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Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide1. 

We performed a genetic association in 15,256 cases and 47,936 controls, with replication of 

select top results (P < 5×10−6) in 9,498 cases and 9,748 controls. In the combined meta-

analysis, we identified 22 loci at genome-wide significance, including 13 new associations 

with COPD. Nine of these 13 loci have been associated with lung function in general 

population samples2–7; however, 4 (EEFSEC, DSP, MTCL1, and SFTPD) are novel. We 

noted 2 loci shared with pulmonary fibrosis8,9 (FAM13A and DSP) but with opposite risk 

alleles for COPD. None of our loci overlapped with genome-wide associations for asthma; 

however, one locus has been implicated in the joint susceptibility to asthma and obesity10. 

We also identified genetic correlation between COPD and asthma. Our findings highlight 

novel loci, demonstrate the importance of specific lung function loci to COPD, and identify 

potential regions of genetic overlap between COPD and other respiratory diseases.

COPD is characterized by persistent and progressive airflow limitation diagnosed by lung 

function testing1. While cigarette smoking is the major risk factor, susceptibility is also 

influenced by genetics11–13. We established the International COPD Genetics Consortium 

(ICGC) to coordinate efforts to find susceptibility loci14. We defined cases based on pre-

bronchodilator evidence of moderate-to-severe airflow limitation by modified GOLD 

criteria15; controls had normal spirometry, and all analyses were adjusted for age, sex, and 

cigarette smoking (pack-years and smoking status). We performed a two-stage genome-wide 

association study (Figure 1). In Stage 1, we combined 26 cohorts (Supplementary Table 1 

and 2) containing 63,192 individuals (15,256 COPD cases and 47,936 controls). We selected 

79 loci with P < 5×10−6 and in analysis Stage 2, we tested them in the UK BiLEVE dataset 

(9,498 COPD cases and 9,748 controls) from the UK Biobank and performed an overall 

meta-analysis (Supplementary Table 3).

We identified 13 genome-wide significant (P < 5×10−8) associations in Stage 1. Following 

the Stage 2 analysis, an additional 9 loci achieved genome-wide significance in the overall 

meta-analysis (Table 1, Figure 2, Supplementary Figures 1 and 2). Analysis of only 

European ancestry (Supplementary Table 4) and only African ancestry (Supplementary 

Table 5 and Supplementary Figure 3) Stage 1 cohorts showed no unique association signals. 

Of the 22 genome-wide significant loci described in our study, 9 have been previously 

described as genome- (or exome-) wide significant in studies of COPD13,16–19: HHIP, 

CHRNA5, HTR4, FAM13A, RIN3, TGFB2, GSTCD-NPNT, CYP2A6, and IL27-

CCDC101. The remaining 13 loci have not been previously associated with COPD at 

genome- (or exome-) wide significance. Eight of these 13 loci: ADGRG6/GPR126, THSD4, 

ADAM19, TET2, CFDP1, AGER, ARMC2, and RARB have been previously described and 

replicated (Supplementary Table 6) in general population GWASs of two measures of lung 

function (FEV1 and FEV1/FVC) that are used in conjunction to diagnose COPD2,4–7,20,21. 

One locus near PID1 was previously associated with FEV1/FVC, but had not replicated in 

those studies4,6. Four loci are newly being described as genome-wide significant in 

association with either COPD or lung function: EEFSEC, DSP, MTCL1, and SFTPD (Figure 

3).

