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Abstract

Background: Common bean is an important staple crop in the tropics of Africa, Asia and the Americas. Particularly
smallholder farmers rely on bean as a source for calories, protein and micronutrients. Drought is a major production
constraint for common bean, a situation that will be aggravated with current climate change scenarios. In this
context, new tools designed to understand the genetic basis governing the phenotypic responses to abiotic stress
are required to improve transfer of desirable traits into cultivated beans.

Results: A multiparent advanced generation intercross (MAGIC) population of common bean was generated from
eight Mesoamerican breeding lines representing the phenotypic and genotypic diversity of the CIAT Mesoamerican
breeding program. This population was assessed under drought conditions in two field trials for yield, 100 seed
weight, iron and zinc accumulation, phenology and pod harvest index.
Transgressive segregation was observed for most of these traits. Yield was positively correlated with yield
components and pod harvest index (PHI), and negative correlations were found with phenology traits and
micromineral contents. Founder haplotypes in the population were identified using Genotyping by Sequencing
(GBS). No major population structure was observed in the population. Whole Genome Sequencing (WGS) data from
the founder lines was used to impute genotyping data for GWAS. Genetic mapping was carried out with two
methods, using association mapping with GWAS, and linkage mapping with haplotype-based interval screening.
Thirteen high confidence QTL were identified using both methods and several QTL hotspots were found
controlling multiple traits. A major QTL hotspot located on chromosome Pv01 for phenology traits and yield was
identified. Further hotspots affecting several traits were observed on chromosomes Pv03 and Pv08. A major QTL for
seed Fe content was contributed by MIB778, the founder line with highest micromineral accumulation. Based on
imputed WGS data, candidate genes are reported for the identified major QTL, and sequence changes were
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identified that could cause the phenotypic variation.

Conclusions: This work demonstrates the importance of this common bean MAGIC population for genetic
mapping of agronomic traits, to identify trait associations for molecular breeding tool design and as a new genetic
resource for the bean research community.

Keywords: Genotyping-by-sequencing (GBS), Genome-wide association study (GWAS), Multiparent advanced
generation inter-crosses (MAGIC), Quantitative trait loci (QTL), Whole genome sequencing (WGS)

Background
Common bean (Phaseolus vulgaris L.) is one of the most

important grain legumes for direct human consumption

[1], and it is widely cultivated throughout the world, es-

pecially in tropical and subtropical countries of Africa

and America [2]. Bean has been recognized as a highly

valuable food for human nutrition, a rich and relatively

inexpensive source of proteins, micronutrients such as

iron and zinc, dietary fiber and essential vitamins [3]

making it valuable food for over half a billion people, espe-

cially in developing countries [4]. Micronutrient malnutri-

tion (MNM) is considered a major health threat affecting

half the world’s population, particularly women and chil-

dren in developing countries [5]. Iron deficiency anemia,

which is the most prevalent MNM in the world, can be

alleviated by biofortification, particularly in legumes with

high baseline Fe contents such as common bean [6].

Bean production is negatively affected by multiple abi-

otic and biotic constraints. Drought is a major factor to

yield loss around the world and its incidence and dur-

ation is expected to increase due to climate change [4,

7]. It is estimated that approximately 60% of common

bean production is affected by terminal or intermittent

drought [8]. If current climate change trends continue, a

large part of current common bean growing areas in

southeastern Africa are predicted to become unsuitable

for bean cultivation by 2050, generating reductions in

yield for current varieties and potentially affecting the

nutritional quality of the crop [9]. In that sense, drought

represents a high-risk factor for bean farmers in the tro-

pics, and improved varieties developed to withstand al-

tered climatic conditions represent a valuable resource

for future generations.

Genetic mapping is used to identify genomic regions

that harbor variation responsible for altering phenotypic

trait expression. This information is then applied in

breeding by marker-assisted selection (MAS), whereby

breeding lines with desirable trait attributes are identi-

fied through genetic screening. Different strategies are

available for genetic mapping. Most molecular markers

currently used in breeding were identified through link-

age mapping, where a bi-parental population is gener-

ated for identifying the genomic regions that segregate

with a trait. However, this strategy has low resolution

because of limited genetic recombinations and limited

genetic variation, since only two haplotypes are observed

per locus [10]. On the other hand, association mapping

using Genome-wide association studies (GWAS) directly

identifies marker-trait associations in diverse popula-

tions. This strategy also leverages low levels of linkage

disequilibrium (LD) to achieve higher resolution. How-

ever, confounders such as population structure can pro-

duce spurious associations, and large populations are

needed to overcome the lack of statistical power in the

case of low allele frequencies [11].

A strategy to increase the number of investigated hap-

lotypes while avoiding confounding population structure

effects is to generate recombinant inbred lines (RILs)

from multiple parents [12], where the genomes of the

founders are first recombined through several rounds of

mating and then advanced to generate a stable panel of

inbred lines. The creation of Multiparent advanced gen-

eration intercross (MAGIC) populations holds great

promise for genetic mapping, overcoming the main limita-

tions of linkage and association mapping [13]. Using more

than two parental accessions increases the allelic and

phenotypic diversity compared to traditional bi-parental

populations, raising the number of QTL that segregate in

the population and the larger number of accumulated

recombination events increases mapping accuracy [14].

Furthermore, MAGIC populations have been suggested to

use breeding lines as founders, rather than conventional

crosses between two phenotypically contrasting lines.

Utilization of elite breeding germplasm in MAGIC popu-

lation development strongly facilitates the transfer of iden-

tified QTL into breeding applications. In summary, a

MAGIC population combines advantages of natural and

synthetic populations with a better shuffling of the gen-

ome and increased genetic resolution (i.e. better QTLs)

and better transferability to breeding applications [15].

Genetic mapping ideally leads to the identification of

genes, whose functional alleles influence the observed

phenotypic variation. Gene identification is most ad-

vanced in model crops like rice, where over 2000 genes

controlling important agronomic traits have been cloned

[16, 17]. There are few examples for cloned genes in

common bean, including the bc-3 gene conferring resist-

ance to bean common mosaic virus, which was identified
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as the eIF4E gene [18] or Mrp1 gene, causative of lpa1

mutant regulating low concentration of phytic acid in

the bean seed [19]. In other studies, candidate genes re-

lated with agronomic traits in common bean have been

identified based on annotations in the vicinity of signifi-

cantly associated markers [20–23]. Further investigation

of candidate genes is hindered by the scarcity of genetic

resources and genetic transformation protocols in com-

mon bean [24], which would be required for validation

experiments.

The main goal of this work was to develop a common

bean MAGIC population from eight Mesoamerican elite

breeding founder lines and to identify genomic regions

associated with yield, micromineral accumulation, phen-

ology and physiological traits under drought conditions.

Results
Phenotypic evaluation

A common bean MAGIC population was developed by

inter-crossing of eight Mesoamerican elite breeding

lines, including four founder lines derived from interspe-

cific crosses with P. coccineus, P. dumosus and P. acutifo-

lius (Table 1). Following the crossing scheme in

Additional file 1, 996 RILs were generated. Field trials

under drought stress were carried out in 2013 and 2014

(Additional file 2) with 636 and 599 RIL lines respectively.

Agronomic performance was evaluated with respect to

yield (Yd), days to flowering (DF), days to physiological

maturity (DPM), seed weight (100SdW) and pod harvest

index (PHI). Micronutrient contents such as iron and zinc

in the seed (SdFe, SdZn) were evaluated in 2014 and again

in non-stress conditions in 2016.

