

were included as covariates (see methods). To control

for the fact that 6 traits were tested, the genome wide

significance level was lowered to 8.33e-09 (5e-08/6traits)

(Additional file 2: Figures. S13 and S14). Using this

threshold, we found that the genus Granulicatella was

significantly associated with the SNP chr7:110,659,581

(P value = 2.251e-09, Fig. 4a, QQ Plot Additional file 1:

Table S7, Additional file 2: Figure S14) within an intron

of the IMMP2L gene on chromosome 7. This gene is

known to be involved in mitochondrial protein traffick-

ing [73–75]. The regional Manhattan Plots in Fig. 4b

a

b c

Fig. 4 GWAS of genus Granulicatella. a Manhattan plot of the GWAS analysis in the European ancestry sample(n = 823). The red line represents the

threshold of genome wide significance(p-value < 5 × 10−8). The abundance of the genus Granulicatella was transformed to z-scores in R and used as

the phenotype for the European GWAS (see Methods). b Locus Zoom plot of the chromosome 7 at the most significant GWAS hit. c SNP plot for the

genes IMMP2L, INHBA-AS1, and full coding gene of INHBA of the KGG analyses of the GWAS for the abundance of the genus Granulicatella
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show that the peak locus includes SNPs of decreasing r2

values around the peak SNP lending greater confidence

to the association. Without a replication sample this re-

sult is provisional but potentially interesting. Using

PLINK 1.9 [48], which takes categorical imputed geno-

types rather than the probabilistic dosage calls produced

by imputation as input, produced results consistent

with this association (data not shown) showing the

association is independent of underlying computa-

tional method.

A comparison of the 100 SNPs with lowest P values in

each of the six phenotypes examined in the European

sample revealed that 7 SNPs were held in common be-

tween at least two of the phenotypes. Bray Curtis PCo2,

Unweighted UniFrac PCo2, and Weighted PCo2, all β-

diversity measures, were most often shared (comparisons

not shown). After the initial analyses of the 6 most herit-

able traits, a GWAS was completed in the remaining 64

continuous traits in the European sample. No variant

was found to be significant after controlling for multiple

testing for these additional tests ((5e-8)/70 = 7.142857e-

10) (data not shown).

We have used a relatively conservative approach to

controlling for population stratification (kinship matrix +

first 10 PCs). To evaluate if this may have produced false

negatives, we repeated the GWAS with EPACTS kinship

only, PLINK 10 PCs, and GCTA LOCO (leave one

chromosome out) (see Methods). Each consistently identi-

fied the same SNP at chr7:110,659,581 significantly associ-

ated with the trait along with nearby SNPs in high LD

associated as well (Additional file 1: Table S17). No

additional significant SNPs were identified consistent with

the hypothesis that stratification methodology had little ef-

fect on identifying the top SNPs and that we were not

“overfiltering” with rigorous kinship controls. For com-

pleteness, we then carried out a GWAS analyses for the

remaining 64 continuous microbial phenotypes using the

EPACTS kinship only analyses adjusting significance for

the additional multiple testing and found no SNPs to be

significantly associated. This is perhaps not surprising

given the relatively small sample size (data not shown).

Meta- and gene-based GWAS analyses

The size of the ADM sample made it unlikely to pro-

duce statistically significant results. To glean useful in-

formation from it we combined it with the EUR data

described using a meta-analysis approach that can effect-

ively deal with population issues inherent in mixing sam-

ples of different populations. METAL [76] is such a

meta-analysis package that takes as input individual SNP

P values and the direction of their effects weighted by

the sample size to arrive at composite P values. The test

statistics were also corrected for population stratification

(see methods). The METAL analysis identified the same

suggestive significant SNP on chromosome 7 that was

associated with Granulicatella abundance in the EUR

GWAS (chr7:110,659,581, P value = 2.51–09, see

Additional file 1: Table S8 for complete results). How-

ever, due to the small size of the ADM sample, this SNP

did not survive quality filtering in the METAL analysis

and so was not a factor in the METAL analysis outcome.

Analyses of Unweighted Principal Coordinate 3 yielded a

SNP on chromosome 12 that reached genome wide sig-

nificance in the same direction (positive beta) for the

combined sample, though it was not robust to multiple

testing correction (chr12:82,166,911, P value = 1.845–08,

Fig. 5a–b, Additional file 1: Table S9). Again, the re-

gional Manhattan Plots in Fig. 5c show the peak locus

includes SNPs of decreasing r2 around the peak SNP

consistent with the association. The minor allele C, was

shown to be consistent with lower PCo3 z-scored values

(Fig. 5d–e).