To explore the potential function and causal genes for our novel loci, in addition to using 

publicly available datasets and prioritization tools (Supplementary Table 7), we also 
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examined a larger set of lung expression quantitative trait loci (eQTL) in 1038 subjects, 

including subjects with COPD22 (Supplementary Table 8). As eQTL are pervasive, we also 

attempted to determine whether our association signal co-localized23 with an eQTL signal in 

lung tissue (Supplementary Table 9). We found strong evidence of co-localization (posterior 

probability > 0.8) for DSP, a major protein of desmosomes required for epidermal 

integrity24, and MTCL1, important in epithelial-cell-specific microtubule stabilization25,26, 

and expressed in respiratory epithelial cells27. Variants in strong LD with our top MTCL1 
variant rs647097 (NC_000018.9:g.8808464T>C) appear to have enhancer histone marks in 

fetal lung fibroblasts28,29. In contrast, we found no evidence of a strong eQTL signal or co-

localization at our other two novel loci. At 3q21, EEFSEC is a potential candidate, as it is a 

paralog of TUFM, a top blood and lung eQTL gene for the 16p11.2/IL27 COPD 

susceptibility locus19, recently part of a novel COPD-related pathway involving 

NLRX130–32. At 10q22, pulmonary surfactant-associated protein D (SFTPD) is the most 

likely candidate, as it is highly expressed in pneumocytes27, and sftpd (−/−) mice develop 

pulmonary emphysema33. SFTPD has been explored as a COPD biomarker34, and while 

rs721917 (NC_000010.10:g.81706324A>G) is not an eQTL, polymorphisms in SFTPD, 

including rs721917, may lead to decreased surfactant protein D levels35; though the 

association of SFTPD polymorphisms with COPD susceptibility have been inconsistent. Our 

analysis also led to some additional insights into other previously described loci. We found 

evidence of COPD association and eQTL statistical co-localization in lung tissue (posterior 

probability > 0.8) for THSD4, HHIP, AGER, CHRNA3, and RARB (Supplementary Table 

9). Additional data on eQTLs (Supplementary Table 8), cohort-specific associations at each 

locus (Supplementary Figures 1a–v), fine mapping (Supplementary Note and Supplementary 

Table 10), causal gene (Supplementary Table 11 and 12), and other supportive analysis for 

previously described and novel loci can be found in the Supplementary Note.

We note that our top variant at DSP (rs2076295, NC_000006.11:g.7563232T>G) is also 

associated (P = 1.1×10−19) with pulmonary fibrosis8. Recently, a re-sequencing study36 at 

the DSP locus identified a second fibrosis-associated variant, rs2744371 (NC_000006.11:g.

7554174A>C) with Pfibrosis = 0.002 and PCOPD = 0.04. We also note overlap at the FAM13A 
locus (top fibrosis SNP8, rs2609255 [NC_000004.11:g.89811195G>T]; Pfibrosis = 

2.2×10−11, PCOPD = 1.9×10−7). We performed additional analysis to investigate genetic 

overlap using gwas-pw37 (see Supplementary Note). We confirmed overlap at the DSP and 

FAM13A loci with a posterior probability of > 0.99, and additionally discovered overlap 

near MAPT/KANSL1 (top fibrosis SNP8, rs1981997 [NC_000017.10:g.44056767G>A]; 

Pfibrosis = 8.87×10−14, PCOPD = 4.5×10−3) with posterior probability of 0.84. While the 

MAPT/KANSL1 locus did not reach genome-wide significance in our study, we note its 

independent discovery in a genome-wide association in extremes of lung function7. Notably, 

for all four of these variants (in DSP [2], FAM13A, and MAPT), the fibrosis risk allele is 

protective for development of COPD. Emphysema, a key component of COPD, and 

pulmonary fibrosis are both smoking-related lung diseases that have both shared and distinct 

pathophysiology38–40, though genetic loci with opposing effects have not been previously 

described. Additional investigation of these loci as a well as a more comprehensive 

assessment of genetic overlap of COPD and pulmonary fibrosis may lead to insight into both 

disorders.
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Because our analysis relied on a spirometric definition of COPD alone, we did not 

specifically exclude other causes of airway obstruction such as asthma, which can overlap 

with COPD in adults41. To define COPD, we used pre-bronchodilator spirometry, which was 

available across all cohorts, and we included at least moderately affected cases (FEV1 < 80% 

predicted). We examined the top set of genome-wide significant results in a subset of our 

largest cohorts with both pre- and post-bronchodilator data and densely imputed genotypes; 

overall, the effect sizes (mean difference = 0.001) and P values (mean log10 P value 

difference = 0.18) were similar (Supplementary Table 13 and Supplementary Figures 4 and 