The phenotypic data display significant genetic vari-

ability within all traits, and transgressive segregation was

observed for most of them (Fig. 1). The broad-sense her-

itability for phenological traits was high, with 0.98 for

DF in both years and 0.96 and 0.79 respectively for DPM

(Fig. 2). PHI had a heritability of 0.90. Likewise, high

heritabilities of 0.96 and 0.85 were observed for 100SdW

in respective years. In contrast, the heritability for yield

was lower and not stable across both trials with 0.71 in

2013 and 0.31 in 2014. Heritabilities of iron and zinc

content were intermediate, with 0.67 for SdFe and 0.47

for SdZn. In general, trait heritabilities in 2013 were

higher compared to 2014 for all traits measured in both

trials. In 2013, two-row plots were used compared to

one-row plots in 2014, which may have caused more ex-

perimental noise, allowing more precise data in 2013.

However, climatic conditions differed between seasons

with stronger drought and less late rainfall in 2013

(Additional file 2), leading to a stronger yield reduction.

In spite of the seasonal variation, all traits measured in

more than one trial were significantly positively corre-

lated, ranging from 0.25 (Yd) to 0.66 (DF and 100SdW)

(Fig. 2), indicating comparability of the data sets from

the three trials for evaluated traits. Two trait clusters

were identified according to the positive and generally

significant correlations within the clusters and negative

correlations between them. On the one hand, the phen-

ology traits DF and DPM and micronutrient contents

SdFe and SdZn form a group of traits that were largely

positively correlated to each other. On the other hand,

yield and 100SdW together with PHI show significant

positive correlations among them, while being negatively

correlated to traits of the first group (Fig. 2). The founders

SCR2 and SCR9 performed best in terms of yield and re-

lated traits, while MIB778 showed delayed maturity, low-

est yield components, but the highest Fe and Zn contents

(Fig. 1 and Additional file 3). Taken together, the pheno-

typic datasets from the field trials show a good quality for

subsequent analyses, with some lines showing transgres-

sive segregation and outperforming elite founder lines.

Genetic and population structure

The MAGIC population was genotyped by GBS, generat-

ing 20,615 polymorphic markers that were used to assess

the population structure. A binning process to eliminate

redundant markers was applied, resulting in 5738 non-

redundant markers that were used to generate a genetic

map and for QTL mapping. WGS data from the eight

founder lines was used to impute 1,972,528 markers in the

population for GWAS (Additional files 4 and 5). The

Table 1 Description of the eight common bean (P. vulgaris) founder lines of the MAGIC population

Line Interspecific introgressions from Pedigree Valuable traits

SXB412 A686/A774//NXB80/SEA15 Low fertility and drought tolerance

INB827 P. acutifolius INB108/INB605 Drought tolerance

ALB213 P. coccineus SER16/G35346-3Q//SER16 Drought and Al tolerance

SEN56 SXB123/DOR677//SEN34 Drought tolerance

SCR2 NCB226/RCB591 Drought tolerance and BCMVa resistance

MIB778 P. dumosus FEB226/G35575-2P//FEB226 High Fe/Zn seed content

SCR9 SER176/RCB591 Drought tolerance and BCMVa resistance

INB841 P. acutifolius INB108/INB605 Drought tolerance
aBCMV bean common mosaic virus
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population structure was assessed by constructing a NJ

tree and performing a PCA. All MAGIC and founder lines

are evenly separated from the center of the tree (Fig. 3a),

except for MIB778 which showed a longer matching dis-

tance. There are no defined clusters that separate lines in

the tree, indicating no significant population structure

within the MAGIC population. In line with these results,

each principal component explains only a small propor-

tion of the variance, as the first two principal components

account just for 4.73% (Fig. 3b). The two-dimensional

space defined by the first and second principal compo-

nents show a uniform dispersal of the genotypes, with

MIB778 drawing more distant from the other founders.

This result mirrors the actual pedigree, since MIB778 has

the least number of common ancestors with other founder

lines (Additional file 6). These results indicate that within

the MAGIC lines the population structure has a low level

of complexity.

A haplotype analysis was performed to quantify the in-

dividual contribution from each founder line in the

population. The average fraction of each founder on the

MAGIC lines was similar, ranging between 10.6 and

15.4%. These values were close to the expected contribu-

tion of 1/8th (12.5%). However, this fraction was not

constant along the chromosomes, especially in the eu-

chromatic regions (Fig. 4), which may be attributed to

arbitrary segregation after the early crosses that were

performed in a limited number of plants. The predicted

haplotype composition for each RIL is presented in Add-

itional file 7. Taken together, the reduced complexity

level of population structure and an even representation

of parental haplotypes in the MAGIC lines display the

intended characteristics of the population to perform

genetic analyses.

A genetic map for the MAGIC population was gener-

ated with a total length of 857 cM. The recombination rate

was 2407 kbp/cM in the pericentromeric regions and 291

kbp/cM in the euchromatic regions of the chromosomes,

with an overall rate of 603 kbp/cM. The MAGIC popula-

tion had a mean of 3.22 recombination events per

chromosome and a median of 44 recombination events

per RIL in the entire genome (Additional files 7 and 8).

The genome-wide rate of LD decay was 74 kbp at 0.19 r2V ,

about half of its initial predicted value. The rate of

chromosome-specific LD decay ranged between 51 kbp

(Pv08) and 154 kbp (Pv02) (Additional file 9). The high

marker density and accuracy due to the large population

size make this map suitable for the analysis of linkage and

segregation patterns and for genetic mapping.

QTL analysis and genome-wide association study

Marker-trait associations were evaluated by both GWAS,

using a Mixed Linear Model (MLM) approach, and QTL

Fig. 1 Distribution of best linear unbiased estimators (BLUEs) of the evaluated traits in the trials of 2013, 2014 and 2016 for the MAGIC
population. DF: Days to flowering; 100SdW: 100 seed weight; DPM: Days to physiological maturity; Yd: Seed yield; SdFe: Seed iron; SdZn: Seed
Zinc; PHI: Pod harvest index
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Fig. 2 Pearson’s correlation coefficients between best linear unbiased estimators (BLUEs) of evaluated traits. The broad-sense heritabilities of the
best linear unbiased predictors (BLUPs) are located within the diagonal with gray background. Significance of correlations indicated as ***:
p < .0001; **: p < .001; *: p < .01; ns = not significant. DF: Days to flowering; 100SdW: 100 seed weight; DPM: Days to physiological maturity; Yd:
Seed yield; SdFe: Seed iron; SdZn: Seed Zinc; PHI: Pod harvest index

Fig. 3 Assessment of population structure for 629 MAGIC lines and 8 founders using GBS data (20.615 markers). a Unrooted neighbour-joining
tree. The length of the lines in the tree show the simple matching distance. b Location of each genotype represented by a point in the two-
dimensional space defined by the eigenvectors of the first and second principal components. The founder lines are represented by red tagged points
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mapping, using software designed for haplotype-based

analysis of multi-parent populations. In total, 17 QTL

for 7 traits were identified with significant peaks in the

GWAS analysis (Additional file 10). GWAS peaks were

selected with a significance greater than that established

by the Bonferroni correction (2.42 × 10− 6) and selecting

those regions that showed a clear peak above the back-

ground. QTL analysis resulted in 45 QTL for 7 traits ex-

ceeding the threshold of significance set by 1000

permutations (LOD > 6.26) (Additional file 11). High

confidence QTL were defined as those showing signifi-

cant marker-trait associations in both GWAS and QTL

mapping. Following that rule, thirteen such “main QTL”

were identified for 7 traits (Table 2). Founder haplotype

assignment of phenotypic effects was generally the same

between GWAS and QTL analysis (Additional files 10

and 11).

