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Abstract

Background

Genome-wide association studies have identified multiple genomic loci associated with cor-

onary artery disease, but most are common variants in non-coding regions that provide lim-

ited information on causal genes and etiology of the disease. To overcome the limited scope

that common variants provide, we focused our investigation on low-frequency and rare

sequence variations primarily residing in coding regions of the genome.

Methods and results

Using samples of individuals of European ancestry from ten cohorts within the Cohorts for

Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-

sectional and prospective analyses were conducted to examine associations between

genetic variants and myocardial infarction (MI), coronary heart disease (CHD), and all-

cause mortality following these events. For prevalent events, a total of 27,349 participants of

European ancestry, including 1831 prevalent MI cases and 2518 prevalent CHD cases were

used. For incident cases, a total of 55,736 participants of European ancestry were included

(3,031 incident MI cases and 5,425 incident CHD cases). There were 1,860 all-cause

deaths among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis

of all-cause mortality. Single variant and gene-based analyses were performed separately

in each cohort and then meta-analyzed for each outcome. A low-frequency intronic variant

(rs988583) in PLCL1 was significantly associated with prevalent MI (OR = 1.80, 95% confi-

dence interval: 1.43, 2.27; P = 7.12 × 10−7). We conducted gene-based burden tests for

genes with a cumulative minor allele count (cMAC)� 5 and variants with minor allele fre-

quency (MAF) < 5%. TMPRSS5 and LDLRAD1 were significantly associated with prevalent

MI and CHD, respectively, and RC3H2 and ANGPTL4 were significantly associated with

incident MI and CHD, respectively. No loci were significantly associated with all-cause mor-

tality following a MI or CHD event.

Conclusion

This study identified one known locus (ANGPTL4) and four new loci (PLCL1, RC3H2,

TMPRSS5, and LDLRAD1) associated with cardiovascular disease risk that warrant further

investigation.
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(dbGaP Study Accession: phs000287.v5.p1) are

available via dbGaP. Data for FHS are also available

on dbGAP, at accession number phs000007. Data

for the NHLBI Family Heart Study (FamHS-Visit1

and FamHS-Visit2) are available on dbGaP Study

Accession: phs000221.v1.p1. Due to restrictions

based on privacy regulations and/or informed

consent of the participants, data cannot be made

freely available in a public repository for

GeneSTAR, RS, SHIP, WGHS, MESA, and AGES.

Data of these studies can be obtained upon

request. GeneSTAR data are available through

application and approval from the GeneSTAR Study

Steering Committee: https://www.

hopkinsmedicine.org/gim/research/GeneSTAR/for_

researchers. Requests for Rotterdam Study data

should be directed towards the management team

of the Rotterdam Study (secretariat.

epi@erasmusmc.nl). The data of the SHIP study

can be accessed through a data application form

available at https://fvcm.med.uni-greifswald.de/ for

researchers whomeet the criteria for access to

confidential data. WGHS data are available to

researchers who are approved for analysis on site

(contact person: dchasman@research.bwh.

harvard.edu or https://whs.bwh.harvard.edu). To

obtain data on MESA participants please contact

Craig Johnson (wcraigj@uw.edu). Some

participant data is also available on dbGaP (https://

www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.

cgi?study_id=phs000209.v13.p3). AGES data can

be made available to interested researchers upon

request following approval by the relevant

institutional review boards. Requests can be

directed to the Icelandic Heart Association

(AGES_data_request@hjarta.is). Data sharing is in

accordance with the informed consent after an

approval by the Icelandic National Bioethics

committee and the Data Protection Authority of

Iceland.

