nature genetics

Genetic loci influencing kidney function and chronic kidney disease

John C Chambers^{1,2,66*}, Weihua Zhang^{1,2,66}, Graham M Lord^{3–5}, Pim van der Harst⁶, Debbie A Lawlor⁷, Joban S Sehmi^{2,8}, Daniel P Gale⁹, Mark N Wass¹⁰, Kourosh R Ahmadi¹¹, Stephan J L Bakker⁶, Jacqui Beckmann¹², Henk J G Bilo⁶, Murielle Bochud¹³, Morris J Brown¹⁴, Mark J Caulfield¹⁵, John M C Connell¹⁶, H Terence Cook¹⁷, Ioana Cotlarciuc¹¹, George Davey Smith⁷, Ranil de Silva^{2,8}, Guohong Deng¹⁸, Olivier Devuyst¹⁹, Lambert D Dikkeschei²⁰, Nada Dimkovic²¹, Mark Dockrell²², Anna Dominiczak¹⁶, Shah Ebrahim²³, Thomas Eggermann²⁴, Martin Farrall²⁵, Luigi Ferrucci²⁶, Jurgen Floege²⁷, Nita G Forouhi²⁸, Ron T Gansevoort²⁹, Xijin Han³⁰, Bo Hedblad³¹, Jaap J Homan van der Heide³², Bouke G Hepkema³³, Maria Hernandez-Fuentes^{3–5}, Elina Hypponen³⁴, Toby Johnson³⁵, Paul E de Jong³⁶, Nanne Kleefstra³⁶, Vasiliki Lagou³⁷, Marta Lapsley²², Yun Li³⁰, Ruth J F Loos²⁸, Jian'an Luan²⁸, Karin Luttropp³⁸, Céline Maréchal¹⁹, Olle Melander³¹, Patricia B Munroe¹⁵, Louise Nordfors³⁸, Afshin Parsa³⁹, Leena Peltonen^{40–42}, Brenda W Penninx^{43–45}, Esperanza Perucha^{3–5}, Anneli Pouta^{42,46}, Inga Prokopenko^{47–49}, Paul J Roderick⁵⁰, Aimo Ruokonen⁵¹, Nilesh J Samani⁵², Serena Sanna⁵³, Martin Schalling⁵⁴, David Schlessinger⁵⁵, Georg Schlieper²⁷, Marc A J Seelen²⁹, Alan R Shuldiner⁵⁶, Marketa Sjögren³¹, Johannes H Smit^{43–45}, Harold Snieder³⁷, Nicole Soranzo¹¹, Timothy D Spector¹¹, Peter Stenvinkel⁵⁷, Michael J E Sternberg¹⁰, Ramasamyiyer Swaminathan⁵⁸, Toshiko Tanaka²⁶, Lielith J Ubink-Veltmaat⁵⁹, Manuela Uda⁵³, Peter Vollenweider⁶⁰, Chris Wallace⁶¹, Dawn Waterworth⁶², Klaus Zerres²⁴, Gerard Waeber⁶⁰, Nicholas J Wareham²⁸, Patrick H Maxwell⁹, Mark I McCarthy^{47,48,49}, Marjo-Riitta Jarvelin^{1,42,46,63}, Vincent Mooser⁶², Goncalo R Abecasis³⁰, Liz Lightstone^{64,66}, James Scott^{8,66}, Gerjan Navis^{6,66}, Paul Elliott^{1,65,66} & Jaspal S Kooner^{2,8,66}

Using genome-wide association, we identify common variants at 2p12-p13, 6q26, 17q23 and 19q13 associated with serum creatinine, a marker of kidney function ($P = 10^{-10}$ to 10⁻¹⁵). Of these, rs10206899 (near NAT8, 2p12-p13) and rs4805834 (near SLC7A9, 19q13) were also associated with chronic kidney disease ($P = 5.0 \times 10^{-5}$ and $P = 3.6 \times 10^{-4}$, respectively). Our findings provide insight into metabolic, solute and drug-transport pathways underlying susceptibility to chronic kidney disease.

