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Abstract—Social learning in particle swarm optimiza-
tion (PSO) helps collective efficiency, whereas individual repro-
duction in genetic algorithm (GA) facilitates global effectiveness.
This observation recently leads to hybridizing PSO with GA for
performance enhancement. However, existing work uses a mech-
anistic parallel superposition and research has shown that
construction of superior exemplars in PSO is more effective.
Hence, this paper first develops a new framework so as to
organically hybridize PSO with another optimization technique
for “learning.” This leads to a generalized “learning PSO”
paradigm, the *L-PSO. The paradigm is composed of two cas-
cading layers, the first for exemplar generation and the second
for particle updates as per a normal PSO algorithm. Using
genetic evolution to breed promising exemplars for PSO, a spe-
cific novel *L-PSO algorithm is proposed in the paper, termed
genetic learning PSO (GL-PSO). In particular, genetic opera-
tors are used to generate exemplars from which particles learn
and, in turn, historical search information of particles pro-
vides guidance to the evolution of the exemplars. By performing
crossover, mutation, and selection on the historical informa-
tion of particles, the constructed exemplars are not only well
diversified, but also high qualified. Under such guidance, the
global search ability and search efficiency of PSO are both
enhanced. The proposed GL-PSO is tested on 42 benchmark
functions widely adopted in the literature. Experimental results
verify the effectiveness, efficiency, robustness, and scalability of
the GL-PSO.

Index Terms—Exemplar construction, genetic algorithm (GA),
hybrid method, learning scheme, particle swarm optimiza-
tion (PSO).
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I. INTRODUCTION

P
ARTICLE swarm optimization (PSO), a nature-inspired

optimization technique, has attracted significant attention

since introduced by Kennedy and Eberhart [1], [2] in 1995.

Simulating the social behavior of birds flocking or fish

schooling, a population of particles in a PSO algorithm coop-

erates and interacts to search for solutions in the problem

space. Owing to its conceptual simplicity and high effi-

ciency, PSO has been successful in solving a variety of

problems in many areas such as power systems [3], [4], indus-

trial electronics [5], wireless sensor networks [6], and feature

selection [7].

However, in canonical PSO, all particles keep learning from

the personal best experience (pbests) and the global best-so-

far solution (gbest) of the entire swarm, which may lead to

premature convergence. To improve the performance, a num-

ber of PSO variants have been developed during the past two

decades. These variants can be generally divided into four cat-

egories that focus on: 1) population topology and multiswarm

techniques [8]–[10]; 2) parameter control [11]–[14]; 3) hybrid

methods [15]–[25]; and 4) novel learning schemes [26]–[30],

respectively. Although much effort has been made to enhance

the performance of PSO, many of the variants cannot maintain

their improvements over problems of different characteris-

tics. For example, some PSO variants are able to increase

population diversity and avoid premature convergence, but

their search speed and solution accuracy are decreased as

a result. On the other hand, some other algorithms still

cannot locate the global optimum for difficult problems involv-

ing many local optima. So far, it has been a challenging

task to improve the overall performance of PSO for wider

applicability.

In nature, it is widely accepted that the behavior of

organisms, such as bee foraging and scouting [31], and bird

migration [32], is influenced by genetic information. A disci-

pline named “behavioral genetics” is dedicated to discussing

how such genetic control is executed [33], [34]. In particu-

lar, Raine et al. [35] discovered that the animals’ foraging

behavior depends primarily on its evolutionary history rather

than the current foraging condition. Alcock [36] put forward

a viewpoint that behavioral variation is partially derived from

genotypic variation, and therefore, it is an evolutionary pro-

cess. On the other hand, the skills acquired by animals in

social activities affect the natural selection force on the animals

and hereafter alter the genes in the population [37], [38]. As

biological experiments reveal that the behavior and genetic

information of organisms influence each other, it would be
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Fig. 1. (a) Parallel and (b) cascade frameworks of GA-PSO hybrid algorithms.

possible and interesting to utilize such interaction between

the behavior and genes to enhance the performance of the

biologically inspired PSO technique.

In the literature, a number of work have been reported

in improving the performance of PSO by adopting genetic

methods, which can be categorized into the following

two types. First, some PSO algorithms embed a spe-

cific genetic operator of genetic algorithm (GA) such as

mutation [39] and crossover [40]. Second, significant efforts

are made in fully hybridization of PSO and GA. For exam-

ple, Shi et al. [15] proposed a PSO-GA-based hybrid algo-

rithm by executing the two algorithms simultaneously. Then,

Kao and Zahara [16] hybridized PSO with GA based on a fit-

ness ranking method. Valdez et al. [17] integrated GA and PSO

by using a fuzzy logic method for decision-making. Three dif-

ferent hybrid mechanisms are proposed in [18], the first being

to run GA and PSO in parallel and exchange their information

via crossover between chromosomes and the gbest particle, the

second being to apply the mutation of GA on stagnated par-

ticles, and the third being to divide the number of iterations

to run GA and PSO in complement. Furthermore, GA-PSO

hybrid algorithms have been developed to tackle some ad hoc

applications, including recurrent network design [19], elec-

tromagnetic structure optimization [20], and conformal array

pattern synthesis [21]. More recently, Jeong et al. [22] pro-

posed an efficient GA-PSO hybrid algorithm for real-world

multiobjective problems.

Most of these hybrid algorithms share conceptual and oper-

ational similarities in that they divide the population into

two parallel subpopulations, each controlled by GA and PSO

separately, and then recombine the subpopulations at set inter-

vals. A general framework of those algorithms is illustrated

in Fig. 1(a), which shows that GA and PSO are hybridized

in a parallel manner. In this hybridization mechanism, GA

and PSO are loosely coupled, and the effect coming from the

interaction of GA and PSO is ambiguous to recognize. For

example, it is hard to identify how the individuals exchanged

from GA affect the PSO population and whether they will

result in updating the pbests and gbest. Inversely, it is also

difficult to characterize how the individuals transferred from

PSO influence the GA population, especially whether the

migrated individuals will survive in the selection. More criti-

cally, the benchmark-testing results of PSO-GA hybrid algo-

rithms reported in the literature are inconclusive [15]–[17].