The most promising single SNP association occurred

with the phenotype defined as the abundance of the

genus Granulicatella. We reanalyzed the association

data with the gene-based tool Knowledge-based mining

system for Genome-Wide Genetic studies (KGG4, [77]

that constructs whole gene association scores from a

summation of SNP P values contained in each gene. The

abundance of Granulicatella identified two genes on

chromosome 7 as highly associated: a protein coding

gene IMMP2L (corrected P value = 0.0176) involved in

protein processing associated with mitochondrial import

and a non-coding antisense RNA INHBA- AS1 (cor-

rected P value = 0.0488) (Fig. 4c, see Additional file 2:

Supplemental Methods). A SNP in INHBA-AS1 had

been previously identified in a dental caries GWAS

along with a loci in the INHBA gene [78]. INHBA is

thought to be important to tooth development, which

could have potential interesting implications to the oral

microbiome [78–83]. The meta-GWAS results on the

PCo3 of Unweighted UniFrac most highly associated re-

gion was the gene LIN7A on chromosome 12 (corrected

P value = 0.2107, see Additional file 2: Supplemental

Methods).

A strong environmental covariate fails to influence

top-scoring associations

Tobacco use correlates with changes in the oral micro-

biome and the abundance of specific taxa [14–18, 20–22].

It was possible that tobacco or other factors influenced

our observation of genetic association. For example,

Streptococcus abundance, a highly heritable phenotype,

has also been shown to change in smokers [14, 16, 17,

20–22, 84]. In addition other substances could potentially

change the oral microbiome. Among these alcohol [20]

and marijuana, though these effects have yet to be deter-

mined. However, marijuana use is correlated with poor
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oral health, which is often indicative of changes in the oral

microbiota [85–88]. We had available the self-reported to-

bacco, alcohol and marijuana use in 92% of our subjects

for the previous six months. We therefore repeated the

analyses using the three substances as covariates (see

Additional file 2: Supplemental Methods). As seen in

Additional file 2: Figures. S15 and S16, controlling for

tobacco/alcohol/marijuana use had negligible impact on

the top hit on chromosome 7 for the genus Granulicatella

(see also QQ plots, Additional file 1: Table S10). For the 6

highly heritable continuous traits that were analyzed, both

with and without substance use covariates, results appear

to be consistent with and without substance (Additional

file 2: Figures S15 and S16).

Discussion

We have shown that microbe abundance and some as-

pects of the microbial population structure are influ-

enced by heritable traits in saliva. We have ranked the

“most heritable” traits using ACE/ADE modeling and

GCTA-based SNP heritability and carried out an

unbiased GWAS on the 6 most heritable traits. One

SNP on chromosome 7 in the gene IMMPL2 reached

genome-wide significance. Another gene IINHBA-AS1

on chromosome 7 achieved genome-wide significance

when analyzed by KGG4 that relies on a composite asso-

ciation score including all SNPs in each known gene.

The significance of these associations was not influenced

by “p-hacking” statistical biases common in GWAS

because phenotype choice was not based on previous as-

sociation tests. This approach is a model for using herit-

ability to reduce the multiple testing problems seen in

many GWAS reports and it could be the method of

choice in the design of GWAS studies in which sample

size may be limited.

Bray-Curtis, Weighted UniFrac, and to a lesser extent

Unweighted UniFrac β-diversity demonstrate that many

components of the microbiome community are heritable

(Fig. 1). While a shared environment and behavioral

habits contribute to a more similar microbiome (i.e. in-

dividuals living together have more similar microbial

populations [6, 24]), such studies did not control well

for the clear genetic influences in their populations.

When we examined the differences among MZ and DZ

cotwins and age-matched unrelated individuals that we

were confident cohabitated (i.e. removed those who did

a

b d

e

c

Fig. 5 GWAS of Unweighted UniFrac principal coordinate 3. Principal Coordinate 3 of Unweighted UniFrac was transformed to z-scores in R and

used as the phenotype for the GWAS analyses. a Manhattan plot of the GWAS analysis in the European ancestry sample(n = 823) and b Admixture

American ancestry sample (n = 344). c Locus Zoom plot of the chromosome 12 at the most significant Meta-GWAS hit. d-e. Violin plots of the Principal