In North America and Europe, chronic kidney disease (CKD) affects ~11% of adults. CKD is associated with high morbidity and, in the advanced

stage, requires life-support treatment by renal dialysis or transplantation¹. CKD is also a major risk factor for myocardial infarction and stroke.

CKD is a multifactorial disorder with an important genetic component². A number of monogenic disorders underlying CKD have been identified, though these account for only a small proportion of the total burden of kidney disease. Recent studies have identified common variants at the UMOD, SHROOM3, GATM and MYH9 loci that are associated with kidney function in European and African-American populations^{2,3}. We carried out both a genome-wide association study and a replication study to identify loci associated with serum creatinine levels. Although creatinine levels may be partially influenced by nonrenal factors, including diet and generation from muscle metabolism, serum creatinine is a validated measure of glomerular filtration rate⁴.

Genome-wide association was done in 23,812 participants of European descent from nine studies; characteristics of participants and genotyping arrays used are summarized in the Supplementary Methods and in Supplementary Table 1. Creatinine levels were transformed by log₁₀ to achieve approximate normality, and SNP associations were tested by linear regression using an additive genetic model adjusted for age and sex. Principal component scores were included as ancestry covariates in regression analyses, and test statistics were corrected for the genomic control inflation factor to adjust for population substructure (Supplementary Methods)⁵. Analyses were performed separately in each cohort and were followed by meta-analysis using z scores weighted by the square root of the sample size. Quantilequantile plots showed good adherence to null expectations ($\lambda = 1.024$; Supplementary Fig. 1). Our genome-wide association study had 80% power to detect SNPs associated with 0.14% of population variation in creatinine levels at $P < 5 \times 10^{-7}$.

There were 109 SNPs associated with creatinine at $P < 5 \times 10^{-7}$, which were distributed over five loci (2p12-p13, 4q21, 6q26, 17q23 and 19q13; Fig. 1 and Supplementary Fig. 2). At four of these loci (2p12-p13, 6q26, 17q23 and 19q13), common variants have not previously been reported to be associated with kidney function or CKD; at each locus, we selected the most strongly associated SNP for replication testing with creatinine in a further sample of 16,626 Europeans (Supplementary Methods and Supplementary Table 2). All four SNPs showed strong replication with creatinine ($P = 2.4 \times$ 10^{-3} to 7.0 × 10^{-9} ; Table 1 and Supplementary Table 3). At 4q21, the most strongly associated SNP was rs9992101 ($P = 5.9 \times 10^{-9}$), which is located in SHROOM3 and is in high linkage disequilibrium (LD) with rs17319721 ($r^2 = 0.78$, HapMap CEU population), a SNP previously reported to be associated with glomerular filtration rate².

Next we tested the four top-ranking SNPs for association with estimated glomerular filtration rate (eGFR) and cystatin c (two additional measures of kidney function⁴) and with CKD among the participants from the replication sample (Supplementary Methods). rs10206899 (2p12-p13) and rs4805834 (19q13) were associated with eGFR, cystatin c

Received 10 September 2009; accepted 15 March 2010; published online 11 April 2010; doi:10.1038/ng.566

^{*}A full list of author affiliations appears at the end of the paper.