Most significant trait-associations were identified on

chromosome Pv01 for phenology traits DF and DPM, in

the region between 10 and 18 Mbp (Table 2). This

region showed additive effects of 0.1–1.7 days and 0.6–

0.8 days for DF1.2 and DPM1.2 respectively. DF1.2 and

DPM1.2 explained 35.8 and 5.5% of the phenotypic vari-

ance, respectively. A yield QTL was found in the same

genomic region (Yd1.1), with phenotypic effects of up to

53 kg ha− 1. This genomic region represents a QTL hot-

spot with variation for several traits, as a significant

GWAS association was identified also for SdZn (Add-

itional file 10). Evaluating founder allele patterns at this

QTL hotspot revealed that between 10.4 and 17.7 Mbp

the alleles from SXB412, INB827 and MIB778 had a

positive effect on phenology traits. In line with the nega-

tive correlation between Yd and phenology traits, alleles

from these founder lines had a negative effect on Yd,

(Additional file 10). QTL analysis results are mostly in

accordance with GWAS results; SXB412, INB827 and

MIB778 haplotypes always positively affected phenology

traits at this locus. DF1.2 evaluated in 2013 presented

some deviations where SCR2 founder haplotype also had

a strong positive effect (Additional file 11). DF1.2/

Fig. 4 Distribution of the founder’s haplotypes on each chromosome in the MAGIC population. The inner black-shaded region represents the
boundaries for the pericentromeric regions. Overall founders’ contribution on the 629 genotyped MAGIC lines genome are indicated in the
bottom-right boxplot. The expected value of 12.5% (1/8th) is indicated by a red line
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DPM1.2 showed seasonal stability being detected by

GWAS and QTL analysis in both 2013 and 2014 trials.

Yd1.1 was detected at this locus in 2013; however, in

2014 a subtle QTL peak was visible but did not reach

the significance threshold (Additional file 12).

Another QTL hotspot for maturity was observed on

chromosome Pv03 at 37.3–39.9 Mbp (DPM3.1 and

DF3.1). In this region, the alleles of INB827 and INB841

had a negative allelic effect on DPM and DF. Similarly,

on chromosome Pv06, between 4.4–9.1 Mbp, MIB778

alleles were associated with late maturity and low PHI.

MIB778 was the latest flowering founder genotype; ac-

cordingly, it was involved in all three QTL on Pv01,

Pv03 and Pv06.

A fourth QTL hotspot for maturity and PHI was iden-

tified on Pv08 (0–1.6 Mbp). The alleles from the founder

line ALB213 were associated with later physiological ma-

turity in both years and low PHI. An interspecific intro-

gression in ALB213 from P. coccineus was reported in

this same region on the intervals 881,865–884,647 and

1,181,015 to 1,234,070 bp [25], that may cause this

phenotype (Table 2, Additional files 10 and 12). In all

four QTL hotspots for maturity and yield component

traits, defined haplotypes increase maturity days and at

the same time decrease yield-related traits, following the

negative phenotypic correlations of these trait groups.

An interesting QTL PHI2.1 was found on chromosome

Pv02. The alleles of the founder lines SCR2 and SCR9

have a negative effect of − 1.08% on this trait (Add-

itional file 10). This QTL was not linked to maturity

traits, for this, it may be easier to employ PHI2.1 in

breeding.

Three main QTL for micromineral content were iden-

tified, SdFe6.1, SdFe6.2 and SdZn8.1 (Table 2). SdFe6.2

at 21–24 Mbp was observed in two seasons (2014 by

GWAS and 2016 by QTL analysis). MIB778 is the

founder line with highest accumulation of Fe/Zn and

provided the positive alleles for SdFe and SdZn, with an

effect of 2.67 ppm in GWAS and 3.10 ppm in QTL ana-

lysis (Table 2, Additional files 10 and 11). SdZn8.1 was

located at 60–63 Mbp with an additive allelic effect of

0.85 ppm in GWAS and 0.92 ppm in QTL analysis, also

contributed by MIB778 (Table 2). Micromineral levels

were evaluated in drought and non-drought conditions

to identify possible constitutive QTL. However, most

QTL of Fe/Zn were not consistent between the two

Table 2 Major QTL in the MAGIC population identified in both MLM-based GWAS and QTL analysis optimized for complex
populations. QTL are listed that were significant in both analyses and show clear peaks in GWAS. A complete list of significant
marker trait associations is available for GWAS (Additional file 10) and QTL mapping (Additional file 11)

QTL
name

Trial GWAS QTL Mapping

Most significant markera p value MAF Effectb Pos. (cM) Nearest marker LOD PVE (%)c

DF1.1 2013 Pv2.1_01_4147947_C/G 5.46E-07 0.37 (G) −0.46 32 Pv2.1_01_5474208_C/T 9.30 4.30

DPM1.1 2013 Pv2.1_01_763904_G/A 1.60E-06 0.27 (A) 0.43 36.5 Pv2.1_01_6773375_T/A 21.70 15.90

DF1.2 2013 Pv2.1_01_14672594_C/T 1.05E-35 0.34 (C) 1.63 38 Pv2.1_01_11238077_T/A 58.85 35.76

2014 Pv2.1_01_17627372_A/G 2.36E-12 0.35 (G) −0.28 40 Pv2.1_01_14582969_G/C 34.42 16.50

DPM1.2 2013 Pv2.1_01_14672594_C/T 2.77E-09 0.34 (C) 0.82 38.5 Pv2.1_01_13085941_C/A 8.19 5.47

2014 Pv2.1_01_11567887_T/TA 2.13E-07 0.18 (T) 0.61

Yd1.1 2013 Pv2.1_01_11250640_A/G 3.11E-08 0.16 (A) −52.81 38 Pv2.1_01_11238077_T/A 8.76 2.03

2014 Pv2.1_01_11221702_T/A 3.57E-07 0.21 (T) −28.79

PHI2.1 2013 Pv2.1_02_47566148_G/A 2.61E-08 0.37 (G) −1.08 71 Pv2.1_02_47643879_G/T 10.73 7.62

DF3.1 2013 Pv2.1_03_39652029_G/A 5.23E-07 0.14 (A) 0.62 50 Pv2.1_03_39061112_G/C 7.50 3.43

2014 50 Pv2.1_03_39061112_G/C 8.11 3.54

DPM3.1 2013 Pv2.1_03_39534987_C/A 2.08E-08 0.16 (C) −0.75 48 Pv2.1_03_37341462_T/C 11.41 8.36

2014 51.5 Pv2.1_03_39819948_G/A 10.24 5.11

100SdW4.1 2014 Pv2.1_04_1328790_G/A 4.08E-08 0.27 (A) 0.51 3 Pv2.1_04_522512_A/T 8.36 4.74

SdFe6.1 2014 Pv2.1_06_5311627_C/T 2.77E-07 0.17 (C) 2.09 2 Pv2.1_06_8725963_G/A 7.33 4.06

SdFe6.2 2016 Pv2.1_06_22844368_T/G 3.36E-07 0.08 (G) −2.67 35 Pv2.1_06_23945432_T/C 6.46 8.68

DPM8.1 2013 Pv2.1_08_1070342_C/T 2.54E-09 0.11 (T) −1.45 5 Pv2.1_08_1091562_T/G 7.92 5.56

2014 Pv2.1_08_706882_A/G 3.58E-11 0.13 (G) −1.77 4 Pv2.1_08_946243_C/T 18.15 9.09

SdZn8.1 2014 Pv2.1_08_60922896_C/G 4.39E-07 0.06 (C) 0.85 83 Pv2.1_08_60982396_C/G 6.81 2.65
aMarker ID contains the physical position of the polymorphism in the reference version 2.1 and the genotype of the reference / alternative allele
bEffect of alternative allele
cPVE = Phenotypic variation explained
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years of evaluation, which may be due to specific geno-

type by environment (GxE) effects of drought stress.