Funding: No funding sources had a role in the
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of the data. Infrastructure for the CHARGE
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Heart, Lung and Blood Institute (NHLBI) grant

R01HL105756. JH, ACM and PSdeV were

supported by NIH NHLBI R01HL141291. PSdV

was additionally supported by American Heart

Association grant number 18CDA34110116. The

views expressed in this manuscript are those of the

authors and do not necessarily represent the views

of the NHLBI; the National Institutes of Health; or

the U.S. Department of Health and Human

Services. The Age, Gene, Environment,

Susceptibility Study (AGES) study has been funded

by NIH contracts N01-AG-1-2100 and

HHSN271201200022C, the NIA Intramural
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Introduction

Coronary heart disease (CHD) is a leading cause of morbidity and mortality worldwide,

accounting for one of every seven deaths in the United States in 2016 [1]. In addition to major

modifiable risk factors such as dyslipidemia, hypertension, diabetes, and cigarette smoking [2],

genetic susceptibility to CHD has also been investigated extensively through family-based

studies, candidate gene studies, and more recently genome-wide association studies (GWAS)

[3–9]. With progressively expanded sample sizes in recent GWAS, at least 160 loci have been

associated with the risk of coronary artery disease [10–13]. Most of these loci are represented

by common variants located in noncoding regions, resulting in limited implications for causal

genes and etiological pathways. Further, while most available data are derived from genome-

wide analysis of prevalent CHD, data are sparse from prospective studies of incident cardiovas-

cular events in populations free of baseline cardiovascular disease.

Low-frequency and rare coding sequence variations across the genome have been investi-

gated in studies of cardiovascular disease risk factors [14–18], with the goal of better under-

standing the etiology of these risk factors and to advance the discovery of the treatment and

prevention of diseases [19]. We previously published the results from a prospective analysis of

CHD among individuals of European ancestry from the Cohorts for Heart and Aging Research

in Genomic Epidemiology (CHARGE) Consortium, and identified low-frequency and com-

mon variants associated with incident CHD [20].

In this current study of individuals of European ancestry, we implemented both a cross-sec-

tional and prospective study design in the setting of the CHARGE Consortium to examine the

association between low-frequency and rare genetic variants and the risk of prevalent and inci-

dent myocardial infarction (MI) and CHD. Study of incident cardiovascular events is enabled

by the rigorous prospective design of population cohorts contributing to the CHARGE Con-

sortium. We also investigated whether these genetic variants are associated with all-cause mor-

tality after incident MI and CHD.

Materials andmethods

Study design and participants

Ten cohorts within the CHARGE Consortium Subclinical Working Group were included in

this study: Age, Gene, Environment, Susceptibility Study (AGES), Atherosclerosis Risk in

Communities (ARIC) Study, Cardiovascular Health Study (CHS), Family Heart Study

(FamHS), Framingham Heart Study (FHS), the GeneSTAR Study (GeneSTAR), Multi-Ethnic

Study of Atherosclerosis (MESA), Rotterdam Study (RS), Study of Health in Pomerania

(SHIP), and the Women’s Genome Health Study (WGHS). Detailed characteristics of the par-

ticipating cohorts and study participant are shown in the S1 Document. All study participants

provided written informed consent to participate in genetic studies, and all study sites received

approval to conduct this research from their local Institutional Review Boards (IRB) respec-

tively. AGES was approved by the National Bioethics Committee in Iceland that acts as the

institutional review board for the Icelandic Heart Association and by the National Institute on

Aging Intramural Institutional Review Board. ARIC was approved by the University of Missis-

sippi Medical Center IRB, Wake Forest University Health Sciences IRB, University of Minne-

sota IRB, and John Hopkins University IRB. CHS was approved by the Wake Forest

University Health Sciences IRB, University of California, Davis IRB, John Hopkins University

IRB, and University of Pittsburgh IRB, and University of Washington IRB. FamHS was

approved by the Washington University School of Medicine IRB. FHS was approved by the

Boston University IRB. GeneSTAR was approved by the Johns Hopkins Medicine IRB. MESA
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Research Program, Hjartavernd (the Icelandic

Heart Association), and the Althingi (the Icelandic

Parliament). The Atherosclerosis Risk in

Communities study has been funded in whole or in

part with Federal funds from the National Heart,

Lung, and Blood Institute, National Institutes of

Health, Department of Health and Human Services

(contract numbers HHSN268201700001I,

HHSN268201700002I, HHSN268201700003I,

HHSN268201700004I and HHSN268201700005I).