5). In addition, a recent GWAS of FEV1, FVC, and FEV1/FVC did not find substantial 

differences including and excluding subjects with asthma7. In the 79 variants tested in Stage 

2, we found no significant difference in the OR for COPD association when including and 

excluding individuals with asthma (Supplementary Figure 6).

We examined COPD associations of genome-wide significant asthma (and asthma-

associated traits) loci from the NHGRI-EBI GWAS Catalog42 (Supplementary Table 14). We 

also compared our COPD association results to the GABRIEL asthma study43 

(Supplementary Tables 15). None of the genome-wide significant loci from asthma and 

COPD overlapped. Further, no asthma or COPD loci showed Bonferroni-adjusted (for 

number of look-ups) significant association with the other disease, though several loci 

showed nominal (P<0.05) significance. The 16p11.2 (CCDC101) locus has been described 

in the joint susceptibility to asthma and obesity10. COPD susceptibility is strongly related to 

cigarette smoking. Two of our loci (15q25 and 19q13) have been previously associated with 

smoking behavior44,45, though we found no additional evidence of overlap in genome-wide 

significant variants described in the NHGRI-EBI GWAS Catalog42 and Tobacco and 

Genetics Consortium GWAS45 (Supplementary Tables 16–18). We additionally evaluated 

overlap of our top 22 loci with COPD comorbidities (Supplementary Table 19) and 

radiographic imaging features (Supplementary Table 20).

In contrast to minimal overlap in genome-wide significant results with asthma and smoking, 

we discovered a significant overall genetic correlation of COPD with asthma (rgenetic = 0.38, 

P = 6.2×10−5) using LD score regression in our European-ancestry subjects46,47. We also 

assessed genetic correlation with population-based lung function, pulmonary fibrosis, 

smoking behavior, and two common COPD comorbidities, coronary artery disease and 

osteoporosis. We identified significant correlation of COPD with lung function and two 

aspects of smoking behavior, but not with common comorbidities or with pulmonary fibrosis 

(Figure 4). The lack of significant correlation of COPD with pulmonary fibrosis may 

indicate our overlapping loci for COPD and pulmonary fibrosis are not representative of a 

broader disease correlation; alternatively, it could reflect limited sample size or a mix of 

positive and negative genetic correlations across the genome for the diseases. In potential 

support of this latter hypothesis, and in contrast to the loci we describe in this study, are 

recent descriptions of rare variants in telomerase genes predisposing to both emphysema, a 

key feature of COPD, and pulmonary fibrosis40,48. Our analysis of partitioned heritability 

identified COPD genetic association enrichment in fetal lung tissue (coefficient P = 

3.5×10−7); other bioinformatics analyses also support functional annotation of COPD 

associations to lung tissue or lung cell types (Supplementary Note).
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Our study is, to our knowledge, the largest genome-wide association study of COPD cases to 

date and includes over 60,000 subjects (including 15,256 COPD cases) in the Stage 1 

analysis. We chose to combine subjects of different ethnicities, hypothesizing that shared 

COPD risk factors across ethnicities would outweigh power loss due to heterogeneity. While 

methods have been developed that can more rigorously assess the degree of overlap and 

provide additional power in this setting49, none of our non-white cohorts were sufficiently 

sized or powered for these analyses. COPD is also a highly heterogeneous disease; whether 

a more precise phenotypic definition would result in greater power is not clear. We used a 

staged study design and examined overall meta-analysis P-values to determine genome-wide 

significance. Thus, 9 loci (TET2, CFDP1, TGFB2, AGER, ARMC2, PID1, MTCL1, 

SFTPD, and CYP2A6) from our Stage 1 analysis, which only reached genome-wide 

significance in either the Stage 2 UK BiLEVE analysis or the overall meta-analysis, should 

be further replicated. However, six of these 9 association signals are significant if we 

consider a Bonferroni correction (P < 6.3×10−4) for the 79 variants tested in Stage 2. 