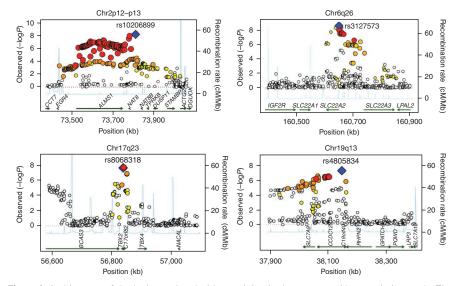


Figure 1 Architecture of the loci associated with creatinine in the genome-wide association study. The most significant SNP in each region is plotted in blue. LD is based on the HapMap CEU sample and is color-coded as red (r^2 to top SNP, 0.8–1.0), orange (0.5–0.8), yellow (0.2–0.5) and white (<0.2).

and CKD (**Table 1** and **Supplementary Table 4**). In contrast, rs3127573 (6q26) and rs8068318 (17q23) were associated with eGFR but not with cystatin c or CKD. None of the four SNPs were associated with weight, hypertension, diabetes or other clinical parameters known to influence creatinine levels (**Supplementary Table 5**), and the relationships of these SNPs with creatinine were similar among people with and without diabetes or hypertension (**Supplementary Table 6**).

rs10206899 (2p12–p13), which is associated with creatinine, eGFR, cystatin c and CKD, is near several genes, including *NAT8*, *NAT8B*, *ALMS1*, *DUSP11* and *TPRKB* (**Fig. 1**). *NAT8* is a biologically compelling candidate for the observed association. NAT8 is a member of the GCN5-related N-acetyltransferase (GNAT) superfamily, a group of enzymes that catalyze transfer of an acetyl group from acetyl-coenzyme A to a wide range of acceptor substrates⁶. *NAT8* is strongly and almost exclusively expressed in kidney (**Supplementary Fig. 3**), in particular by tubular cells of the renal cortex (**Supplementary Fig. 4** and **5**). Acetylation is a key metabolic pathway for the detoxification of nephrotoxic substances such as aminoglycosides, inhalational anesthetics and environmental toxins, including industrial solvents such as trichloroethylene^{7,8}. rs10206899 is in high LD ($r^2 = 1.0$) with the only common nonsynonymous SNP in *NAT8*, rs15358 (causing a A595G change). rs15358 produces a nonconservative amino acid change (F143S) within the acetyl-coenzyme

TPRKB encodes the p53-related proteinkinase–binding protein and is of unknown function. Neither is strongly or preferentially expressed in kidney.

A binding site, an effect predicted to influ-

ence acetylation by NAT8 (Supplementary

Fig. 6). rs15358 was also closely associated with

creatinine levels in the genome-wide study

 $(P = 1.8 \times 10^{-8})$. Our findings raise the possi-

bility that common genetic variation in NAT8

may influence acetylation pathways, disturbances of which are known to be associated

with drug- and toxin-induced kidney injury.

NAT8B is highly homologous to NAT8

and also contains an acetyltransferase

domain but is only expressed at low levels in

kidney (Supplementary Fig. 3). Mutations

in ALMS1 are responsible for Alström

Syndrome, a rare autosomal-recessive multi-

system disorder characterized by progressive kidney and hepatic failure, obesity and

insulin resistance, and blindness and hear-

ing loss⁹. Although DUSP11 and TPRKB

are also near rs10206899, neither has been

implicated in kidney function. DUSP11

is a dual-specificity protein phosphatase;

rs4805834 (19q13) is near *SLC7A9*, a cationic amino acid transporter highly expressed in kidney tubular cells (**Supplementary Fig. 3**)¹⁰. *SLC7A9* is a strong candidate for the association of rs4805834 with creatinine, eGFR, cystatin c and CKD; mutations in *SLC7A9* cause cystinuria and nephrolithiasis and are associated with increased risk of CKD¹⁰. rs4805834 is also near *CCDC123* and *C19orf40*. The latter (also known as *FAAP24*) has been identified as a component of the Fanconi anemia core complex, which plays a crucial role in DNA damage response¹¹ but has no reported relationship to kidney function. The function of *CCDC123* is not known.