QTL analysis indicated several further independent QTL

that were not detected by GWAS analysis. Among those,

two major QTL for yield were located in Pv07 and Pv08

(Yd7.1 and Yd8.2), which showed highly significant LOD

scores (23.16 and 38.17 respectively). However, GWAS

analysis showed no signal at these regions to validate

those results (Additional files 10, 11 and 12).

Top 10 best performing lines were identified based on

a weighted trait index (WTI). These lines show an en-

richment of desirable haplotypes for major QTL, but no

line holds positive alleles for all QTL as these don’t ex-

plain the majority of phenotypic variation (Add-

itional files 13 and 14). An outstanding line, MGC583

presents high yield in drought conditions in both trials

(1100 and 1600 kg ha− 1) and a high accumulation of Fe

and Zn (69 and 31 ppm respectively) (Additional file 13).

Candidate genes

GWAS and QTL analysis was performed using WGS

data, based on imputation from re-sequenced founder

lines. Hence, in principle all SNPs and small indels (< 20

bp) present in the population were evaluated in the

GWAS. Close-ups of major QTL regions reveal that

QTL analysis LOD curves and GWAS peaks often do

not mark the exact same positions (Fig. 5 and Add-

itional file 14); hence, candidate genes were considered

based mainly on GWAS analysis data.

To identify candidate genes, only the polymorphisms in

coding regions that had a moderate or high effect on the

amino acid sequence (as defined by the SnpEff software, see

Methods for details) were evaluated. Most candidate poly-

morphisms were found for the QTL hotspot on Pv01, which

had the highest marker-trait associations, and covered the

largest genomic region among the major QTL (Table 3).

For DF1.2, 86 polymorphisms altering the protein sequences

of 45 genes were identified and 8 SNPs in 4 genes are shared

with DPM1.2 (Fig. 5 and Additional file 15).

The QTL hotspot on Pv01 contains polymorphisms in

genes directly or indirectly involved in flowering pathways.

Phvul.001G085200 encodes a Light Regulator Protein

(Lir1), a homolog of the perennial ryegrass gene LpLIR1,

that was reported to be involved in floral induction affect-

ing the control of the circadian clock and vernalization

[26]. Phvul.001G087300 is a homolog of an Arabidopsis

B-box zinc finger protein CONSTANS-like 9. CON-

STANS and CONSTANS-like genes were reported in

Arabidopsis as important regulators of flowering in re-

sponse to inductive photoperiods, as a central component

of photoperiodic floral control [27]. The BBX24 zinc fin-

ger transcription factor was also reported to be associated

with flowering time and abiotic stress tolerance by repres-

sing flowering and Gibberellin biosynthesis genes in

Chrysanthemum [28]. Phvul.001G089900 is a homolog of

the repressor of the gibberellin signaling pathway RGL1.

This gene is involved in modulating floral development in

Arabidopsis [29]. Phvul.001G094300 is a homolog of Ara-

bidopsis BAF60, a SWI/SNF subunit mediating ATP-

dependent chromatin remodeling and directly regulating

floral repressor FLOWERING LOCUS C [30]. One mis-

sense SNP for Yd1.1 was found; however, annotation in-

formation is inconclusive as to regard it as a candidate

gene. A short list of 10 most probable candidate genes for

the QTL hotspot on Pv01 based on this evaluation is

shown in Table 3. Given the large number of genes, a

prime candidate cannot be pointed out.

In the QTL hotspot located on Pv03 for DPM and

PHI, four polymorphisms in four genes were found. The

annotations of these genes suggest their involvement in

signaling or developmental processes, but a single candi-

date gene cannot be clearly attributed to the phenotype.

For the QTL hotspot for DPM and PHI on Pv08, 81

non-synonymous polymorphisms in 51 genes were

found, two of which are shared between both traits. Sev-

eral genes are involved in signaling or development, but

the large number makes it difficult to determine a single

clear candidate for phenology (Additional file 15). The

most significant GWAS association in this QTL was

found in Phvul.008G012100, next to three further non-

synonymous SNPs found in that gene. This gene encodes a

TATA BOX ASSOCIATED FACTOR II homolog, a group

of genes reported to affect many regulatory processes [31].

A further candidate Phvul.008G003500 encodes a protein

of the NRT1/PTR family. These proteins were originally

identified as nitrate or peptide transporters, and recently

they have been reported to be transporters of auxins, ABA,

and gibberellins [32]. Phvul.008G014000 is a WUSCHEL-

related homeobox 10-related (WOX) gene. WOX overex-

pressing lines have been reported with altered flowering

times [33]. For PHI2.1 two non-synonymous polymor-

phisms were identified in Phvul.002G309200, which en-

codes an AGAMOUS-like gene, a family reported to

control development of flowers and fruits [34].

For SdFe6.2 located on Pv06, four genes were identi-

fied with non-synonymous polymorphisms, including

Phvul.006G114800, which encodes a MYB domain pro-

tein 4 homolog (Table 3). MYB-like transcription factors

have been shown to affect iron deficiency in Malus xiao-

jinensis [35] or Chlamydomonas reinhardtii [36], among

multiple other metabolic and developmental processes

[37]. The ectopic expression of the DwMYB2 transgene

in A. thaliana, a distant homolog of Phvul.006G114800,

regulated the expression of genes related to iron trans-

porters and homeostasis in root and shoot [38]. Taken

together, the evaluation of GWAS results from WGS im-

puted markers resulted in several plausible candidate

genes that can be further evaluated with other methods.
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Discussion
This work reports the first MAGIC population in com-

mon bean, constructed from eight Mesoamerican breed-

ing lines. MAGIC populations have been developed

recently in several plant species, such as Arabidopsis

[10], maize [39], rice [15], wheat [40], tomato [41] and

Vicia faba [42], among others. MAGIC populations are

designed to capture more genetic variability and deliver

more precise genetic mapping compared to commonly

used bi-parental RIL populations. Utilization of breeding

Fig. 5 Combined Manhattan plots (GWAS) and LOD (red line obtained from interval mapping) plots of the main QTL regions for DF, DPM, Yd,
PHI and SdFe on chromosomes Pv01, Pv02, Pv03, Pv06, Pv08, in the trials of 2013 and 2014. Non-synonymous SNPs in coding regions are
highlighted in yellow (significant in only one trial) or red (significant in both trials). Traits are color-coded for improved clarity
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material produces results that are theoretically more eas-

ily transferable to breeding programs [15]. In this work,

founder lines were selected to represent breeding variabil-

ity in the CIAT Mesoamerican breeding program. These

cover several market classes, an important aspect in com-

mon bean breeding, and furthermore, several important

agronomic traits such as tolerance to drought, low fertil-

ity and aluminum, resistance to virus and high accumula-

tion of Fe/Zn. Hence, these lines represent relevant allelic

variation, applicable for several breeding efforts.

Recombinations are the basis of genetic mapping and

generate the genetic variability for breeders’ selection. Due

to several rounds of crossing, MAGIC populations offer in-

creased recombinations and higher mapping precision than

bi-parental populations. The MAGIC population presented

here had on average 3.22 recombination events per

chromosome. This value is expectedly higher than the aver-

ages observed for bi-parental RIL populations of common

bean, ranging between 1.01 and 1.28 (DOR365xG19833,

IJRxAFR298 and RCB593xINB841 populations, unpub-

lished observations). In tomato, mean values of 2.49 and

1.46 recombination events were reported for MAGIC and

bi-parental populations, respectively [41]. The rate of LD

decay observed for this MAGIC population was 74 kbp at

0.19 r2V . This rate is faster than the 428 kbp reported for a

natural population of cultivars/lines of the Mesoamerican

genepool [43], Likewise, Blair et al. [44], describe a faster

LD decay in an Andean population of common bean due

to reduced population structure compared to a Mesoameri-

can population. Similar results have been reported for other

MAGIC populations of winter-wheat [40] and cotton [45],

and indicate that the consecutive rounds of mating may

have broken linkage blocks, consequently reducing LD [45].