Funding support for “Building on GWAS for NHLBI-

diseases: the U.S. CHARGE consortium” was

provided by the NIH through the American

Recovery and Reinvestment Act of 2009 (ARRA)

(5RC2HL102419). Cardiovascular Health Study

(CHS) research was supported by NHLBI contracts

HHSN268201200036C, HHSN268200800007C,

HHSN268201800001C, N01HC55222,

N01HC85079, N01HC85080, N01HC85081,

N01HC85082, N01HC85083, N01HC85086; and

NHLBI grants U01HL080295, R01HL087652,

R01HL105756, R01HL103612, R01HL120393,

and U01HL130114 with additional contribution

from the National Institute of Neurological

Disorders and Stroke (NINDS). Additional support

was provided through R01AG023629 from the

National Institute on Aging (NIA). A full list of

principal CHS investigators and institutions can be

found at https://chsnhlbi.org/. The provision of

genotyping data was supported in part by the

National Center for Advancing Translational

Sciences, CTSI grant UL1TR001881, and the

National Institute of Diabetes and Digestive and

Kidney Disease Diabetes Research Center (DRC)

grant DK063491 to the Southern California

Diabetes Endocrinology Research Center. The

Family Heart Study (FamHS) was supported by the

grant R01-HL-117078 from the National Heart,

Lung, and Blood Institute, and grant R01-DK-

089256 from the National Institute of Diabetes and

Digestive and Kidney Diseases. The Framingham

Heart Study (FHS) The National Heart, Lung and

Blood Institute’s Framingham Heart Study is

supported by contract N01-HC-25195. GeneSTAR

was supported by grants from the National

Institutes of Health/National Heart, Lung and Blood

Institute (HL49762, HL59684, HL071025,

HL58625, U01 HL72518, HL089474, HL092165,

HL099747, K23HL105897, K23HL094747,

HL11006, and HL112064), National Institute of

Nursing Research (NR0224103, NR008153),

National Institute of Neurological Disorders and

Stroke (NS062059), and by a grant from the

National Center for Research Resources (M01-

RR000052) to the Johns Hopkins General Clinical

Research Center. Genotyping services were

provided through the RS&G Service by the
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was approved by the institutional review boards of the six field centers have approved the

study protocol (Wake Forest University School of Medicine, University of Minnesota, North-

western University, Columbia University, Johns Hopkins University, University of California,

Los Angeles). RS was approved by the Medical Ethics Committee of the Erasmus MC and the

Dutch Ministry of Health, Welfare and Sport. SHIP was approved by the Medical Ethics Com-

mittee of the University of Greifswald. WGHS was approved by the Brigham andWomen’s

Hospital IRB.

Genotype calling and quality control

Participants fromWGHS were genotyped by the HumanHap300 Duo+ (Illumina, Inc., San

Diego, CA), and all other study participants were genotyped by the HumanExome BeadChip

(v1.0–1.2, Illumina, Inc., San Diego, CA) which contains more than 240,000 variants including

those discovered through exome sequencing in ~12,000 individuals and other non-coding

common variants such as previously-reported GWAS signals and ancestry-informative mark-

ers. Data for AGES, ARIC, CHS, FamHS, FHS, MESA, and RS were jointly called at the Uni-

versity of Texas Health Science Center at Houston [21]; SHIP was called in Illumina

GenomeStudio using the CHARGE Consortium joint calling cluster file; GeneSTAR used the

Illumina GenomeStudio and zCall software [22]; andWGHS data was called using the Illu-

mina BeadStudio v.3.3. Variant quality control (QC) was performed centrally [21] and by the

individual studies, including checking concordance with previous GWAS data, and excluding

participants with missing>5% genotypes, population clustering outliers, individuals with high

inbreeding coefficients or heterozygote rates, gender mismatches, duplicated pairs, and unex-

pectedly high proportion of identity-by-descent sharing for family studies. Joint calling of the

measured exome chip genotypes allowed for the ability to accurately genotype rare variation

using array technology.