rs3127573 (6q26) and rs8068318 (17q23) were associated with creatinine and eGFR. rs3127573 is near *SLC22A2*, an organic cation transporter strongly and preferentially expressed in kidney (**Supplementary Fig. 3**) that contributes to secretion of creatinine and other substrates by renal tubular epithelial cells¹². Common variants at this locus are reported to influence kidney injury caused by nephrotoxic drugs such as cisplatin¹³. rs8068318 is located in *TBX2*, which encodes a member of the highly conserved T-box family of transcription factors¹⁴. Mouse *Tbx2^{-/-}* mutants have a range of morphological defects, including limb deformities and cardiac anomalies, but a renal phenotype has not previously been described for them¹⁴. *Tbx2* is widely expressed in many tissues, including developing and adult

Table 1 Association results for top-ranking SNPs in the genome-wide association and replication study

SNP	Locus	Alleles	MAF	Creatinine								Chronic kidney disease (replication sample)	
				GWA sample			Replication sample			Combined			
				п	Effect size (95% CI)	Р	п	Effect size (95% CI)	Р	Effect size (95% CI)	Р	Odds ratio (95% CI)	Р
rs10206899	2p12-p13	A/G	0.22	23,812	-0.9 (-1.2 to -0.6)	5.9 × 10 ⁻⁹	16,167	-1.0 (-1.4 to -0.7)	7.0 × 10 ⁻⁹	-1.0 (-1.2 to -0.7)	1.2×10^{-15}	0.85 (0.79 to 0.92)	5.0×10^{-5}
rs3127573	6q26	A/G	0.13	21,857	1.4 (1.0 to 1.8)	5.0×10^{-9}	16,427	0.7 (0.2 to 1.1)	2.4×10^{-3}	1.1 (0.8 to 1.4)	6.5×10^{-10}	1.07 (0.97 to 1.17)	0.17
rs8068318	17q23	A/G	0.27	23,812	0.9 (0.6 to 1.2)	2.2 × 10 ⁻⁸	16,350	0.6 (0.2 to 0.9)	6.1×10^{-4}	0.8 (0.6 to 1.0)	3.4×10^{-10}	1.05 (0.98 to 1.13)	0.16
rs4805834	19q13	G/A	0.13	23,812	-1.1 (-1.5 to -0.7)	5.3×10^{-8}	16,241	–0.9 (–1.3 to –0.5)	4.7×10^{-5}	-1.0 (-1.3 to -0.7)	4.5×10^{-11}	0.84 (0.76 to 0.92)	3.6×10^{-4}

Alleles, reference allele/minor allele; MAF, minor allele frequency; GWA, genome-wide association; effect size, % change in serum creatinine (95% Cl) or odds ratio for CKD (95% Cl) per copy of minor allele under an additive genetic model and adjusted for (i) age, gender and principal component scores in the genome-wide association study and (ii) age and gender in the replication study. Effect sizes were estimated by meta-analysis of cohort-specific beta estimates using the inverse variance method and a fixed effects model.

kidneys¹⁵, but the function of Tbx2 in the kidney is not known. rs8068318 is also near BCAS3 and hypothetical gene C17orf82. BCAS3 may be involved in angiogenesis, but is not known to be involved in kidney function.

In addition to SHROOM3, we also replicated previously reported associations² of rs12917707 in UMOD ($P = 1.7 \times 10^{-5}$) and rs2467853 in GATM ($P = 6.0 \times 10^{-6}$) with creatinine in the genome-wide association study. Although we did not find a relationship of the MYH9 locus with creatinine, this may simply reflect the low prevalence (~4%) of the MYH9 risk haplotype in Europeans (Supplementary Methods)³.

Our findings of common genetic variants associated with creatinine, cystatin c and CKD provide insight into the metabolic, solute and drugtransport mechanisms underlying kidney function and CKD. Further evaluation of these pathways may enable biomarker discovery and the development of new strategies to protect kidney function and prevent CKD.

Note: Supplementary information is available on the Nature Genetics website.

ACKNOWLEDGMENTS

Study-specific acknowledgments are provided in the Supplementary Note. We thank S. Asquith and J. Collier at K-bioscience for their help with the replication genotyping.