In particular, the algorithms are tested on low-dimensional

problems (no more than 10-D in most cases), and their per-

formance lies between that of PSO and GA in optimizing

many benchmarks. It can be seen that hybridizing PSO with

GA to achieve the perfect goal of “1 + 1 > 2” still remains

a challenging task.

To further improve the performance of PSO, this paper

develops a genetic learning scheme that applies GA for exem-

plar construction. As illustrated in Fig. 1(b), GA and PSO

are hybridized in a cascade manner. The main loop of the

algorithm is composed of two cascading layers, the first for

exemplar generation by GA and the second for particle updates

as per a normal PSO algorithm. In this way, particles in PSO

are no longer simply guided by the gbest and pbests, but are

guided by the exemplars constructed by GA. GA and PSO are

hybridized in a highly cohesive way, which establishes a pos-

itive feedback loop to accelerate the population to locate the

optimum.

1) By learning from the exemplars constructed from GA,

the search of particles is more diversified, thus help-

ing avoid the premature convergence of PSO. Moreover,

owing to the effect of the selection operator in GA, the

survived exemplars are also of high quality. They are

capable of providing effective guidance for particles and

hence improving the search efficiency of PSO.

2) In turn, the search experience (pbests and gbest) of parti-

cles propagates promising genetic materials back to GA

and helps GA reproduce improved exemplars.

Therefore, in this cascade architecture, the effect of the

interaction between PSO and GA is clear and the interaction

enhances PSO and GA alternatively in the optimization pro-

cess. In addition, as the cascade hybrid mechanism is divided

into two layers, a different learning approach can be used in

the upper layer to design a different hybrid PSO algorithm,
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providing an open opportunity to improve the performance of

PSO in the future.

The rest of this paper is organized as follows. Section II

reviews the technical and biological backgrounds on hybridiz-

ing PSO with GA. Section III presents the GL-PSO algorithm

with implementation details and analysis, followed by a gener-

alized hybrid paradigm in Section IV. Experimental tests are

carried out in Section V. Finally, conclusions are drawn in

Section VI.

II. BACKGROUNDS

A. Technical Background: GA Versus PSO

Currently, GA and PSO are two well-known branches

existing in the field of bio-inspired optimization. A typical

GA consists of three basic operators: 1) selection; 2) crossover;

and 3) mutation. The selection operator duplicates higher-

quality chromosomes to pass on for improving the average

fitness values of the population, also known as evolution.

Crossover and mutation are reproductive operators that provide

the evolving population with alternative but probably higher-

quality genetic materials. In contrast, a PSO algorithm does

not employ the selection operator, but the evolution is repre-

sented by updating particles toward historically best positions.

The flying trajectories of particles in PSO can correspond to

the changing genetic materials in GA.

The differences in the mechanisms of GA and PSO often

result in the differences in their performance. In canonical

GA, two chromosomes are randomly picked to exchange

their component genes through crossover, and some genes

in the chromosomes are randomly varied through mutation.

Therefore, the reproduction process of GA is, to some extent,

omnidirectional. On the other hand, in canonical PSO, as par-

ticles are guided by their previous best positions (pbests) and

the global best position (gbest) found by the swarm, the search

is more directional than that of GA. Hence, it is expected that

GA possesses a better exploration ability than PSO whereas

the latter facilitates faster convergence.

In Section S-I of the supplementary file of this paper, exper-

iments have been carried out on unimodal and multimodal

benchmark functions to compare GA and PSO, the results

of which verify the above analysis. For the unimodal func-

tion, owing to its efficient search mechanism, PSO is seen

to quickly converge to the optimum and to obtain high solu-

tion accuracy. However, for the multimodal function, when

the pbests fall into a local optimum far from the global opti-

mum in the landscape, particles are seen difficult to jump out

of the local optimum. This is why PSO performs poorly in

optimizing the multimodal function in the experiment. On the

contrary, GA owns a much better global search ability that it

is capable of locating the global optimum of the multimodal

function. However, as the crossover and mutation are relatively

directionless, the GA population approaches an optimum more

slowly, which leads to the insufficient performance of GA on

both the two kinds of problems.

To summarize, GA and PSO have their respective merits

and demerits. The issue remaining is how to utilize the mer-

its of both to enhance the overall performance, i.e., how to

improve the global search ability of PSO by incorporating

GA mechanisms without slowing down the search?

B. Biological Background: Gene–Behavior Interaction

From a biological perspective, GA changes the pheno-

types of individuals via changing their genotypes, which is

a long-term process. Unlike GA, PSO adjusts the phenotypes

of particles based on interactive learning activities, which is

short-term. This can also be interpreted as the reason why PSO

converges faster than GA.

However, in nature, the behavioral traits of organisms

are under genetic control. This perspective was firstly pro-

posed by Galton [41] in 1869. After a century of verifi-

cation and development, the branch of science to explore

and formulate the relationships between genes and behav-

ior is recognized as a research discipline termed “behavioral

genetics” by Fuller and Thompson [42] in 1960. Since then,

Galton has been considered as the first behavioral geneticists.

Nowadays, it has become a widely accepted concept that most

behavior of organisms are covary with both genotypes and

environment [33], [34]. For example, Robinson and Page [31]

proposed that genotype distinguishes the nectar foraging,

pollen foraging, and nest-site scouting behavior of honey

bee colonies. The work in [32] shows that the blackcap’s

migratory motivation and direction are under genetic control.