Cardiovascular outcome definition

Two cardiovascular outcomes were examined for association in this study: 1) MI: fatal or non-

fatal MI; and 2) CHD: fatal or non-fatal MI, fatal CHD, sudden death within one hour of onset

of symptoms, or revascularization (percutaneous coronary artery intervention such as stent or

balloon angioplasty, or coronary artery bypass grafting). No exclusions were applied for the

cross-sectional analysis of prevalent MI and prevalent CHD. For analysis of incident events,

participants with a history of MI, CHD or revascularization at the baseline examination were

excluded. Follow-up time was defined as the time from the baseline exam to MI or CHD diag-

nosis, the time of death, last date of contact, or at the end of follow-up, whichever came first.

All-cause mortality after MI or CHD was also investigated with follow-up time from first MI

or CHD incident events until death, loss to follow-up, or the end of study.

Statistical analysis

Single variant and gene-based analyses were conducted in each participating cohort respec-

tively, followed by meta-analysis performed for each cardiovascular outcome to summarize

results. All autosomal variants were coded to the minor allele observed in the CHARGE jointly

called data [21] and assumed log-additive genetic effect in the analyses. The minor allele fre-

quency (MAF) thresholds were defined using the European allele frequencies derived from the

CHARGE jointly called data [21]. Variant annotation was performed centrally within

CHARGE using dbNSFP [23, 24]. Low-frequency variants (MAF� 1% and less than 5%) were

included in single variant tests for prevalent MI and CHD and for incident MI. Single variant

results for incident CHD followed the same analytic approach and are reported in Morrison
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Northwest Genomics Center at the University of

Washington, Department of Genome Sciences,

under U.S. Federal Government contract number

HHSN268201100037C from the National Heart,

Lung, and Blood Institute. MESA and the MESA

SHARe projects are conducted and supported by

the National Heart, Lung, and Blood Institute

(NHLBI) in collaboration with MESA investigators.

Support for MESA is provided by contracts
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et al. [20] and are not reported in detail here. Gene-based tests were evaluated for MI and

CHD outcomes: the Sequence Kernel Association Test (SKAT) [25] was used for incident

events and post-MI mortality and a burden test [26] was performed for prevalent and incident

events and for post-MI mortality. Only functional coding variants (missense, stop-gain, stop-

loss, or splice-site changes) with MAF< 5% were aggregated by gene, and we only analyzed

genes with a cumulative minor allele count (cMAC)� 5.

For both single variant and gene-based burden tests of prevalent events, we performed

Firth’s logistic regression model to test the association between each variant and cardiovascu-

lar outcome using the “logistf” package in R [27–29] to account for the possible inflated type

one error in the rare variant association analysis in a case-cohort study design [30]. Meta-anal-

ysis for prevalent events was conducted with METAL [31] and applied the genomic control

correction. For the single variant and two gene-based tests of incident events, a Cox propor-

tional hazards regression model implemented in the seqMeta package in R was used to test the

association between each variant and the incident event or post-event all-cause mortality. Seq-

Meta was used both at the study-specific analysis and meta-analysis levels [32]. All study-spe-

cific analyses (single variant and gene-based tests) were adjusted for cohort-specific design

variables (e.g. study sites, family structure) and for population substructure using principal

components as needed. We applied a Bonferroni corrected threshold to determine statistical

significance in each analysis as described below.

Results

Prevalent MI and CHD association

A total of 27,349 participants of European ancestry from seven cohorts including 1831 preva-

lent MI cases (6.7%) and 2518 prevalent CHD cases (9.2%) were used in the meta-analyses of

prevalent events (S1 Table). We individually examined a total of 6,221 low-frequency variants,

across all autosomal chromosomes corresponding to a Bonferroni corrected significance

threshold of P = 8.04 × 10−6. A low-frequency (MAF = 1.64%) intronic variant (rs988583) in

the phospholipase C like 1 gene (PLCL1) was significantly associated with prevalent MI

(P = 7.12 × 10−7; OR = 1.80, 95% confidence interval = 1.43 to 2.27; Table 1). No low-frequency

variants were significantly associated with prevalent CHD. Cohort specific summary statistics

for this association is shown in S2 Table.