AUTHOR CONTRIBUTIONS

J.C.C., P.E., L.L., J.S., G.N. and J.S.K. designed the study. J.C.C., W.Z., D.A.L. and P.v.d.H. led the data analysis. J.C.C., P.E., L.L., J.S., G.N. and J.S.K. wrote the manuscript, with contributions from all the authors.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at http://www.nature.com/naturegenetics/.

Reprints and permissions information is available online at http://npg.nature.com/ reprintsandpermissions/.

- 1. Levey, A.S. et al. Kidney Int. 72, 247-259 (2007).
- 2. Köttgen, A. et al. Nat. Genet. 41, 712-717 (2009).
- 3. Kopp, J.B. et al. Nat. Genet. 40, 1175-1184 (2008).
- Stevens, L.A., Coresh, J., Greene, T. & Levey, A.S. N. Engl. J. Med. 354, 4. 2473-2483 (2006).
- Price, A.L. et al. Nat. Genet. 38, 904-909 (2006).
- Dyda, F., Klein, D.C. & Hickman, A.B. Annu. Rev. Biophys. Biomol. Struct. 29, 6. 81-103 (2000).
- Kharasch, E.D. Clin. Pharmacol. Ther. 84, 158-162 (2008).
- Lash, L.H., Fisher, J.W., Lipscomb, J.C. & Parker, J.C. Environ. Health Perspect. 8. 108 Suppl 2, 177-200 (2000).
- Marshall, J.D., Beck, S., Maffei, P. & Naggert, J.K. Eur. J. Hum. Genet. 15, 9. 1193-1202 (2007)
- 10. Mattoo, A. & Goldfarb, D.S. Semin. Nephrol. 28, 181-191 (2008).
- 11. Ciccia, A. et al. Mol. Cell 25, 331-343 (2007).
- 12. Fujita, T., Urban, T.J., Leabman, M.K., Fujita, K. & Giacomini, K.M. J. Pharm. Sci. 95, 25-36 (2006).
- 13. Filipski, K.K., Mathijssen, R.H., Mikkelsen, T.S., Schinkel, A.H. & Sparreboom, A. Clin. Pharmacol. Ther. 86, 396-402 (2009).
- 14. Naiche, L.A., Harrelson, Z., Kelly, R.G. & Papaioannou, V.E. Annu. Rev. Genet. 39, 219-239 (2005).
- 15. Chapman, D.L. et al. Dev. Dyn. 206, 379-390 (1996).

© 2010 Nature America, Inc. All rights reserved. ¹Department of Epidemiology and Biostatistics, School of Public Health, Imperial College of London, London, UK. ²Ealing Hospital National Health Service (NHS) Trust,