Further, 8 of these 9 variants are more strongly associated in the overall meta-analysis 

compared to Stage 1; the exception is RARB, which has a previously reported association 

with both lung function4 and airflow obstruction21 (Table 1).

The majority of our significant loci overlap with lung function loci, strengthening the 

foundation for investigating the relationship of lung function variability in the general 

population to risk of developing COPD. These loci are unlikely to reflect susceptibility for 

asthma or for cigarette smoking; however, our association results as a whole show evidence 

of shared heritability with asthma (supporting investigation into shared genetic etiologies for 

these diseases) and cigarette smoking behavior (despite adjustment for smoking in our 

statistical model). We identified functional annotation enrichment for fetal lung cells, 

supporting a role for early life events contributing to future risk of COPD. Finally, we 

identify loci that overlap with pulmonary fibrosis, but with opposite risk alleles. Our study 

highlights the important contribution of genetic association studies to understanding COPD, 

not only by identifying novel loci, but also illustrating relationships with other pulmonary 

traits and diseases.

Data Availability Statement

The genome-wide association summary statistics generated in the Stage 1 analysis of the 

current study are available in the dbGaP repository, https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000179.v5.p2

The Stage 2 analysis summary statistics are available in Supplementary Table 3.

Online Methods

Study Cohorts

We invited investigators from 22 studies with genome-wide association data and COPD 

case-control or general population samples with spirometry to participate in a genome-wide 

association meta-analysis. Additionally, we included four cohorts with Illumina 

HumanExome v1.2 and custom genotyping based primarily on prior top results from a 
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previously published COPD GWAS13, using results with P < 1×10−4 using plink ‘–clump’ 

on the COPDGene non-Hispanic whites to perform linkage disequilibrium pruning (r2 < 

0.8), preferentially retaining both an imputed and genotyped top SNP at each locus. An 

additional group of variants was a candidate panel, based on results from a previous 

candidate gene analysis54, as well as variants identified in association with lung function 

(supplementing the existing content on the array, which included variants from previous 

genome-wide association studies), including the lead SNP and a 200kb region around that 

SNP pruned for variants with P < 0.01 and r2 < 0.8, and additional top-ranked SNPs for 

COPDGene-specific analyses for lung function, bronchodilator responsiveness, 

exacerbations, and SNPs from candidate genes.

The baseline characteristics of these 26 cohorts can be seen in Supplementary Table 1. Each 

cohort obtained approval from appropriate ethical/regulatory bodies; informed consent was 

obtained for all individuals. (Further cohort-specific methods can be found in the Data 

Supplement.) As most of these cohorts did not have post-bronchodilator spirometry, we used 

a modified definition of GOLD criteria based on pre-bronchodilator spirometry: forced 

expiratory volume in 1 second (FEV1) < 80% and FEV1 to forced vital capacity (FVC) ratio 

of < 0.7 for cases, and FEV1 > 80% and FEV1/FVC > 0.7 for controls. Logistic regression 

was performed in each cohort, adjusting for age, sex, pack-years of smoking, ever-smoking 

status, current-smoking status, and ancestry-based principal components, as appropriate for 

each study. Summary statistics were assessed using EasyQC55 version 10.1. More detailed 

cohort information, including cohort-specific methods, can be found in the Supplementary 

Note.