In the gene-based burden tests, we analyzed 16,628 autosomal genes that contained func-

tional low-frequency or rare variants with MAF< 5% and with a cumulative minor allele

count (cMAC)� 5; therefore, the Bonferroni corrected p-value threshold was P = 3.01 × 10−6.

The transmembrane serine protease 5 gene (TMPRSS5) on chromosome 11, containing nine

nonsynonymous rare variants (S3 Table), was significantly associated with prevalent MI

(P = 2.59 × 10−6, OR = 3.00, 95% confidence interval: 1.90, 4.73; Table 2). The low-density lipo-

protein receptor class A domain containing 1 gene (LDLRAD1) on chromosome 1 contained

Table 1. Low-frequency variants associated with prevalent MI and CHD.

Outcome Variant Chromosome and
Position�

Allele 1 / Allele
2��

Locus Function Frequency of Allele 2
(%)

Odds Ratio (95% Confidence
Interval)

p-value

MI rs988583 2:198987935 C/A PLCL1 Intronic 1.64 1.80 (1.43, 2.27) 7.12×10−7

�Chromosome and nucleotide positions are based on genome build GRCh37.
��Effect allele.

https://doi.org/10.1371/journal.pone.0230035.t001
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seven rare variants (S3 Table) and was significantly associated with prevalent CHD

(P = 1.30 × 10−6, OR = 4.48, 95% confidence interval: 2.44, 8.23; Table 2).

Incident MI and CHD association

Nine cohorts contributed a total of 55,736 participants of European ancestry to the analyses of

incident events, where 3,031 incident MI cases (5.4%) were reported during an average of 15.0

years of follow-up and 5,425 incident CHD cases (9.73%) were reported during an average of

15.6 years of follow-up (S4 Table). A total of 9,852 low-frequency autosomal variants were

individually tested for association with incident MI, with adjustment of age, sex, and popula-

tion substructure. The Bonferroni corrected p-value threshold for single variant analysis of

incident MI was P = 5.08 × 10−6. No low-frequency variants were significantly associated with

incident MI. As previously stated, single variant results for incident CHD are reported in Mor-

rison et al. and are not reported here, but include a significant association between a low-fre-

quency variant in ANGPTL4 and a decreased risk of incident CHD [20].

For the gene-based analyses, we examined 17,574 genes across all autosomal chromosomes

for association with incident MI, and the Bonferroni corrected significance level was

P = 2.85 × 10−6. The ring finger and CCCH-Type domains 2 gene (RC3H2) on chromosome 9

was significantly associated with incident MI in the burden test (P = 2.99 × 10−6, OR = 0.35,

95% confidence interval = 0.23, 0.55; Table 3) and contained 12 nonsynonymous and one

splice-site rare variants (S5 Table). No genes were significantly associated with incident MI

using SKAT. For the gene-based analyses of incident CHD, 16,620 genes were evaluated and

the Bonferroni significance levels was P = 3.01 × 10−6. Angiopoietin-like 4 (ANGPTL4) on

chromosome 19 was significantly associated with incident CHD using SKAT (P = 1.29 × 10−6;

Table 3) and contained 10 variants (S5 Table), and no gene was significantly associated using

the burden test.

Table 2. Genes associated with prevalent MI and CHD in gene-based analysis.

Outcome Gene Chromosome and Position� cMAC�� Variants (n)^ Test Odds Ratio (95% Confidence Interval) p-value

MI TMPRSS5 11:113558268–113577151 152.02 9 Burden 3.00 (1.90, 4.73) 2.59×10−6

CHD LDLRAD1 1:54472971–54483859 60.05 7 Burden 4.48 (2.44, 8.23) 1.30×10−6

�Chromosome and nucleotide positions are based on genome build GRCh37.
��cMAC = overall cumulative minor allele count.
^Variants (n) = number of variants included in the analysis; variants were restricted to those with MAF< 5% and annotated as nonsynonymous, splice-site, or stop loss/

gain function.

https://doi.org/10.1371/journal.pone.0230035.t002

Table 3. Genes associated with incident MI and CHD in gene-based analysis.