Raine et al. [35] put forward that the animals’ foraging

behavior could be better explained by its evolutionary history,

rather than their present foraging conditions. The book entitled

Animal Behaviour—An Evolutionary Approach presents many

examples showing that a proportion of phenotypic variation in

behavior is derived from genotypic variation.

Inversely, Sterelny [37] developed a perspective that learn-

ing has evolutionary consequences. Although the skills

acquired by animals cannot be directly encoded into their

genes, the variations in animals’ phenotype affect the natu-

ral selection force acting on the animals and hereafter alter

the genes in the animal population generation by generation.

For instance, Jones et al. [38] found that some woodpeckers

learn to use cactus spines to harvest food in tree trunk, and

natural selection is more likely to preserve those individuals

in the population whose beak shape facilitates manipulating

spines. Afterward, more and more birds not only acquire the

feeding skill but also inherit the specific beak shape.

To conclude, in nature, the behavior of organisms, such

as foraging and migration, is under genetic control, and,

inversely, their acquired skills via social activities (such as

learning) would finally play roles in genotypic variations. In

brief, the genes and behavior of organisms interact with each

other. As PSO is a kind of nature-inspired technique, this

motivates us to incorporate some genetic mechanism into the

learning and search process of the algorithm.

III. GENETIC LEARNING PSO

A. Canonical PSO Learning Scheme and its Variants

In canonical PSO, each particle learns from its own pbest

and the gbest found by the entire swarm in order to update

velocity and position. Let Vi = [vi,1, vi,2, . . . , vi,D] and
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Xi = [xi,1, xi,2, . . . , xi,D] represent the velocity and position

of the ith particle (i = 1, 2, . . . , M, where M is the popula-

tion size), respectively. Let Pi = [pi,1, pi,2, . . . , pi,D] denotes

the pbest of particle i and G = [g1, g2, . . . , gD] denotes the

gbest of the whole swarm. The update equations for the dth

dimension (d = 1, 2, . . . , D) of particle i are defined as

vi,d ← ω · vi,d + c1 · r1,d ·
(

pi,d − xi,d

)

+ c2 · r2,d ·
(

gd − xi,d

)

(1)

xi,d ← xi,d + vi,d (2)

where ω denotes the inertia weight, c1 and c2 are accelerate

coefficients determining the relative importance of Pi and G,

and r1,d and r2,d are random numbers uniformly selected

within [0, 1].

With this canonical learning scheme, a particle learns from

both Pi and G and may hence oscillate if these two exemplars

locate on opposite sides of Xi. On the other hand, if Pi and

G are located in a same local optimum, the particle may be

trapped in this optimum, which causes premature convergence.

In order to overcome the above shortcomings, researchers

have developed variant PSO learning schemes, among which

the following velocity update is widely adopted [26]–[28]:

vi,d ← ω · vi,d + c · rd ·
(

ei,d − xi,d

)

. (3)

Here, replacing two exemplars Pi and G, a single composite

exemplar Ei = [ei,1, ei,2, . . . , ei,D] is constructed in phenotype

combination to attract particle i. In fact, the canonical velocity

update scheme in (1) can be transformed into this condensed

form by regarding ei,d in (3) as a linear combination of pi,d

and gd, as according to [26]

ei,d =
c1 · r1,d · pi,d + c2 · r2,d · gd

c1 · r1,d + c2 · r2,d

. (4)

For examples, a fully informed particle swarm (FIPS)

algorithm [26] guilds a particle to learn from all its neigh-

bors with the exemplar vector being the linear combination of

all the pbests in the neighborhood. In comprehensive learn-

ing PSO (CLPSO) [27], ei,d is set to pi,d within a predefined

probability range, or set to the dth dimension of another

particle’s pbest via a tournament selection. In orthogonal learn-

ing PSO (OLPSO) [28], it conducts orthogonal experimental

design on Pi and G in order to construct Ei with orthogonal

combination.

B. Genetic Learning Scheme

Because the exemplar vector Ei determines the search tra-

jectories of particles, it plays a significant role in PSO. In

this paper, aiming for a more promising vector than using lin-

ear or orthogonal combination, a genetic learning scheme that

applies GA to breed exemplars is proposed and developed. The

motivation of this paper is described as follows. First, canon-

ical PSO algorithm simply uses Pi and G to guide search,

which induces premature phenomenon easily. As described in

Section II-A, compared to PSO, GA exhibits a better global

search ability. So that it is expected that the genetic operators

can bring diversity to the exemplar vectors to discourage the

premature convergence of PSO. Moreover, the exemplar built

by GA is not only well diversified but also with high quality,

which is capable of providing a good guidance for particles

and hence improving the efficiency of PSO. Furthermore, from

a biological point of view, the foraging behavior of birds in

nature is under genetic control. It is reasonable to incorporate

such a genetic learning scheme into a PSO algorithm. In the

following, the detailed implementation of the genetic learning

scheme is presented.

1) Crossover: For each particle i, crossover operation is

first conducted on Pi and G to generate an offspring Oi =

[oi,1, oi,2, . . . , oi,D]

oi,d =

{

rd · pi,d + (1 − rd) · gd, if f (Pi) < f
(

Pkd

)

pkd,d, otherwise
(5)

where rd is a random number uniformly distributed in [0, 1],

kd ∈ {1, 2, . . . , M} is the index of a random particle, i =

1, 2, . . . , M, and d = 1, 2, . . . , D. Here, without loss of

generality, the considered objective f is for minimization.

This way, a good particle is more likely to perform the

arithmetic crossover between its pbest position Pi and the

gbest position G. By integrating the information of the global

best particle, the performance of Oi has potential to further

improve. On the contrary, if particle i is an inferior one in the

swarm, the offspring will have more dimensions coming from

that of another particle with better fitness. Instead of randomly

picking two individuals in the population to undergo crossover

as in traditional GA, the above crossover utilizes the histori-

cal search experience of particles in PSO to improve the gene

quality. An experimental discussion of the crossover operation

is provided in Section S-II of the supplementary file, which

shows that the operator helps improving search efficiency.