Genome-wide association quality control

Summary statistics, including effect allele and other allele oriented to the + strand, effect 

allele frequency, chromosome and position (hg19), and imputation quality were uploaded to 

a secure site at the Brigham and Women’s Hospital/Channing Division of Network 

Medicine. Quality control assessments included assessing allele frequencies versus 1000 

Genomes reference, standard error versus sample size, and quantile-quantile plots. Variants 

with an imputation quality metric of < 0.3 (provided a higher threshold for imputation 

quality was not already implemented), a minor allele count (MAC) of < 20 using the 

effective sample size or the number of cases and adjusted for imputation quality where 

applicable, were set to missing. Variants were included for meta-analysis if they were 

present in at least 13 studies (those with European ancestry and at least 7 million markers 

passing all quality control filters).

Staged GWAS meta-analysis

In Stage 1 of the analysis, we used Metal56,57 version 2011-03-25 to perform a fixed-effects 

meta-analysis of genome-wide data from 22 studies and four additional COPD cohorts 

genotyped on an Illumina HumanExome v1.2 platform with custom content; this content 

included a set of COPD candidate genes and regions identified from prior COPD GWAS 

efforts13. We adjusted for inflation using genomic control correction in each study. We 

included study populations with subjects of non-European ancestry in the overall analysis, 

and additionally examined results limited to study populations of European ancestry. To 
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identify variants to test for association in Stage 2 in the UK BiLEVE study, we selected top 

results (P < 5×10−6) from the Stage 1 meta-analysis. We selected one lead variant from the 

chromosome 15q25, FAM13, and HHIP regions, as all of these have been described in 

multiple COPD GWASs13,16,17,21. For the remainder of the regions, we performed linkage 

disequilibrium pruning using the PLINK1.9 –clump procedure with an r2 of 0.5, additionally 

examining these SNPs for the number of cohorts with passing quality control at each variant 

and including SNPs in strong LD (i.e., part of the same clump) with a lower degree of 

missingness. To identify independent results, we used GCTA-COJO58,59 on the Stage 1 

meta-analysis for variants with P < 5×10−6 using the default distance of 10Mb. We used the 

COPDGene non-Hispanic whites (as the largest representative population) as the reference 

population for these analyses. An overall meta-analysis across the Stage 1 and Stage 2 (UK 

BiLEVE) cohorts was performed and variants with P < 5×10−8 were considered genome-

wide significant (Figure 1).

Lung eQTL analysis

Lung expression quantitative trait loci (eQTL) were calculated from 1,111 human subjects 

who underwent lung surgery at three academic sites, Laval University, University of British 

Columbia (UBC), and University of Groningen, henceforth referred to as Laval, UBC, and 

Groningen, respectively. This lung eQTL dataset has been described previously22,60. Briefly, 

66.7% to 91.2% of the individuals in this study were current or former smokers and 24.2% 

to 35.3% had moderate to severe COPD (GOLD spirometry grade 2 to 4). Whole-genome 

gene expression profiling in the lung was performed on a custom Affymetrix array 

(GPL10379). Microarray pre-processing and quality controls were described 

previously22,61,62. Probe sequences were mapped to the human genome (hg19) using 

Bowtie63 and probes not mapping to a coding region or having a common SNP (MAF ≥ 5%) 

in their sequence were removed. Expression data were adjusted for age, sex, and smoking 

status using residuals obtained with the robust fitting of linear models function (rlm) in the R 

statistical package MASS. Residual values deviating from the median by more than three 

standard deviations were filtered as outliers. Genotyping was carried on the Illumina Human 

1M-Duo BeadChip array.

Twenty-one out of the 22 SNPs (in main manuscript Table 1) were genotyped or imputed in 

the three cohorts, i.e. Laval, UBC, and Groningen. One of the SNPs, rs7186831, was not 

well-imputed; a proxy, rs11865296 in modest linkage disequilibrium (r2 = 0.54, 1000 

genomes phase 3, EUR) was used instead. These variants were tested for association with 

adjusted expression traits (43,465 probe sets) in the lung. SNPs within 1 Mb up and 

downstream of the transcription probe set were considered as local-eQTL. Distant-acting 

eQTLs were further than 1 Mb away or on a different chromosome. Association tests were 

carried with PLINK1.964,65 in each cohort and then meta-analyzed using Fisher’s method. 