Coordinate 3 of Unweighted UniFrac for each genotype within each ancestry population (d EUR: GG n = 705, GC n = 112, CC n = 6; e. ADM: GG

n = 193, GC n = 133, CC n = 18)
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not live together), the genetic influences remain clear. It

is significant that the genetic effects are detected using

measures that include all detectable OTUs. To assess

heritable influences of individual microbial components,

we carried out intraclass correlation analyses that show

that heritability extends across nearly all observed taxa

individually (see Fig. 2). The one exception is in the

fusobacteria where ICC does not distinguish MZ and

DZ. Possibly these organisms, known to be “bridges” be-

tween early and late colonizers on gum and tooth sur-

faces [89, 90], may not have interaction with host

proteins and could lack human genetic influences.

GWAS of complex traits on relatively small samples is

problematic due to the lack of statistical power. The in-

fluence of individual genes on traits that have multiple

genetic components may be small. Moreover, the micro-

biome is a highly complex population with interacting

networks of bacteria that all may have multiple interac-

tions with the host. A variety of covarying network mod-

eling approaches have demonstrated how complex these

communities are [91]. It has been shown that assuming

the number of causal variants and their frequency spec-

tra for a pair of traits are similar, more heritable traits

are more likely to be detectable in GWAS [31]. There-

fore we focused on those microbiome endophenotypes

with greatest additive genetic heritability for GWAS.

Both ACE/ADE modeling and GCTA SNP heritability

are suited to this approach.

The microbial phenotypes with greatest additive gen-

etic influence in the ACE/ADE model on the entire twin

cohort were the abundance of the OTU4483015 that

corresponds to an unnamed species of Granulicatella

(twintrait521, heritability 55.8%, 95% CI: 0.282–0.634)

and PCo2 of Bray Curtis (twintrait1022, heritability

46.3%, 95% CI: 0.233–0.551, Additional file 1: Table S5).

The influence of additive genetics was variable depend-

ing on the trait when comparing the full sample to herit-

ability only among cotwins that cohabitate (i.e. under 18

or 19 and older and reported living at home (Additional

file 1: Table S6, Additional file 2: Figures S10 and S11).

The variation in estimates may reflect environmental ef-

fects or loss of power between the full sample (n = 752

twin pairs) and the cohabitating sample (n = 588 twin

pairs) (Additional file 2: Figure S9. Nevertheless, co-

habitation did not remove the significant genetic influ-

ences. In comparing those OTUs identified as heritable

in saliva to those identified in recently reported studies

in the gut, we found no obvious overlap (Additional

file 1: Table S16). This again points to the complex

nature of the microbe-host interactions in primarily

aerobic and anaerobic environments and how human

genetic influences must also be complex.

As a further test of heritability prior to GWAS, we ex-

amined SNP-based heritability in our unrelated sample

with GCTA. A positive correlation was observed be-

tween the ACE/ADE and GCTA ‘heritability’ estimates

for continuous traits in both the full twin sample and

the EUR sample (Fig. 3). Previous studies have demon-

strated that large samples are needed to produce results

reaching statistical significance using GCTA. In their

original paper Yang et al. showed that while increasing

the sample size does decrease the error bars of the herit-

ability estimates, the heritability estimates themselves re-

main relatively stable. While the GCTA estimate was

not significant upon correction for multiple testing, the

positive correlation between the unrelated individuals

and the twin studies (0.1818) provides support for the

conclusion that for these continuous traits genetic vari-

ation influences microbial populations.

A GWAS analysis with the six most heritable continu-

ous traits determined from the twin modeling was car-

ried out in the European (EUR) populations (defined

above). The GWAS of the abundance of the genus Gran-

ulicatella identified a genome wide significant SNP on

chr7 (chr7:110,659,581, P value = 2.51–09). This SNP is

located in an intron of the IMMP2L gene. The GWAS

meta-analyses combining the EUR and ADM samples

using METAL with the same 6 traits showed no new

information about the chr7 SNP due to its low fre-

quency in the ADM population but did produce an

additional association with suggestive significance,

chr12:82,166,911 (P value = 1.845–08) for the phenotype

Unweighted UniFrac PCo3, though it was not robust to

correction for multiple testing. This SNP is located in

the gene LIN7A that is widely expressed in endothelial

cells. Markers in LD with the top SNPs (i.e. high r2) were

also highly associated with the phenotype, but in

addition, markers of somewhat lower LD (i.e. low r2)

that were nearby also displayed elevated significance for

both hits. This provides an argument that these loci may

not be due purely to chance (Figs. 4b and 5c).