In this work, a high-density genetic map that incorpo-

rated multiple recombination events from eight founder

lines using GBS SNP data was produced. This is the first

map that incorporates such higher recombination fre-

quency for common bean. It can be useful for improving

the performance of some genotype imputation algorithms,

incorporating recombination information with more preci-

sion [46]. In addition, the sigmoidal curves depicting re-

combination rates (Additional file 8) resembled those of

previously published maps [44, 47]. However, the pericen-

tromeric boundaries in the Mesoamerican founders’ ge-

nomes deviate from those defined in the reference genome

of G19833 (Additional file 8). These results can be useful to

Table 3 Candidate genes for the major QTL identified in the MAGIC population. Genes are shown that harbor non-synonymous
polymorphisms which had significant associations in GWAS. Most likely candidate genes for major QLT are shown, a complete list of
candidate polymorphisms and genes in Additional file 15

Gene Chr QTL Position (bp)a Variant (# polymorphisms) Gene annotation

Phvul.001G077300 Pv01 DF1.2 - DPM1.2 11,441,607 missense variant (1) 26S proteasome regulatory subunit N6

Phvul.001G077700 Pv01 DF1.2 11,571,295 splice region (2) L-arabinokinase

Phvul.001G085200 Pv01 DF1.2 13,124,249 missense variant (1) Light regulated protein Lir1

Phvul.001G087100 Pv01 DF1.2 - DPM1.2 13,513,228 missense variant (1) GRAM domain (GRAM)

Phvul.001G087300 Pv01 DF1.2 13,548,191 missense variant (1) Zinc finger protein CONSTANTS-like 14-related

Phvul.001G089400 Pv01 DF1.2 - DPM1.2 14,352,260 missense variant (5) PPR repeat (PPR)

Phvul.001G089900 Pv01 DF1.2 14,661,652 missense variant (1) GRAS domain family (GRAS)

Phvul.001G090100 Pv01 DF1.2 - DPM1.2 14,694,391 missense variant (1) Exocyst complex protein EXO70

Phvul.001G091400 Pv01 DF1.2 15,553,393 missense variant (1) Squamosa promoter-binding protein-like (SBP domain)

Phvul.001G094300 Pv01 DF1.2 16,832,664 missense variant (1) SWIB/MDM2 domain

Phvul.001G093700 Pv01 DF1.2 17,339,464 missense variant (1) Copine - DCD domain protein

Phvul.002G309200 Pv02 PHI2.1 47,667,592 missense variant (2) AGAMOUS-like 29

Phvul.003G158500 Pv03 DPM3.1 37,464,971 missense variant (1) Chitinase-like protein-related

Phvul.006G114800 Pv06 SdFe6.2 22,340,161 missense variant (1) MYB-like DNA-biding protein MYB4

Phvul.008G003500 Pv08 DPM8.1 325,238 missense variant (3) Protein NRT1/PTR family

Phvul.008G005500 Pv08 DPM8.1 512,002 missense variant (2) LOB domain-containing protein 40

Phvul.008G006800 Pv08 DPM8.1 640,209 premature start codon variant (1) Transducin family protein / WD-40

Phvul.008G010800 Pv08 DPM8.1 946,243 splice donor variant (1) Dolichyl-phosphate beta-glucosyltransferase

Phvul.008G012100 Pv08 DPM8.1 1,001,427 missense variant (4) transcription initiation factor TFIID subunit 6

Phvul.008G013300 Pv08 DPM8.1 1,091,953 missense variant (1) subtilase family protein

Phvul.008G014000 Pv08 DPM8.1 1,154,068 missense variant (1) WUSCHEL-related homeobox 10-related
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study differences of local recombination events between the

Mesoamerican and Andean gene pools. Furthermore, four

founder lines were reported to bear interspecific introgres-

sions from P. coccineus and P. acutifolius in chromosomes

Pv07, Pv08, Pv09 and Pv11 [25]. Some of these regions dis-

play minor deviations on the proportional contribution

(Fig. 4), but there is no clear signal of segregation distortion

due to interspecific introgressions.

Breeding applications of the MAGIC population

Breeding for drought tolerance has been a long-standing

effort at CIAT’s and other common bean breeding pro-

grams. Yield has been used as a key selection criterion

to advance the phenotypic responses under drought

conditions.

One of the goals of the MAGIC population was to ob-

tain lines with good agronomic performance and desir-

able QTL that are identified and tagged with markers to

be used as resources for breeding programs. The average

yield of the population was 763 and 1499 kg ha− 1 in

2013 and 2014 respectively, which is comparable to

other populations phenotyped under drought conditions

such as 1047 kg ha− 1 [8], 1030 kg ha− 1 [48], or 1173 kg

ha− 1 [49]. Several RILs in the population showed super-

ior performance compared to the founder lines. In this

study, the top ten agronomically performing RILs were

identified (Additional file 13). Some lines combine good

yield performance with micro mineral levels. This is an

important result because obtaining varieties with high

yield and high accumulation of micronutrients has been

a key challenge in the area of bean biofortification [6],

due to the negative correlation between these two traits.

Expectedly, the haplotypes of the major QTL that these

lines carry do not completely explain performance, as

many genetic factors that control these traits are not dis-

covered. Yet, positive haplotypes of major QTL are

enriched in the top lines. This suggests that MAS for

major QTL and phenotypic selection should be com-

bined to optimize genetic gain in selection.

Significant effort has been invested in the past in stud-

ies of physiology and genetics to obtain a deeper under-

standing of the agronomic responses under stress

conditions beyond yield per se. The positive correlations

between Yd and Yd components have previously been

reported under drought conditions [48, 50–52]. In the

same way, the observed negative correlations between

Yd and phenology traits have been reported to be influ-

enced by hot and dry growing conditions [53], revealing

a strong dependence on the environmental factors for

the relationship of these traits. Previous studies have

used PHI as an effective selection criterion for identify-

ing genotypes with improved drought tolerance [50].

Also, in this study, PHI had a positive phenotypic correl-

ation with Yd. In general, these results show that

superior yielding lines under drought stress are charac-

terized by full commitment to reproductive growth, ef-

fective seed filling and resource translocation, leading to

large seed and high PHI, as well as early maturity for

drought avoidance.

QTL for agronomic traits have been widely studied in

common bean using QTL mapping and GWAS studies

[54]. DF is a key trait in the adaptation of common bean

and QTL for DF and DPM have been previously re-

ported in all chromosomes of the bean genome, except

for Pv10. In this study, two major QTL in Pv01 for ma-

turity were found, DF1.1/DPM1.1 and DF1.2/DPM1.2 in

intervals 5–7 and 9–17 Mbp respectively. Other studies

report QTL for DF in the same region also under

drought stress, and showed that Mesoamerican geno-

types contributed the additive allelic effect [22, 51, 53,

55, 56]. These data suggest there is an important locus

on the start of chromosome Pv01 that controls maturity,

next to the known fin locus at the lower arm of that

chromosome in the interval 47–52 Mbp [57]. Likewise,

other studies have reported QTL for DF and Yd located

near to DF3.1/DPM3.1 by linkage analysis and GWAS

[57–59] and DPM8.1 [56, 60].

QTL for seed weight have been previously reported in

all chromosomes [54]. The main QTL found in this

study for seed weight (100SdW4.1) represents new allelic

variation for this oligogenic trait. The QTL hotspots

(Pv01, Pv03, Pv06 and Pv08) identified in this work con-

trol both phenology and yield related traits, where the

same alleles increase DF/DPM and decrease Yd and re-

lated traits. Hence, breeders may not be able to utilize

these QTL for yield improvement, as primary consider-

ation may have to be given to the maturity requirements

for a certain target region and maturity is often nega-

tively correlated with yield [53].