All local eQTL with nominal P value < 0.05 in the meta-analysis were considered. To 

provide an additional overall estimate of eQTL significance, we considered a Bonferroni 

correction threshold ([0.05/(22 SNPs × 43,465 probe sets) = P value < 5.2 × 10−8]). 

Statistical analyses were performed in R3.2.366.
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Co-localization Analysis

Co-localization of statistical signals between COPD genetic association and eQTL were 

examined using the coloc R package23. We used phenotypic summary statistics from 

individuals of European ancestry with genome-wide association data and all eQTL results 

and examined 500kb flanks around the top 22 genome-wide significant associations found in 

the overall meta-analysis (Table 1).

Sensitivity Analysis

To estimate the effect of using pre- instead of post-bronchodilator lung function on our 

results, we examined the top set of genome-wide significant results in our largest cohorts 

with both pre- and post-bronchodilator data and densely imputed genotypes (COPDGene 

NHW and AA, ECLIPSE, NETT-NAS, and Norway/GenKOLS). Since subjects from these 

cohorts (except for COPDGene) were included based on post-bronchodilator values, 

including all subjects with COPD based on post-bronchodilator spirometry would lead to 

larger sample sizes and make comparison of P-values more difficult. Thus, we chose a 

random sample of post-bronchodilator cases and controls that matched the number of pre-

bronchodilator cases and controls. We performed logistic regression using these equal sized 

set of pre- and post-bronchodilator cohorts, and meta-analyzed the results.

Asthma overlap analysis

We assessed the overlap between our results and known asthma susceptibility loci. We 

downloaded information on genome-wide significant (P < 5×10−8) associations with asthma 

and asthma-related traits including asthma and hay fever, asthma (childhood onset), asthma 

(corticosteroid response), bronchodilator response in asthma, pulmonary function decline, 

and severe asthma in the NHGRI-EBI GWAS Catalog42. Additionally, we examined top 

associated variants (which were not genome-wide significant) in the susceptibility to the 

asthma-COPD overlap syndrome67. In all, we assessed the association statistics of 49 unique 

asthma-associated trait loci across 26 genomic regions in our Stage 1 meta-analysis results. 

We also examined the asthma association statistics of our top COPD loci from overall meta-

analysis using publically available asthma GWAS data from the GABRIEL Consortium43. 

For COPD loci not present in the GABRIEL Consortium asthma GWAS data, we attempted 

to examine proxy SNPs in LD (r2 > 0.5, 1000 genomes phase 1 CEU) with our top COPD 

loci.

To examine the genetic correlation47 of COPD and asthma over the entire genome, we 

performed LD score regression46 using summary statistics from publically available asthma 

GWAS data from the GABRIEL Consortium43. For all comparisons using LD score 

regression, we filtered to HapMap3 variants, limited to European-ancestry subjects with 

genome-wide data, and filtered on missingness using default parameters in 

munge_sumstats.py. For the GABRIEL data, we required a variant to be present in at least 

35 of the studies.

Smoking behavior overlap analysis

We downloaded information on genome-wide significant (P < 5×10−8) associations with the 

traits “nicotine dependence” and “smoking behaviour” in the NHGRI-EBI GWAS Catalog42. 
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We assessed these top smoking-associated SNPs in our Stage 1 meta-analysis results. We 

also assessed overlap of smoking and COPD in the publically available summary statistics 

from the 2010 Tobacco and Genetics Consortium GWAS45. We evaluated our top COPD loci 

associations from overall meta-analysis with both cigarettes per day and ever-smoking traits. 