2) Mutation: The bred offspring Oi then undergoes the

mutation operation with a probability bounded by probability

of mutation (pm). This is the same as the classical mutation

operation of GA, which is very simple. For each dimension

d, a random number rd ∈ [0, 1] is generated, and then, if rd

is smaller than pm, this dimension of Oi is reinitialized in the

search space

oi,d = rand(lbd, ubd), if rd < pm (6)

where lbd and ubd stand for the lower and upper bounds of

the dth dimension. The mutation brings in diversity of the

exemplar to reach more exploratory coordinates (theoretically,

any coordinates) in the search space.

3) Selection: After applying crossover and mutation to

create the offspring, selection is performed to determine

whether the offspring or the current exemplar survives in this

generation. The following operation is executed:

Ei ←

{

Oi, if f (Oi) < f (Ei)

Ei, otherwise.
(7)

Note that, the calculation of f (Oi) consumes the number of

function evaluations (FEs) in the new algorithm.

As shown in (7), the exemplar remains unchanged if it is

better than the new offspring. This elitism ensures that the

exemplar evolves in every generation and never deteriorates.

Moreover, if the exemplar of a particle ceases improving for
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a certain number, a stopping gap sg, of generations, the exem-

plar may be considered trapped in a deep local optimum.

In this case, we employ the 20%M-tournament selection to

update the particle’s exemplar. Here the tournament size is

empirically set to a value proportional to the population size M.

That is, 20%M exemplars are chosen at random to join the

tournament, where the winner with the best fitness replaces the

particle’s current exemplar. By learning from another exem-

plar, the particle is able to change the search direction abruptly

so as to fly out of the local optimum.

For each particle, in summary, it conducts the crossover,

mutation, and selection described above once in every gener-

ation to construct a promising exemplar and hereafter learns

from the exemplar as per the traditional PSO. With the genetic

breeding scheme, a novel genetic learning PSO (GL-PSO)

algorithm is developed. The pseudo code of GL-PSO is shown

in Algorithm 1 and its framework is sketched in Fig. 1(b).

It can be observed that GL-PSO is relatively easy to imple-

ment. For public use, we provide the source code of GL-PSO

online, which can be downloaded at [43].

Note that the proposed GL-PSO algorithm maintains the

canonical framework of PSO, in which particles update their

velocities and positions in the search space by utilizing histor-

ical search experience. The novelty of GL-PSO lies in that

it applies GA to process the pbests and gbest of particles

so as to breed the exemplars, which captures the historical

search experience with a more global prospective. Particles

can hence learn with a good diversity and a high quality, for

potentially improved exploration and exploitation abilities. It

is to be pointed out that the fundamental component of the

proposed algorithm is PSO but rather than GA, and GA is

used as an auxiliary technique.

C. Complexity Analysis of GL-PSO

The computational costs of the canonical PSO algorithm

involve the initialization (Tini), evaluation (Teva), and veloc-

ity and position update (Tupd) for each particle. Assume D

is the dimensionality of the search space and MaxFEs is the

maximum number of FEs allowed for the algorithm. The time

complexity of PSO can be estimated as T(D) = Tini + (Teva +

Tupd)·MaxFEs = D+(D+2·D)·MaxFEs = D·(1+3·MaxFEs).

Therefore, O (D · MaxFEs) is the time complexity of the

canonical PSO. As the parameter MaxFEs is commonly set

to 10 000 · D in the literature, the canonical PSO algorithm

has a time complexity quadratic to the problem size D.

In GL-PSO, the time complexity is determined by the

computational costs of the PSO operation (TPSO) and the

GA operation (TGA). Here TGA consists of the computa-

tional costs of crossover (Tcro), mutation (Tmut), and selection

(Tsel). In the worst cases, we have Tcro = D, Tmut = D, and

Tsel = 1 + 0.2 · M. Besides, as PSO and GA both consume

evaluation times, the maximum number of iterations for the

update of a particle and an exemplar is both (MaxFEs/2).

Therefore, the worst-case time complexity of GL-PSO can

be calculated as T(D) = Tini + (TPSO + TGA) · (MaxFEs/2)

= Tini + [(Teva + Tupd) + (Teva + Tcro + Tmut + Tsel)] ·

(MaxFEs/2) = D+ (3 ·D+0.1 ·M +0.5) MaxFEs. Therefore,

Algorithm 1 Genetic Learning PSO Algorithm (GL-PSO)

1: /* Initialization */

2: for i = 1 to M do

3: Randomly initialize Vi and Xi;

4: Evaluate f (Xi);

5: Pi = Xi;

6: end for

7: Set G to the current best position of particles;

8:

9: /* Main Loop*/

10: repeat

11: for i = 1 to M do

12: /* Exemplar Update: Crossover */

13: for d = 1 to D do

14: Randomly select a particle k ∈ {1, 2, . . . , M};

15: if f (Pi) < f (Pk) then

16: oi,d = rd · pi,d + (1 − rd) · gd;

17: else

18: oi,d = pk,d;

19: end if

20: end for

21: /* Exemplar Update: Mutation */

22: for d = 1 to D do

23: if rand(0, 1) < pm then

24: oi,d = rand(lbd, ubd);

25: end if

26: end for

27: /* Exemplar Update: Selection */

28: Evaluate f (Oi);

29: if f (Oi) < f (Ei) then

30: Ei = Oi

31: end if

32: if f (Ei) ceases improving for sg generations then

33: Select Ej by 20%M tournament;

34: Ei = Ej;

35: end if

36:

37: /* Particle Update */

38: for d = 1 to D do

39: vi,d = ω · vi,d + c · rd · (ei,d − xi,d);

40: xi,d = xi,d + vi,d

41: end for

42: Evaluate f (Xi);

43: Update Pi and G;

44: end for

45: until Terminal Condition

the GL-PSO algorithm has an O[(D+M) ·MaxFEs] time com-

plexity, also linear to MaxFEs. Still, the time complexity is

quadratic to the problem size D.