Outcome Gene Chromosome and Position� cMAC�� Variants (n)^ Test Hazards Ratio (95% Confidence Interval) p-value

MI RC3H2 9:125606835–125667562 356.02 13 Burden 0.35 (0.23, 0.55) 2.99×10−6

CHD ANGPTL4 19:8429011–843925 2830.07 10 SKAT - 1.29×10−6

�Chromosome and nucleotide positions are based on genome build GRCh37.
��cMAC = overall cumulative minor allele count.
^Variants (n) = number of variants included in the analysis; variants were restricted to those with MAF< 5% and annotated as nonsynonymous, splice-site, or stop loss/

gain function.

https://doi.org/10.1371/journal.pone.0230035.t003
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Post MI and CHDmortality analysis

Among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-

cause mortality, there were 1,860 all-cause deaths over a mean 10.9 years of follow-up (S6

Table). We examined 9,943 low-frequency autosomal variants in the single variant analysis

(Bonferroni corrected significant level of P = 5.03 × 10−6) and 17,574 genes in the gene-based

analysis (Bonferroni corrected significant level of P = 2.85 × 10−6). No single variant or gene

reached the significance threshold in the analysis of all-cause mortality among survivors of MI

or CHD. We examined the significant variants and genes reported in Tables 1–3 for their rela-

tionship with mortality following a MI or CHD event, and none of them were significantly

associated with all-cause mortality (S7 Table).

Discussion

Our study evaluated genetic susceptibility to MI and CHD in cross-sectional and prospective

settings among individuals of European ancestry. We identified one new locus associated with

prevalent MI, and also investigated disease risk in the context of gene-based analyses.

Single variant analysis of prevalent cardiovascular outcomes revealed a low-frequency

(MAF = 1.64%) intronic variant, rs988583, in PLCL1 significantly associated with increased

risk of MI (P = 7.12 × 10−7). In silico replication was conducted by a look up of rs988583 and

its association with prevalent MI in the Myocardial Infarction Genetics and CARDIoGRAM

exome chip meta-analysis public release [33], and there was no significant association with MI

(P = 0.34). A GWAS of MI and coronary artery disease (CAD) in a Saudi Arab population

identified an intergenic variant, rs7421388, near PLCL1 associated with CAD (P = 4.31 × 10−6)

and replicated in an independent sample of Saudi Arabs (P = 5.37 × 10−7) [34]. In another

study of an ethnic Arab population, rs1147169 in PLCL1 was protective against a low level of

high density lipoprotein-cholesterol levels (P = 2.87 × 10−7) [35]. In individuals of European

ancestry, rs988583 and rs1147169 are in linkage equilibrium (R2 = 0.0043). In addition to

these studies, PLCL1 has been implicated in coronary artery aneurysm in Kawasaki disease

and PLCL1might play a role in the regulation of vascular endothelial cell inflammation via

interference with proinflammatory cytokine expression [36].

A burden test aggregating low-frequency and rare coding variants in genes showed a signif-

icant positive association between TMPRSS5 and prevalent MI (P = 2.59 × 10−6) and

LDLRAD1 and prevalent CHD (P = 1.30 × 10−6), and a significant protective association

between RC3H2 and incident MI (P = 2.99 × 10−6). A significant association between

ANGPTL4 and incident CHD was identified using SKAT (P = 1.29 × 10−6). The relationship

between ANGPTL4 and CHD has been previously reported, with the rs116843064 missense

variant playing a major role in reducing lipid levels and risk of CHD [33, 37]. Serine proteases,

such as TMPRSS5, are known to be involved in many physiological and pathological processes,

and TMPRSS5 has been implicated in impaired hearing function [38]. Little is known about

LDLRAD1, with most marked gene expression in lung and fallopian tube [39], and a rare vari-

ant in this gene has been associated with breast cancer [40]. Roquin-2 is encoded by RC3H2

and has been shown to play a key role in posttranscriptional regulation of autoimmunity and

inflammatory response [41]. Each of these genes associated with prevalent or incident cardio-

vascular outcomes has rare and low-frequency variants underlying the gene burden tests (S3

and S5 Tables). We identified 11 putative driving variants of these gene-based associations (i.e.