Middlesex, UK. ³Department of Nephrology and Transplantation and ⁴Medical Research Council (MRC) Centre for Transplantation, King's College London, UK. ⁵National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, UK. ⁶University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. ⁷MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, Bristol, UK. ⁸National Heart and Lung Institute, Hammersmith Hospital Campus, Imperial College London, London, UK. ⁹Division of Medicine, University College London, London, UK. ¹⁰Structural Bioinformatics Group, Imperial College London, London, UK. ¹¹Twin Research and Genetic Epidemiology Department, King's College London, St. Thomas' Hospital Campus, London, UK. ¹²Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland. ¹³University Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland. ¹⁴Clinical Pharmacology Unit, University of Cambridge, Addenbrookes Hospital, Cambridge, UK. 15Clinical Pharmacology and The Genome Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, UK. ¹⁶Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Glasgow, UK. ¹⁷Department of Histopathology, Imperial College, Hammersmith Hospital, London, UK. ¹⁸Department of Gastroenterology and Hepatology, Imperial College London, London, UK. ¹⁹Division of Nephrology, Université Catholique de Louvain Medical School, Brussels, Belgium. ²⁰Isala Clinics, Zwolle, The Netherlands. ²¹Center for Renal Diseases, Zvezdara University Medical Center, Belgrade, Serbia. ²²South West Thames Institute for Renal Research, Epsom and St. Helier University Hospitals NHS Trust, Carshalton, UK. 23 London School of Hygiene and Tropical Medicine, London, UK. ²⁴Department of Human Genetics, Rheinisch-Westfaelische Technische Hochschule University Hospital Aachen, Aachen, Germany. ²⁵Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, UK. ²⁶National Institute of Aging, Clinical Research Branch–Longitudinal Studies Section, Baltimore, Maryland, USA. ²⁷Department of Nephrology and Clinical Immunology, RWTH University Hospital Aachen, Aachen, Germany. ²⁸MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK. ²⁹Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. ³⁰Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA. ³¹Department of Clinical Sciences, Lund University, Malmö, Sweden. ³²Department of Nephrology, University Medical Center Groningen, Groningen, The Netherlands. ³³Department of Transplantation Immunology, University Medical Center Groningen, Groningen, The Netherlands. ³⁴Centre of Epidemiology for Child Health, University College London Institute of Child Health, London, UK. ³⁵Department of Medical Genetics, University of Lausanne and the Swiss Institute of Bioinformatics, Lausanne, Switzerland. ³⁶Langerhans Medical Research Group, Zwolle, The Netherlands. ³⁷Unit of Genetic Epidemiology and Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. ³⁸Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden. ³⁹Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, USA. ⁴⁰Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK. 41 Institute for Molecular Medicine Finland (FIMM), Nordic European Molecular Biology Laboratory (EMBL) Partnership for Molecular Medicine, Biomedicum Helsinki 2U and University of Helsinki, Helsinki, Finland. ⁴²National Institute for Health and Welfare, Helsinki, Finland. ⁴³Department of Psychiatry, Institute for Research in Extramural Medicine (EMGO), Neuroscience Campus, Vrije Universiteit (VU) Medical Center, Amsterdam, The Netherlands. ⁴⁴Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands. ⁴⁵Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. ⁴⁶Institute of Health Sciences, University of Oulu, Oulu, Finland. ⁴⁷Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. ⁴⁸Oxford Centre for Diabetes, Endocrinology and Metabolism and ⁴⁹Oxford NIHR Biomedical Research Centre, Oxford, UK. ⁵⁰University of Southampton, Southampton, UK. ⁵¹Institute of Clinical Medicine, Department of Clinical Chemistry, University of Oulu, Oulu, Finland. ⁵²Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK. ⁵³Istituto di Neurogenetica e Neurofarmacologia, Consiglio Nazionale delle Ricerche, Cagliari, Italy. ⁵⁴Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden. 55 Laboratory of Genetics, US National Institutes of Health Biomedical Research Center, National Institute on Aging, Baltimore, Maryland, USA. ⁵⁶Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA. ⁵⁷Division of Renal Medicine K56, Karolinska University Hospital at Huddinge, Stockholm, Sweden. ⁵⁸Chemical Pathology, Guy's and St Thomas' Hospitals Trust, London, UK. ⁵⁹General Practice 't Veen, Hattem, The Netherlands. ⁶⁰Department of Internal Medicine, University Hospital Center, University of Lausanne, Lausanne, Switzerland. ⁶¹Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge, UK. ⁶²Medical Genetics, Clinical Pharmacology and Discovery Medicine, GlaxoSmithKline, King of Prussia, Pennsylvania, USA. 63Biocenter Oulu, University of Oulu, Oulu, Finland. 64Renal Section, Division of Medicine, Hammersmith Hospital Campus, Imperial College London, London, UK. 65 MRC-HPA Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College of London, London, UK. 66 These authors contributed equally to the work. Correspondence should be addressed to J.C.C. (john.chambers@ic.ac.uk) or J.S.K. (j.kooner@imperial.ac.uk).