D. Search Behavior of GL-PSO

The unimodal Sphere function and multimodal Schwefel

function, which have been introduced in Section S-I of the sup-

plementary file, are used in the investigation of GL-PSO per-

formance. Fig. 2 plots the convergence curves of a typical run,
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(a)

(b)

Fig. 2. Search behavior of GL-PSO and its comparison with that of canoni-
cal PSO. (a) Relationship between exemplar and particle on Sphere problem.
(b) Relationship between exemplar and particle on Schwefel’s problem 2.26.

(a) (b)

Fig. 3. Mean difference of the fitness of exemplars and particles in GL-PSO.
(a) D-value on Sphere problem. (b) D-value on Schwefel’s problem 2.26.

where the solid and dashed lines refer to the average fitness

values of exemplars and particles, respectively. Meanwhile, the

convergence curve of the average fitness value obtained by the

canonical PSO with global topology (GPSO) is represented by

dotted line in Fig. 2 for the purpose of comparison. Moreover,

we define a D-value as the mean difference between the fit-

ness of exemplars and particles in GL-PSO, which is depicted

in Fig. 3.

Generally, the exemplars generated in the genetic learning

scheme are capable of providing good guidance for the parti-

cles, as observed in Figs. 2 and 3. No matter the function is

unimodal or multimodal, the fitness values of exemplars are

better than those of particles during the optimization process.

At an early stage of the swarm search, the randomly initial-

ized population covers a relatively broad range in the solution

space. At this time, the crossover performed on pbests and

gbest has an exploration effect in that it constructs an exemplar

far away from the particle’s current pbest. Fig. 3 shows that the

fitness difference between exemplars and particles increases to

a large value at this stage. Afterward, with the convergence of

the population, pbests and the gbest become geographically

close. The crossover operation of GL-PSO tends to have an

exploitation effect because the constructed exemplars locate in

the vicinity of particles. As seen in Fig. 3, the fitness difference

between exemplars and particles begins to decrease after the

initial time period.

The effect of mutation is more prominent in optimizing mul-

timodal functions. As shown in Fig. 3, the curve of D-value on

Schwefel function is not as smooth as that on Sphere function,

which contains many extreme points. As particles gradually

fly toward their exemplars, the local minimum points on the

D-value curve imply the moment that exemplars are jumping

out of a local optimum. This owes to the mutation operation

embedded in the genetic learning scheme, which injects diver-

sified information into the exemplars even when the population

has converged. In Fig. 2(b), the curve of GPSO slows down

after 2000 FEs and then flattens out to a horizontal course

after 150 000 FEs. On contrast, owing to the effective and

efficient guidance of exemplars, GL-PSO exhibits promising

exploration and exploitation abilities from beginning to end,

as shown in Fig. 2(b).

The enhanced performance of the genetic learning scheme

also benefits from the selection operation. First let us look at

a shortcoming of the canonical learning scheme. As described

in Section III-A, the velocity update rule in canonical PSO

can be transformed into a composite form (3) by defining the

exemplar as a linear combination of pbest and gbest in (4).

Consider a 2-D Sphere function whose optimum is [0, 0]. If

particle i’s pbest is Pi = [6, 5] and the gbest is G = [2, 2],

then the constructed exemplar could be Ei = [3, 3]. In the

next generation, suppose that pbest and gbest are updated

to Pi = [5, 4] and G = [2, 1], respectively, and the newly

calculated exemplar is Ei = [4, 3]. In such a case, although

both pbest and gbest evolve, the exemplar deteriorates. Hence,

particle i learns from the deteriorated exemplar, which is inef-

ficient. In the genetic learning scheme, however, selection is

performed to overcome this problem. It ensures that the exem-

plar evolves generation by generation directionally until gets

trapped in a local optimum. Moreover, once the exemplar gets

trapped, the particle will select another particle’s exemplar to

learn from, hence flying out of the local optimum. It can be

seen in Fig. 2 that GL-PSO is more efficient than GPSO. To

summarize, by adopting the proposed genetic learning scheme

consisting of crossover, mutation, and selection, the global

search ability and search speed of the PSO algorithm are both

improved.

IV. THE *L-PSO HYBRID PARADIGM

In addition to the GL-PSO algorithm, a generalized

paradigm of hybridizing PSO with other optimization tech-

niques for “learning” is proposed in this paper, which we

termed the “*L-PSO” family. The PSO algorithm can be

divided into two cascading layers, in which the upper layer

is used for generating superior exemplars and the lower

layer is applied to update particles as per ordinary PSO.

Information in the upper layer propagates to the lower layer

through (3) and (2), i.e., each particle learns from the superior

exemplar to update velocity and position. On the other hand,

the historical search information of particles in the lower layer

is delivered as materials to the upper layer to breed even bet-

ter exemplar. In this way, the two layers cooperate with each

other and enhance each other.
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Besides the GL-PSO, the *L-PSO family can embrace some

other members such as DL-PSO that uses a differential learn-

ing scheme as in differential evolution (DE), EL-PSO with an

estimation-of-distribution learning scheme adopting an estima-

tion of distribution algorithm (EDA), etc. All these could lead

to interesting future work. This paper uses the genetic learning

method because of the technical and biological backgrounds

described in Section II. Moreover, the proposed GL-PSO

obtains promising numerical results which will be presented

in Section V.