those with p<0.05 in S3 and S5 Tables; rs201233178, rs200417674, and rs116913282 in

TMPRSS5; rs150560713, rs202234131, rs142900519, and rs76122098 in LDLRAD1;

rs201920127, rs144714368, and rs199901510 in RC3H2; and rs116843064 in ANGPTL4). An in

silico replication was not possible due to the rare frequency of these coding variants and their
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absence in the public release of the Myocardial Infarction Genetics and CARDIoGRAM

exome chip meta-analysis or the analysis of CAD in the UK Biobank and the UK Biobank and

CARDIoGRAMplusC4D meta-analysis [10, 33]. However, it is important to note that

rs116843064 of ANGPTL4 is the same variant found in the single variant analysis conducted

for incident CHD by Morrison et al., and this gene is likely to be driving the significant associ-

ation found in the SKAT analysis of incident CHD [20]. It is of interest that the effect size of

the gene-based tests (Tables 2 and 3) are larger than the single variant test effect size (Table 1).

This shows that aggregate tests of rare variants indeed have a larger effect on disease outcomes,

although there remains some scientific debate regarding the utility of conducting aggregate

tests of rare variants.

Although there was no statistically significant result found for all-cause mortality after MI

or CHD, after accounting for multiple testing, the protective direction of effect for the mortal-

ity results suggests that genetic variants might contribute differently in various stages of disease

manifestation. Given the limited statistical power of our findings for post-event survival, our

study supports the need for substantially larger well-phenotyped cohorts to differentiate effects

of variants associated with CHD from post-event mortality. Another limitation that may reside

within mortality analysis is that there may have been a presence of index event bias, which

arises from selecting a population on the basis of a prior, or an “index” event [42]. It is possible

that due to this selection bias, individuals with MI or CHD presented modestly lower rate of

mortality compared to those without disease endpoints. This is a major challenge affecting

prognosis research. Several approaches are under development that aim to mitigate this type of

bias, such as the “Slope-Hunter” method proposed by Mahmoud et al [43]. This method uti-

lizes clustering technique to ultimately identify variants that only affect prognosis, and also to

find estimated adjustment factors by identifying variants that affect incidence. With more

implementation in the future, this may be suitable to be applied in future investigation. Also,

generally the loci identified for prevalent disease were not the same as those identified for inci-

dent disease (S7 Table), as has been observed in previous studies [9]. A possible explanation

for these observed differences is that genetic studies of cardiovascular diseases are usually con-

ducted with the cross-sectional study design, which has the potential to oversample partici-

pants with longer post-event survival [44] and the results do not always replicate in the

prospective studies for disease onset and vice versa [9].

An advantage of this study is that within the setting of the CHARGE Consortium we are

able to evaluate and make comparisons between cross-sectional and prospective study designs,

and to investigate all-cause mortality following cardiovascular events. There are differing, but

overlapping, sample sizes across the various study designs: 27,349 participants from seven

cohorts for prevalent outcomes, 55,736 participants from nine cohorts for incident outcomes,

and 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-cause

mortality. These differing sample sizes influence our power to detect associations, and infer-

ences about similarities and differences across study designs could be due to biological differ-

ences or differences in sample sizes. This investigation of low-frequency and rare variants was

limited to the variants included on the genotyping platforms (HumanHap300 Duo+ and

HumanExome BeadChip, v1.0–1.2, Illumina, Inc., San Diego, CA) and was also limited to

individuals of European ancestry. Additionally, although the variants on the genotyping plat-

form and included in our gene-based tests were enriched for coding variants predicted to be

causal, we cannot attribute causality to the variants or genes with novel associations. A strength

of this study is that the quality of rare variant genotype calling was maximized by the joint clus-

tering performed within CHARGE on thousands of samples [21].

In conclusion, this study comprehensively evaluated the relationship between autosomal

genetic variation and prevalent and incident cardiovascular outcomes in participants of
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European ancestry in the context of the CHARGE consortium. We identified one known locus

(ANGPTL4) and four new loci (PLCL1, RC3H2, TMPRSS5, and LDLRAD1) associated with

cardiovascular disease risk that warrant further investigation.
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