For COPD risk SNPs not directly analyzed in the Tobacco and Genetics Consortium GWAS, 

we attempted to examine proxy SNPs in LD (r2 > 0.5, 1000 genomes phase1 CEU) with our 

top COPD loci.

To examine the genetic correlation47 of COPD and smoking behaviours (cigarettes per day 

and ever-smoking status) over the entire genome, we performed LD score regression46 using 

summary statistics from our current COPD study as noted above and publically available 

summary statistics from the 2010 Tobacco and Genetics Consortium GWAS45.

Fine mapping analysis

We attempted to determine, at each locus, whether we could identify a potentially causal 

variant. We performed these analyses using European ancestry subjects alone, and in all 

subjects with genome-wide data, and excluded variants that were not present in at least 80% 

of the full sample. We assumed a single causal variant at each locus, examined a +/− 250kb 

region around the top variant, and calculated approximate Bayes factors using the method of 

Wakefield68 to determine the 95% credible set. While specific trans-ethnic mapping 

approaches69,70 can significantly assist in identifying causal loci, we found that the number 

of non-European samples in our study were likely insufficient to leverage these methods.

Functional enrichment analysis

To identify enriched cell types for our COPD associations, we applied LD score regression 

to GenoSkyline71 lung tissue annotations (the default LD score regression annotations 

collapse lung into the cardiovascular tissue type), as well as cell-type specific annotations 

from LD score regression46. We also performed analysis using only the 22 genome-wide 

significant loci and tested for enrichment of imputed chromatin marks from ROADMAP 

using HaploReg 4.129. Further, we applied a more sophisticated analysis adjusting for local 

linkage disequilibrium patterns, GoShifter72. Finally, we examined overlap with gene 

expression datasets using SNPsea73.

Additional pulmonary fibrosis and COPD overlap analysis

To further examine overlapping loci for COPD and pulmonary fibrosis, we combined 

summary statistics from our study and the pulmonary fibrosis GWAS by Fingerlin et al.8,9 

using gwas-pw37.

Causal gene analysis

For the genome-wide significant loci from the overall meta-analysis, we explored potential 

causative genes at each association locus using the PrixFixe method74, assuming co-function 

of all significant loci. As required by the PrixFixe method, we assured our genome-wide 

significant loci were present in dbSNP v13775 and were represented HapMap76 phase III 

data; for loci not meeting these requirements, proxy SNPs from HapMap phase III were 
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selected based on strongest LD (r2) with index SNP (see Supplementary Table 11 for details 

of the proxy variant used at each genome-wide significant locus).

COPD comorbidity overlap analysis

We assessed the overlap between our results and two common COPD comorbidities, 

coronary artery disease and osteoporosis (through bone mineral density traits). We 

downloaded information on genome-wide significant (P < 5×10−8) associations with these 

comorbidities as reported in the NHGRI-EBI GWAS Catalog42. We assessed the association 

statistics of these comorbid trait loci in our Stage 1 meta-analysis results.

Quantitative imaging overlap analysis

To explore the relationship between our top COPD-associated variants and imaging features 

of emphysema and airway thickness, we queried data from a GWAS of COPD quantitative 

imaging features77. For each genome-wide significant COPD susceptibility locus in our 

overall meta-analysis, we assessed the corresponding quantitative imaging GWAS effect 

size, effect direction, and P value for association with the following quantitative imaging 

traits: %LAA-950 (percentage low attenuation area, using a threshold of −950 Hounsfield 

units); Perc15 (value of Hounsfield units at the 15th percentile of the density histogram); 

Pi10 (airway wall area: the value for a hypothetical airway of 10 mm internal perimeter 

obtained by plotting a regression line of the square root of the airway wall area versus the 

airway internal perimeter); and WAP (percentage of the wall area compared to the total 

bronchial area).