Besides, embedding some traditional mathematical meth-

ods could be alternative choices of learning. For example,

the existing FIPS, CLPSO, and OLPSO algorithms apply

a weighted-sum method, a simple composition approach, and

an orthogonal experiment design, respectively. It is to be

noticed that FIPS and CLPSO are not commonly identified as

hybrid algorithms since their upper layer do not involve any

evaluation procedure to calculate the fitness of the constructed

exemplars.

V. EXPERIMENTAL VERIFICATION AND COMPARISONS

A. Experimental Setup

To thoroughly evaluate the performance of the proposed

GL-PSO, two popular test suites consisting of 42 benchmark

functions in total [44], [45] are tested in the numerical exper-

iments. A list and description of these functions are presented

in Section S-III of the supplementary file. The first test suite

( f1–f 14) includes all the scalable functions recommended by

Yao et al. [44] and has been widely used in [46]–[48]. In the

test suite, f 1–f 4 are unimodal functions, f 5 is unimodal in

2-D and 3-D space but has multiple optima when D > 3, f 6

is a step function, and f 7 is a noisy quartic function. These

functions are used to investigate the convergence feature of the

algorithm, since many PSO variants improve the global search

ability at the cost of slowing down their convergence rate.

Then, f 8–f 13 are multimodal functions with different land-

scapes, and f 14 is a discontinuous version of the Rastrigin

function f 9. These functions are used to show whether the pro-

posed algorithm improves the exploration ability of previous

PSO algorithms in order to avoid premature convergence.

The second test suite ( f101–f 128) consists of 28 shifted

and rotated functions from the CEC 2013 test suit for real-

parameter optimization, where f 1–f 5 are unimodal functions,

f 6–f 20 are multimodal functions, and f 21–f 28 are hybrid com-

position functions [45], [49]. These shifted and rotated func-

tions are used to test the performance of different algorithms

in more complex and difficult cases.

The effectiveness and efficiency of the proposed GL-PSO

are then compared with those of seven peer algorithms.

GPSO [11] is the global PSO algorithm with inertia weight

ω linearly decreasing from 0.9 to 0.4. Hierarchical PSO with

Time-Varying Accelerating Coefficients (HPSO-TVAC) [13]

makes improvements by adjusting accelerating coefficients

and integrating auxiliary procedure. FIPS [26], CLPSO [27],

and OLPSO [28], as described in Section III-A, focus on

developing novel learning schemes and constructing effective

exemplars. Besides, GAPSO [18] is a GA and PSO hybrid

TABLE I
PARAMETER CONFIGURATIONS

algorithm in which the GA and PSO run in parallel and

exchange information by crossover. DEPSO [23] adopts a DE

update strategy, a PSO update strategy, and a random update

strategy alternately to improve particles.

The parameter configurations of these algorithms are

according to the corresponding references, which are shown in

Table I. An exception is that, for GAPSO, we have conducted

experiment to find out a promising parameter configuration

because the parameter settings of pc (probability of crossover),

pm, and ds (designated step) are not provided in the reference.

For the proposed GL-PSO, parameters ω and c are empirically

set to 0.7298 and 1.49618, respectively; the mutation probabil-

ity is set as pm = 0.01; and the stopping gap is set as sg = 7.

The population size is fixed at 50 for all the algorithms.

These algorithms are tested on 30-D functions with the same

MaxFEs = 10 000 · D. For each benchmark, each algorithm

is repeated 30 times independently to obtain statistical results.

All the algorithms are coded in C, executed on a PC with

the Intel Core2 Quad CPU Q6600 at 2.40 GHz with 2 GB of

RAM (note that only a single processor is used).

In addition, because PSO belongs to nondeterministic algo-

rithms, the differences of results are influenced by both

intrinsic errors (determined by the algorithms’ optimization

performance) and random errors (caused by random number

generation in the algorithm). To determine whether the dif-

ferences of results are caused by intrinsic errors, a statistical

hypothesis test is applied to evaluate whether the differences

between the results are significant. In statistics, the Wilcoxon

rank-sum test is one of the most well-known nonparamet-

ric statistical hypothesis tests [50]. In this paper, the one-tail

Wilcoxon test at a significance level α = 0.05 is applied to

compare the results of algorithm pairs.

B. Experimental Results and Comparisons on First

Test Suite (f1–f14)

1) Results on Unimodal Functions: In Table II, the mean,

best, and standard deviations of the error values obtained

by the eight algorithms on functions f 1–f 7 are presented,

where the best results are marked in bold. For these uni-

modal functions without local optimum, solution accuracy is

the paramount criterion to compare the performance of differ-

ent algorithms. However, as shown in Table II, although FIPS,

CLPSO, GAPSO, and DEPSO reported improved results in

the literature, their solution accuracy on unimodal functions

is lower than the canonical PSO. On contrast, HPSO-TVAC,
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TABLE II
STATISTICAL RESULTS ON UNIMODAL FUNCTIONS OF THE FIRST TEST SUITE

TABLE III
SEARCH SPEED AND RELIABILITY ON UNIMODAL FUNCTIONS OF THE FIRST TEST SUITE

OLPSO, and GL-PSO successfully overcome this deficiency

and achieve high solution accuracy. Moreover, the proposed

GL-PSO algorithm performs the best in optimizing four out

of the seven functions.

The p-value obtained in the hypothesis test is also reported

in Table II. If the p-value is less than the significance level

α = 0.05, the difference of results is statistically significant. It

can be seen that GL-PSO significantly outperforms seven other

algorithms on most benchmarks except f 7. This is because f 7 is

a noise function with random walk that distracts the selection

of good exemplars and lowers the performance of GL-PSO.

The search speed of different algorithms is compared in

Table III, where the average number of FEs and comput-

ing time (in s) used to reach the error bound are presented.