In this work, four PHI QTL were found on chromo-

somes Pv01, Pv02, Pv06 and Pv08 (Additional file 10).

Mukeshimana et al. [51] reported two QTL under

drought stress on Pv01 and one of these QTL was in the

same region of PHI1.1 (around 2 Mbp). Previous studies

reported PHI QTL on chromosomes Pv06 and Pv08, at

alternative chromosomal regions as identified here [53,

61]. PHI6.1 could be useful in breeding in some genetic

backgrounds, to avoid the negative allele from founder

line MIB778, which was the lowest yielder in all trials.

The main QTL found in this study for PHI (PHI2.1) has

not been reported previously in other studies. PHI2.1 ap-

pears to be independent from phenology traits and could

be used for marker development, being associated with

raising PHI values by 1.08%.

For seed Fe content, two main QTL located in Pv06

(SdFe6.1 and SdFe6.2) are reported, contributed by

MIB778, the founder with highest Fe and Zn accumula-

tion. SdFe6.1 and SdFe6.2 have allelic effects of 2.1 and
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2.7 ppm and could be employed in biofortification

breeding. The allelic effects of the markers are moderate,

also observed by Izquierdo et al. [62] and Ponce et al.

[63]. This is according to expectation, as quantitative

traits in elite breeding lines are not likely to vary in

major effect loci, such as those reported for disease

traits. Other QTL have been reported near to SdFe6.1

and SdFe6.2 in Andean populations [64, 65], a Meso-

american population [66] and an inter-genepool popula-

tion [67]. This data suggests that allelic variation at

these loci exists in both Andean and Mesoamerican

genepools. GWAS showed that positive alleles from

MIB778 are mostly identical with the reference genome

(Andean genotype G19833) alleles. Accordingly, this

founder was reported to have a large Andean introgres-

sion on chromosome Pv06 in the same region [25]. The

main QTL for seed Zn content (SdZn8.1) in this study

was also based on the haplotype from MIB778. Previ-

ously reported QTL for Zn in Pv08 were located at an

interval of ~ 8 Mbp from SdZn8.1 [65, 66]. The founder

line MIB778 was added to the MAGIC founders as a

source for its high micromineral levels. It supplied the

strongest QTL, which supports the semi-quantitative in-

heritance of this oligo genetic trait.

The responses to drought stress include morpho-

logical, physiological, biochemical and genetic mecha-

nisms closely related, such as early flowering and

maturity (escape mechanisms) [51], or the control of the

root system architecture [68]. Some QTL related to this

trait have been reported near the QTL hotspot identified

in this study. A QTL controlling the number of root

branches and root length diameter are located near to

DF1.1/DPM1.1 and DPM8.1 respectively [69, 70]. It has

been suggested that QTL affecting root traits in com-

mon beans are based on the constitutive expression of

genes, and drought tolerance based on characteristics of

the roots can be used in molecular breeding [71].

Previous studies on QTL for agronomic traits in com-

mon beans employed crosses between genetically con-

trasting parents, following the basic logic of QTL

population development and mapping. This approach

has been very successful in identifying and transferring

disease resistance genes for, e.g. common bacterial blight

(CBB) [72] or angular leaf spot resistance (ALS) [73]. It

has also been used to analyze abiotic stress-related traits

like drought tolerance [51, 56, 60] or tolerance to low

levels of phosphorus [53]. However, the usefulness of

this approach has been questioned for quantitative traits,

because evaluating contrasting lines means to include al-

leles with undesirable agronomic effects for the investi-

gated trait, which are likely to have been selected out of

breeding populations. Strongly contrasting crosses are

usually not used in breeding because it would result in

much undesirable variation, particularly to regenerate

commercial grain quality. For this reason, data from

contrasting crosses is often not easily transferable to

breeding applications. In contrast, genetic variation in a

MAGIC population is analyzed in elite genetic back-

grounds without detrimental exotic alleles; hence, data

can be directly transferable to breeding populations.

Comparison of genetic mapping methods: GWAS and QTL

mapping

In this study, genotype-phenotype associations were sim-

ultaneously evaluated using linkage mapping with a

method designed for eight-way MAGIC populations and

using association mapping with the MLM approach.

Using the QTL mapping strategy, the QTL DF1.1, Yd1.1

and DPM3.1 were identified in the two evaluations in

2013 and 2014. However, close-ups of these regions

show that the significant LOD peaks do not overlap with

each other, suggesting two different adjacent QTL that

affect the trait independently in two seasons. Similarly,

QTL mapping software IciMap [74] from the same au-

thor group was previously suggested to delimit QTL re-

gions too much, leading to comparable problems of

QTL proliferation in narrow regions, which does not ap-

pear biologically sensible [53]. In addition, the linkage

strategy occasionally produced LOD peaks with very

large significance scores that had no corresponding

GWAS signal. Given that the interval QTL mapping

software can utilize the known population and haplotype

structure it should theoretically constitute a more

powerful tool for genetic mapping, but the results pre-

sented here leave doubts if the data is completely reli-

able. On the other hand, GWAS results varied by

applying different modifications of the GLM and MLM

approaches (data not shown). Whereas major marker-

trait associations are usually retained, significantly differ-

ent results for intermediate and minor association re-

gions can be obtained depending on the chosen analysis

method, while no gold standard has been established in

the literature for a correct analysis. For this reason, we

reported reliable major QTL regions in this study that

were supported by the significant signals produced by

both the linkage and association strategies, providing

enough evidence to delimit the associated regions,

whereas only the GWAS results seem to be suitable to

search for candidate genes.

Value of WGS and imputed GWAS/QTL for candidate

genes

Previous studies in common bean have identified candi-

date genes relying on either a priori candidates based on

the published literature or comparing the functional an-

notation of gene models within a window, centered

around significant SNPs markers e.g. [19, 22, 75–77].

The availability of WGS data for GWAS allows to largely
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delimit the list of potential candidate genes by removing

those that do not show polymorphisms in the evaluated

population. In this work, we performed GWAS using

imputed WGS data from the founder lines. In principle,

this could take in all polymorphisms in the population

compared to the reference genome, including those that

cause the phenotypic variation. This can lead to the ac-

curate identification of candidate genes by tracing the

polymorphism with the most significant association.

The strategy implemented in this study for gene map-

ping harbors some limitations. In the first place, the An-

dean reference genome of G19833 used here leaves out

of the association analysis the unique Mesoamerican re-

gions present in the founder lines. These regions would

be included using a Mesoamerican reference, yet the ref-

erence genome of BAT93 still presented some contiguity

and completeness issues, making it unsuitable to be used

in this study. Furthermore, the founder lines likely con-

tain introgressions from sister species, harboring unique

coding regions that are not traceable and thus are left

out. For example, DPM8.1 is based on an allele from

ALB213 where a P. coccineus introgression was reported

previously [25]. Despite that, the mapping rates of the

founders’ sequences were all close to 90%, which shows

that most genomic regions that are common between

both genepools have a low divergence, suitable for iden-

tifying and testing variants in the population. In

addition, the polymorphism calling did not consider long

structural variants (> 20 bp). Finally, we only evaluated

modifications to the protein coding sequence of the ref-

erence genome to identify candidate genes; hence, any

type of promoter mutations or non-annotated genes

would be missed. This can be an important limitation

and should be considered for further studies, because

larger variants (insertions/deletions > 20 pb) can be

found in promoter regions of the genes, causing func-

tional changes such as those reported for the GSE5 pro-

moter in rice [78], stiff1 promoter in maize [79] or

PHYA3 promoter in common bean [80].