Gene set enrichment analysis

As an attempt to minimize false positives in our gene set enrichment analysis, we divided the 

Stage 1 GWAS cohorts with full genome-wide data into two sets of roughly equal size. We 

then used i-GSEA4GWAS (http://gsea4gwas.psych.ac.cn/)78 for each of the two GWAS data 

sets to assess enrichment of COPD GWAS loci in BioCarta (http://cgap.nci.nih.gov/

Pathways/BioCarta_Pathways) and KEGG79 pathways as well as gene ontology (GO) 

terms80,81. We first evaluated GO terms and pathways with a false-discovery rate (FDR) less 

than 5% in both analysis sets and then used a more stringent threshold of FDR < 1% to 

evaluate overlap of GO term and pathway enrichment in our two analysis sets.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study design showing cohorts used in each stage of the analysis. ARIC = Atherosclerosis 

Risk in Communities Study, B58 = British 1958 Birth Cohort, CHS = Cardiovascular Health 

Study, COPACETIC = COPD Pathology: Addressing Critical gaps, Early Treatment & 

Diagnosis and Innovative Concepts, ECLIPSE = Evaluation of COPD Longitudinally to 

Identify Predictive Surrogate End-points, eQTL = Lung Expression Quantitative Trait Loci 

Study, FHS = Framingham Heart Study, KARE = Korean Association Resource project, 

MESA = Multi-Ethnic Study of Atherosclerosis, NETT-NAS = National Emphysema 

Treatment Trial/Normative Aging Study, RS = Rotterdam Study, SPIROMICS = 

Subpopulations and intermediate outcome measures in COPD study, EOCOPD = Boston 

Early-Onset COPD Study, ICGN = International COPD Genetics Network, TCGS = 

Transcontinental COPD Genetics Study, UK BiLEVE = UK Biobank Lung Exome Variant 

Evaluation; NHW = Non-Hispanic white, AA = African American, EA = European 

American. * Studies without genome-wide array genotyping (custom genotyping)
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Figure 2. 
Manhattan plot showing P values for Stage 1 analysis (small open diamonds) with overlay of 

overall meta-analysis P values for SNPs analyzed in UK BiLEVE Stage 2 analysis (filled 

circles). Gene names in gray are previously described COPD or lung function (FEV1 or 

FEV1/FVC) loci; black are novel loci discovered in this study. The Stage 1 cohorts with 

available genotyping data (Supplementary Figures 1a–v) and the UK BiLEVE cohort 

determined the sample size for each top variant. The red dashed line indicates the threshold 

for genome-wide significance (P value < 5×10−8).
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Figure 3. a–d Regional association for novel loci
LocusZoom plots showing regional association of variants at the four novel COPD loci. The 

point size is proportional to the sample size, where Stage 1 cohorts with available 

genotyping data (Supplementary Figures 1a–v) and the UK BiLEVE cohort determined the 

sample size for each top variant.
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Figure 4. Genetic correlation (using LD score regression) between COPD and other traits
Shading and numbers represents strength of correlation. An asterisk indicates nominal (P < 

0.05) significance, and a double asterisk indicates significant after Bonferroni correction for 

number of pairwise comparisons. fev1fvc and fev1 = lung function (FEV1/FVC ratio and 

FEV1 from CHARGE/SpiroMeta4, asthma taken from the asthma GWAS by the GABRIEL 

Consortium43, ild = pulmonary fibrosis from Fingerlin et al.8,9, bilSmk = subset of smokers 

in the UK BiLEVE study7, smkCpd = cigarettes per day smoking from the Tobacco and 

Genetics (TAG) Consortium45, smkFormer = current versus former smokers from TAG, 

smkOnset = age of smoking initiation from TAG, smkEver = ever versus never smoking 

from TAG. cad = coronary artery disease from the CARDIoGRAM study50, height51 and 

bmi (body mass index)52 from the GIANT consortium, bmdLumbar and bmdFemoral = 

lumbar and femoral bone mineral density, respectively, from the Genetic Factors for 

Osteoporosis (GeFOS) Consortium53.
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