Besides, Table III also reports the percentage of the runs

successfully reaching the error bound in all the 30 runs, which

reflects the reliability of the corresponding algorithms. The

best value in each row is marked in bold. It can be observed

from Table III that GL-PSO generally possesses the highest

search speed as well as the highest reliability.

2) Results on Multimodal Functions: Comparisons of the

algorithms on multimodal functions f 8–f 14 are reported in

Table IV. These functions contain a number of local optima,

which may lead to premature convergence of PSO algorithms.

Traditionally, PSO has seen difficulties in locating the global

optimum of the Schwefel function f 8, because this problem

has many deep local optima being far away from the global

optimum. If a particle enters into a deep local optimum, it

can hardly fly out of it. As shown in Table IV, five peer

algorithms generate relatively poor results in optimizing f 8.
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TABLE IV
STATISTICAL RESULTS ON MULTIMODAL FUNCTIONS OF THE FIRST TEST SUITE

TABLE V
SEARCH SPEED AND RELIABILITY ON MULTIMODAL FUNCTIONS OF THE FIRST TEST SUITE

On the contrary, the other three algorithms, GAPSO, CLPSO,

and GL-PSO, are not trapped into poor local optima. The pro-

posed GL-PSO is the only algorithm that can reach a low error

of 3.82 × 10−4 in all the runs with standard deviation 0 on

this function.

Consider the Rastrigin function f 9. It is a complex multi-

modal problem with a significant number of local optima. For

this problem, an algorithm maintaining larger diversity is more

likely to yield good results. It can be observed in Table IV

that GL-PSO performs the best on this function, which means

that the proposed genetic learning effectively maintains the

population diversity. This success owes much to the mutation

operation, which diversifies the exemplars and hence diver-

sifies the search of particles most. In general, in terms of

solution accuracy, the GL-PSO algorithm performs the best in

five out of the seven multimodal functions. Moreover, accord-

ing to the Wilcoxon test results (WTRs), GL-PSO significantly

outperforms the other PSO variants on more benchmarks.

Furthermore, from the comparison of search speed and relia-

bility shown in Table V, it can be observed that GL-PSO is also

efficient in solving problems with a number of local optima.

Generally, the proposed GL-PSO algorithm possesses both

a strong global search ability and a high convergence speed,

which are very promising for tackling multimodal problems.

It is to be noticed that, compared with the experimental

results of GA and PSO reported in Section S-I of the sup-

plementary file, the proposed GL-PSO algorithm improves

performance over both GA and PSO on the unimodal Sphere

function f 1 and the multimodal Schwefel function f 8. GL-PSO

is not a passive combination of GA and PSO algorithms, but
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TABLE VI
STATISTICAL RESULTS ON THE SECOND TEST SUITE (MEAN ERROR ± STANDARD DEVIATION)

organically embeds GA to benefit the swarm search of PSO,

resulting in a “1 + 1 > 2” effect for both the GA and PSO.

C. Experimental Results and Comparisons on Second Test

Suite (f101–f128)

To further validate the performance of GL-PSO, compar-

isons are made on shifted and rotated functions f 101–f 128,

which are very complex and difficult to solve. The mean and

standard deviations of the error values obtained by the eight

algorithms are listed in Table VI, where the performance rank

of GL-PSO among the eight algorithms is also presented. It

can be observed that the proposed algorithm is a competi-

tive PSO variant for the second test suite. In optimizing the

28 functions, GL-PSO is ranked the first for 14 times, the

second for six times, and ranked the third and fourth for four

and three times respectively. Compared with the peer algo-

rithms, the proposed algorithm can produce competitive results

TABLE VII
WTRS BETWEEN GL-PSO AND OTHER PSO ALGORITHMS

ON THE SECOND TEST SUITE

on most functions except f 104. Considering the fitness land-

scape of function f 104, it can be seen in [45] that the local

regularities are smoothed. The proposed algorithm is not the

best in dealing with this kind of problems.

The WTRs on f 101–f 128 are tabulated in Table VII, which

shows that the proposed GL-PSO algorithm produces sig-

nificantly better results than the other algorithms on more

functions.

Moreover, the convergence curves of the eight algorithms

are plotted in Section S-IV of the supplementary file. In most
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(a) (b)

Fig. 4. Effect of the mutation probability pm on the performance of GL-PSO.
(a) Unimodal functions. (b) Multimodal functions.

cases, GL-PSO exhibits the fastest convergence among the

compared algorithms, and meanwhile, it is not easy to be

trapped in local optima. To conclude, the above results have

verified the effectiveness and powerfulness of using the pro-

posed genetic learning scheme for performance enhancement

of PSO.

D. Investigation of Parameters

This section investigates the sensitivity of GL-PSO to the

mutation probability pm and the stopping gap sg. First, we

conduct GL-PSO with pm = 0, 0.001, 0.005, 0.01, 0.05, 0.1,

and 0.2, respectively, and fix the other parameters as those

presented in Section V-A. Unimodal functions f 1 and f 2 and

multimodal functions f 8–f 12 are tested in the experiments.

The effect of different settings of pm on the performance of

GL-PSO is plotted in Fig. 4, where the horizontal axis is the

pm value and the vertical axis is the mean error for each func-

tion. It can be observed that the proper range of pm is [0.005,

0.05]. A larger pm will perturb a smooth search of particles and

result in poor convergence, whereas a smaller pm cannot pre-

vent premature convergence in solving multimodal problems.

With a pm ∈ [0.005, 0.05], the algorithm can exhibit favorable

performance on both unimodal and multimodal problems.