Following the approach of candidate gene identifica-

tion using imputed WGS data, several candidate genes

were identified for the evaluated agronomic quantitative

traits. For the major phenology QTL on Pv01 and Pv08,

many associated non-synonymous polymorphisms were

found. Even though several plausible candidates are

listed, no primary candidate stands out, which suggests

that the genetic resolution, albeit quite large in this

MAGIC population, is not enough to narrow down the

candidate genes to a very small number. The strategy

implemented in this study using resequencing of paren-

tal lines can be employed in other available RILs or

multi-parental populations as a low-cost strategy for

candidate gene identification. A similar strategy has been

effective in the identification of QTLs for traits of

variable genetic complexity in MAGIC populations of

tomato and maize [39, 41] and the identification of can-

didate genes in rice [81].

All methods of candidate gene identification should be

followed up by direct candidate gene validation. Some

strategies of virus induced silencing or genetic trans-

formation have been tested in common bean with a few

successful reported cases [82–88]. It shows that candi-

date gene validation is still a complex task for the species

and therefore not widely adopted up to date [24]. In that

sense, EcoTILLING approaches could also be pursued to

identify further functional alleles of a candidate gene in

order to validate the gene function and identify further

variability for breeding [83]. Currently only few WGS

data sets have been published [25, 89, 90], but ongoing

projects will make a much larger set of WGS data avail-

able in the near future that could be mined for allelic

variation in genes of interest.

Conclusions
This study presented the first common bean MAGIC

population of the Mesoamerican gene pool. A genetic

map comprising multiple recombination events between

the founder lines was generated. To our knowledge, this

map represents the largest and most dense genetic map

available in common bean. The results presented here

demonstrate that GWAS and haplotype-based interval

mapping are successful tools in this population, identify-

ing QTL for quantitative agronomic traits under drought

conditions. Major QTL were identified to be controlling

more than one trait, even in different seasons. This re-

sult is in line with the phenotypic correlations observed

between some phenology and agronomic traits, suggest-

ing there is extensive genetic correlation among them.

Information on QTL can be used for molecular marker

design for molecular breeding. Candidate genes for

major QTL were identified using imputed WGS data

from founder lines for GWAS. This method can be

employed in RIL and MAGIC studies in common bean

and other crops. Hence, this project provides data for

applications in breeding and breeding tool development,

especially for drought tolerance. This will support efforts

to develop climate resilient germplasm, as well as infor-

mation for basic research questions aiming to uncover

the genetic basis of important agronomic traits.

Methods
Population development

Eight Mesoamerican common bean elite lines were se-

lected from the breeding program at CIAT as founders

of an 8-way MAGIC population: SXB412 (A), INB827

(B), ALB213 (C), SEN56 (D), SCR2 (E), MIB778 (F),

SCR9 (G) and INB841 (H). These lines were selected

based on genetic diversity (introgressions from Phaseolus
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acutifolious, Phaseolus dumosus and Phaseolus coccineus),

phenotypic diversity for abiotic tolerance, micromineral

concentration, disease resistance, and agronomic perform-

ance (Table 1).

The breeding scheme of the MAGIC population used

in this study is shown in Additional File 1. In brief, the

eight lines were crossed in four pairs to create F1 seed of

SXB412 x INB827 (AxB), ALB213 x SEN56 (CxD), SCR2

x MIB778 (ExF) and SCR9 x INB841 (GxH). F1 plants

were then intercrossed (AxB x CxD) and (ExF x GxH) to

generate 323 “4-way” (ABCD) and 272 “4-way” (EFGH)

F1 seed. These F1 plants were intercrossed once again

(ABCD x EFGH) to generate 728 “8-way” (ABCDEFGH)

F1 seed. 500 lines were randomly selected to advance to

F2. Two plants per F2 family were selected to assure that

the variability of segregation in the F2 would not be lost,

and advanced to F5 through single seed descent, to ob-

tain 996 RILs. DNA was collected from F5 individual

plants. A first field trial was carried out with 636 RILs

from the bulk harvested F4.6, in 2013. Trial sizes were

limited by available field space; entries from the

complete population were randomly selected. Individual

F5 selections were advanced and 599 F5.7 RILs were phe-

notyped in the 2014 trial. Due to a communication error

between programs, the two genotype sets were not iden-

tical, so that both trials share 437 RILs evaluated in the

two seasons (Additional file 1).

Field trial design and phenotyping

The MAGIC RILs and eight parents were planted at the

International Center for Tropical Agriculture (CIAT) in

Palmira, Colombia (with an altitude of 1000m.a.s.l., lati-

tude of 3° 32′ N and longitude of 76° 18′ W) in 2013

and 2014. The field experimental design for both trials

was an alpha-lattice incomplete-block design with three

replicates. Each genotype was laid out in two-row plots

in 2013 and one-row plots in 2014 of 2.22 m2 each.

Around 10% of the plots in 2013 were used for planting

5 different check lines evenly distributed across the field,

and 7.5% of the plots in 2014 were used for founder lines

randomly distributed across each replicate. Border plots

surrounding the trial plots were planted in both trials.

These trials were carried out in the dry season (precipi-

tations: 96.3 mm in 2013 and 250 mm in 2014 through-

out the crop cycle, average temperature: 24.7 °C in both

seasons, see Additional file 2). Three irrigations were ap-

plied, the first three days before sowing and the two

others at 10 and 21 days after sowing. Standard field

practices were applied over the plant growing seasons

across years including the application of fungicide seed

treatment and foliar insecticides.

The number of days to flowering (DF) was measured

from planting to the day when 50% of the plants in the

plot had at least one open flower. Days to physiological

maturity (DPM) was measured as the number of days

from planting until 50% of plants had at least one pod

losing its green pigmentation [50]. Yield (Yd, kg ha− 1)

was obtained per plot and corrected for the percentage

of moisture of the seed (seed moisture of 14%). Seed

weight (100SdW, g 100 seeds− 1) was obtained from 100

seeds. These four traits were measured in both 2013 and

2014 trials. At the time of the harvest, 0.3 m2 per plot

were collected separately to measure pod harvest index

(PHI, %) defined as the ratio between seed weight to pod

weight. PHI was measured only in 2013. The samples to

evaluate iron and zinc concentration in the seed (SdFe

and SdZn, ppm) were prepared according to the method

described by Stangoulis and Sison [91] and quantified by

X-ray fluorescence method using an Energy dispersive

X-ray fluorescence (EDXRF) instrument X-Supreme

8000 (Oxford Instruments, UK) [92]. Micromineral con-

centration was evaluated in three replicates in 2014 and

in a non-replicated trial in 2016. Additional information

on description of phenotypic traits can be found in

“Trait Dictionaries for Fieldbook Development” (www.

cropontology.org).

Phenotypic data analysis

The field map of the plots was used to assign row and

column coordinates. The phenotypic data of each trial

was analyzed by fitting a linear mixed model with ran-

dom effects for rows and columns using the functions

‘SpATS’ and ‘PSANOVA’ [nseg = c (180,24) and nseg = c

(36,54) for the trials in 2013 and 2014 respectively] of

the R package SpATS (v1.0–9) [93]. To model the spatial

variability in the field, this model contains a smooth bi-

variate surface composed of a parametric and a smooth-

ing component. The parametric component includes the

intercept, fixed linear trends along rows and columns

and their linear interaction trend. The smoothing com-

ponent models the deviation from the previous com-

pound linear trend using one-dimensional and tensor

product P-splines. The effect of each line on the pheno-

type was fitted as fixed and random to obtain the best

linear unbiased estimators (BLUEs) and best linear un-

biased predictors (BLUPs), respectively. The heritability

was calculated using the function ‘getHeritability’ of

SpATS, which uses the effective and nominal dimen-

sions of the genotypic component calculated in the

model [93]. Hence, the heritability was only obtained

when the genotypic term was taken as random. BLUEs

were used to calculate Pearson correlation coefficients

among each trait-trial combination assessed in this

study, and their significance was tested using a two-

tailed t-test.