To be adequately powered one must have a large sample

size or the single SNP effect must be very large. However,

most complex traits are polygenetic and so many loci with

small effects account for the variation of the trait. There-

fore, where sample size is limited, it may be difficult to ob-

serve significant SNP associations. To address this, it is

possible to use biological information to inform analyses

and increase statistical power. This may be done by aggre-

gating the association of multiple SNPs known to be

present within a known gene. By this approach, the pos-

sibly small effects of all SNPs in the gene are combined

and then the association of the entire gene may be deter-

mined. Even if no single SNP is found to be genome-wide

significant the combined SNP contributions across the

gene may be. One widely used gene-based GWAS analysis

method is the Knowledge-based mining system for

Genome-wide Genetic Studies (KGG4) [77, 92–95].
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An analysis by KGG4 confirmed the gene IMMP2L

(corrected P value = 0.0176) and additionally identified a

non-coding RNA INHBA- AS1 (corrected P value = 0.0488)

(see methods) as significant hits. IMMP2L functions in

the mitochondrion where it is involved with processing of

signal peptides as a peptidase directing transport to the in-

terior mitochondrial space [73–75]. INHBA- AS1 and

INHBA (closely linked) were previously associated with

dental caries in a GWAS, and INHBA was postulated to

influence the development of dental caries via its role in

tooth morphology development [78]. In support of this

hypothesis Zeng et al. discuss that INHBA has been

shown to be important for tooth development and knock-

out mice of INHBA have alterations in the eruption of

new teeth [78–83]. Attachment to the tooth surface is a

part of the establishment of the oral microbiome and dis-

ruption of this process could lead to changes in the com-

munity structure of oral biofilms. Ascribing functional

significance to IMMP2L, INHBA-AS1, or LIN7A, is

speculative in the absence of a replication experiment.

Nevertheless, this study is among the first to use her-

itability to refine microbiome phenotypes prior to

GWAS testing and the findings will provide a basis

for additional genetic studies in larger replication

samples and in future molecular analyses.

Of the 100 most significantly associated SNPs for each

of the 6 GWAS analyses in the EUR sample, 7 SNPs

were shared at least twice among Bray Curtis PCo2,

Unweighted UniFrac PCo2, and Weighted UniFrac PCo2

analyses probably due to shared underlying variation of

PCo2. A comparison of SNPS from the Granulicatella

GWAS and the PCo3 unweighted UniFrac Meta-

Analysis in our experiments with other published

GWAS studies of the microbiome found that the major-

ity of overlapping SNPs followed a normal distribution,

and those few that did deviate from expectation did not

reach genome wide significance in either study (see QQ-

plot, Additional file 2: Figure S18) [3, 64–67]. It is per-

haps not surprising that genes showing influence in gut

do not appear in salivary samples. There is very little

overlap in organism composition between niches and it

can be argued that one reason for this is that different

genes influence each niche.

Genes and environment potentially contribute to all

aspects of the microbiome. Whereas twin studies are

particularly powerful in differentiating between them,

GWAS is poorly suited to teasing these factors apart.

We show that tobacco/marijuana/alcohol use has little

influence on the ability to detect associations of our top

scoring loci. This is somewhat unexpected in that it is

well known that some microbes either increase or de-

crease in response to tobacco [14, 16, 17, 19–22]. This is

consistent with a hypothesis that the tobacco effects

seen (for example increases in streptococcus abundance)

are mostly free of significant genetic influences and that

conversely, the genetic effects we find do not dependent

on environmental perturbations to be observed. The re-

sults point out a need for well-controlled gene by envir-

onment experiments to fully understand how genes

work and how environmental factors actually influence

microbial communities.

Conclusions

In this study we have shown, using the largest twin oral

microbiome study to date, that the oral microbiome is

heritable. While cohabitation is clearly a factor in micro-

biome similarity between co-twins, the genetic effects

are observable independent of cohabitation. Twin mod-

eling and correlation of twin models with additive SNP

heritability in unrelated individuals determined by

GCTA confirmed that observed heritability is the result

of genome sequence variation. Prioritization of the most

heritable microbial phenotypes reduced the multiple

testing problems inherent in some GWAS analyses and

allowed us to carry out a successful GWAS analysis of 6

microbiome phenotypes. Future work will focus on repli-

cating these studies in a large independent sample but

on its own, it demonstrates that at least some aspects of

oral commensal populations are determined by host

genetic factors.
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