In addition, GL-PSO is tested with sg = 1, 2, . . . , 10, respec-

tively, with the other parameters being fixed. Fig. 5(a) shows

that the solution accuracy obtained by GL-PSO is insensitive

to the stopping gap, and all the ten sg values can provide good

performance for the algorithm. Besides, in Fig. 5(b), the search

speed of using different sg values is depicted and compared,

where the vertical axis is the average number of FEs required

to reach the predefined error bound for each function. It can be

observed that setting sg in the range of [4, 7] can help improving

the search efficiency of GL-PSO. This parameter determines

the condition of the jumping-like behavior of exemplars in the

algorithm. A small sg value will lead to a particle sensitively

changing its exemplar (search guidance), which would result in

population oscillation and hence reduce the efficiency of PSO.

On the other hand, when using a large sg, a particle can be

trapped in a local optimum for a long time, which is also not

efficient. To summarize, pm ∈ [0.005, 0.05] and sg ∈ [4, 7]

are recommended in this paper.

In addition, in the crossover of the exemplar construction in

GL-PSO, gbest of the entire swarm is utilized to generate new

exemplars. If the local best information (lbest) of a neighbor-

hood structure is used instead, GL-PSO can be implemented

on different PSO topologies. Comparisons between global and

(a) (b)

Fig. 5. Effect of the stopping gap sg on the performance of GL-PSO.
(a) Solution accuracy. (b) Search efficiency.

local versions of GL-PSO are made in Section S-V of the sup-

plementary file. Results show that GL-PSO with the global

topology performs the best.

E. Scalability Analysis

In the literature, the performance of many PSO algorithms

decreases drastically with the increase in the problem scale.

In this section, we conduct scalability analysis for the above

eight PSO algorithms to test their performance on 50-D and

100-D functions. Experimental settings are the same as those

described in Section V-A, among which the MaxFEs is set to

10 000 · D.

Table VIII reports the mean results obtained by the eight

PSO variants, where the best results are marked in bold. It

can be seen that the proposed algorithm maintains good per-

formance when the problem dimension increases. Compared

with the other algorithms, GL-PSO obtains the best results on

most of the 50-D and 100-D problems being tested and it also

achieves competitive results on the remaining a few problems.

Particularly, for the multimodal functions, the number of

local optima increases drastically with the problem dimension,

which makes PSO vulnerable to premature convergence. As

shown in Table VIII, GL-PSO is the only algorithm that can

maintain a good global search ability in such cases, whereas

the performance of the other algorithms deteriorates severely.

For example, in optimizing f 8, f 9, and f 14, GL-PSO obtains

highly accurate results when the dimensionality increases to

50 and 100, whereas all the other seven algorithms get trapped

in poor local optima.

F. Comparisons With Other Evolutionary and Swarm

Intelligence Algorithms

In this section, we further compare GL-PSO with other evo-

lutionary and swarm intelligence algorithms, including a con-

tinuous ant colony optimization (ACOR) [51], self-adaptive

DE (SaDE) [52], EDA [53], artificial bee colony (ABC) [54],

and evolution strategy with covariance matrix adaptation

(CMA-ES) [55]. 30-D problems are tested in the experiments,

with parameter configurations according to the corresponding

references. As the procedures and time complexity of these

algorithms differ substantially, for a fair comparison, we use

a maximum running time (MaxRT) instead of the MaxFEs

as the stopping criterion. All algorithms are coded and exe-

cuted in the same environment, with MaxRT being 1 s for all

functions.

Table IX reports the rankings of the results obtained by the

six algorithms as well as the pairwise WTRs (where “+” and
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TABLE VIII
RESULTS OF SCALABILITY TEST ON 50-D AND 100-D PROBLEMS

TABLE IX
COMPARISONS BETWEEN GL-PSO AND OTHER ALGORITHMS FOR

FUNCTION OPTIMIZATION (RUN TIME = 1 S)

“−” denote that the compared algorithm is significantly bet-

ter and worse than GL-PSO, respectively, and “≈/=” stands

for that the differences between the results are not signifi-

cant). Consider the rankings in Table IX. GL-PSO performs

the best among the six algorithms, followed by SaDE, ABC,

and CMA-ES. The proposed algorithm exhibits consistent per-

formance and ranks the first or second in optimizing most

of the benchmark functions. Moreover, the WTRs show that

GL-PSO produces significantly better results than the other

algorithms on more functions.

VI. CONCLUSION

In this paper, a genetic learning scheme for PSO algo-

rithm has been proposed, which adopts genetic operators,

specifically, crossover, mutation, and selection, to construct

exemplars. The crossover utilizes the particles’ historical infor-

mation pbests and gbest to generate high-quality offspring,

whereas the mutation injects diverse information into the off-

spring to enhance global exploration. Moreover, the selection

operation ensures that each exemplar evolves directionally

generation by generation. This way, the bred exemplars are

well diversified and highly qualified, which are capable of

providing improved guidance for the evolving particles. By

adopting such a genetic learning scheme, a GL-PSO has

been developed. In the experiments to verify the perfor-

mance of GL-PSO, a group of numerical benchmarks with

different characteristics are used, and the proposed algo-

rithm is compared with several representative PSO algorithms.

Experimental results show that the proposed GL-PSO outper-

forms the other algorithms on a majority of benchmarks in

terms of the global search ability, solution accuracy, search

speed, reliability, and scalability. Furthermore, this paper also

proposes a generalized hybrid paradigm of PSO with generic

learning techniques, the *L-PSO. Differing from the mecha-

nistic parallel combination, *L-PSO presents a cascade hybrid

paradigm that auxiliary learning techniques such as any evolu-

tionary algorithm are used to generate improved exemplars to

guide the search of particles. As a specific example belonging

to this hybrid paradigm, the success of GL-PSO can encourage



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GONG et al.: GL-PSO 13

future research into the cascade hybridization of PSO with

other and emerging techniques. Moreover, this would also

lead to interesting future development of PSO algorithms for

dynamic and multiobjective optimization, as well as real-world

applications [56], [57].
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