To select the top ten agronomically performing RILs, a

weighted trait index (WTI) was constructed for each

trial using BLUPs. This WTI included the traits Yd, DF
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and DPM with a weight of 40, 15 and 15% respectively.

The remaining 30% was assigned to PHI in WTI of 2013

and SdFe in WTI of 2014. To construct the WTI, every

trait was scaled using the Z transformation, assigning

positive and negative scaled values to good and poor

performing lines respectively (early maturity is inter-

preted as good performance). These values were com-

bined using their corresponding weights for each trial

separately. Then, the weighted averages for each trial

were summed up and the top ten lines with highest

values were selected.

Genotyping

DNA extraction and sequencing of the founder lines are

described in detail by Lobaton et al. [25]. In summary,

the DNA was extracted from young leaves using liquid

N2 and the urea buffer-based extraction miniprep proto-

col. The libraries were prepared using the Tru-Seq DNA

PCR-Free library preparation kit, and the sequencing

was performed by the HudsonAlpha Institute for Bio-

technology, generating paired-end reads, yielding a raw

sequencing depth ranging between 7x and 10x. The

DNA extraction and genotyping by sequencing (GBS) of

a subset of 629 MAGIC lines is described in detail by

Perea et al. [94], following the same DNA extraction

protocol described above. The DNA was sent to the

Cornell sequencing facility for the GBS library prepar-

ation using the restriction enzyme ApeKI [95]. Each

plate of 96-wells was sequenced in two lanes of an Illu-

mina HiSeq platform using single-end reads. On average,

each sample had a raw sequencing depth of 0.4x.

The mapping and variant calling processes for the

founder lines is described in detail by Lobaton et al. [25].

Multi-allelic sites in the identified variants were split

into bi-allelic sites using the module ‘norm’ with the op-

tions -m and -f from bcftools (v1.8) [96], yielding a total

of 6,284,436 bi-allelic variants from the founders’ se-

quencing data (Additional file 4). The GBS reads were

demultiplexed using NGSEP (v3.1.2) [97]. Adapters and

low-quality bases from the raw sequencing data were

trimmed using Trimmomatic (v0.36) [98], and the proc-

essed reads were aligned to the reference genome of P.

vulgaris accession G19833 v2.1 [46]. using Bowtie2

(v2.2.30) [99] with default parameters. The variant call-

ing process was performed using NGSEP following rec-

ommended parameters for GBS data [94]. The list of

variants identified previously in the founder lines was

used as the variants to be genotyped in the MAGIC

lines. The resulting genotype matrix was filtered for vari-

ants with a genotype quality above 40, MAF above 0.05,

and at least 260 individuals genotyped per site. The final

genotype matrix from GBS data contained 20,615 vari-

ants with ~ 25% missing genotype calls in the whole

matrix (Additional files 4 and 5). The GBS matrix was

used to assess the population structure in the MAGIC

lines by performing a principal component analysis

(PCA) using GAPIT (v3.0) [100], and constructing an

unrooted neighbor-joining (NJ) tree using SplitsTree

(v4.14.16) [101]. The GBS matrix was also used to calcu-

late pairwise measures of LD in sliding windows of 100

markers for each chromosome. The LD measures were

corrected for kinship relationships in the population (r2V )

as implemented in the R package LDcorSV (v1.3.2)

[102]. The LD decay was estimated regressing the pair-

wise r2V values on the physical distance of their markers

using the locally estimated scatterplot smoothing imple-

mented in the R function ‘loess’ (v3.6.3), with a span

value of 0.5.

To quantify the proportional contribution of genomic

information from the founders’ genomes to the MAGIC

lines, the parental haplotype blocks in the population

were estimated using the method proposed for haplotype

prediction in an Arabidopsis thaliana MAGIC popula-

tion [10] (http://mtweb.cs.ucl.ac.uk/mus/www/19ge-

nomes/magic.html). This was performed using the

whole set of founders and GBS markers, masking out

indel variants and repetitive regions in the reference

genome [25]. This method infers the breakpoints in the

haplotypes by a dynamic programming algorithm, akin

to the Viterbi path from a hidden Markov model

(HMM). To construct a genetic linkage map, the in-

ferred haplotype blocks and the GBS matrix were used

to calculate genetic distances among markers using the

Kosambi mapping function implemented in the inte-

grated genetic analysis software for multi-parental pure-

line populations (GAPL v1.2) [103]. The GBS marker set

in this matrix was reduced by a binning procedure based

on their recombination frequency as implemented in

GAPL, generating a subset of 5738 non-redundant

markers (Additional file 4). To impute the founders’

WGS variants in the RILs, the founders’ markers and the

GBS markers were merged into a single matrix of 6,284,

436 variants and 637 individuals. The missing data in

this matrix was imputed with Beagle (v5.0) [46], provid-

ing the genetic linkage map (5738 non-redundant

markers) and setting the effective population size to 8.

The final imputed matrix was filtered for variants with

MAF below 0.05, producing a matrix of 1,972,528 markers

with genotype calls for all 637 samples (Additional files 4

and 5) that was used thereafter for the GWAS analyses.

QTL analysis and GWAS

QTL analysis was conducted using the genetic map de-

scribed above and the genotypic BLUPs from the trials

separately. Detection of QTL and estimation of the genetic

parameters for each trait evaluated were performed using

the composite interval mapping with the procedure for
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additive effects (ICIM-ADD) of the software GAPL (v1.2)

[103], employing the forward and backward regression

model, with a 5 cM window size and a 0.5 cM sliding win-

dow. A significant QTL was declared if the logarithm of

odds (LOD) was greater than the significance threshold of

6.26, which was obtained by performing a permutation

test 1000 times with a p value of 0.05 to minimize the ex-

perimental type-I error rate. To identify the best allele for

each QTL, a Tukey’s multiple comparison test (α = 0.05)

was performed using the founders’ haplotypes, assessing

the effect of each haplotype separately.

Based on the results from the population structure as-

sessment, different modifications to the general linear

model (GLM) and the mixed linear model (MLM) ap-

proaches were tested for GWAS. This test included vari-

able number of principal components as covariates,

different methods to calculate the genetic relatedness

(kinship) matrix, and different model implementations

in the software packages Tassel (v5.2.44), GAPIT (v3.0)

[100] and GENESIS (v2.8.1) [104] (data not shown). The

selection criteria for the tested models was based on the

calculation of the mean squared difference (MSD) be-

tween the observed and expected p values [105] The

model with the lowest MSD was obtained with the R

package GENESIS (https://github.com/UW-GAC/GEN-

ESIS). This model accounts for population structure

using the top five principal components (described pre-

viously) as fixed effects. It also accounts for random

polygenic effects with a kinship matrix as variance-

covariance structure, calculated using the EMMA algo-

rithm implemented in GAPIT (v3.0) [100]. Significant

associations with the trait of interest were declared when

the p value was equal to or smaller than the Bonferroni

threshold calculated with the GBS markers (2.42 × 10− 6

with 20,615 markers). The association and linkage ana-

lyses were performed using a subset of 444 lines for the

2013 trial and 602 lines for the 2014 and 2016 trials, for

which genotypic and phenotypic data was available.

Candidate gene identification

To detect putative candidate genes and candidate poly-

morphisms affecting the phenotypic variation, the major

QTL regions identified by both QTL analysis and

GWAS were selected. This search was restricted to the

significant variants that had a high or moderate effect in

the coding regions of the reference genome as defined

by the annotation using SnpEff (v4.3) [106]. In addition,

the gene expression data reported by O’Rourke et al.

[107] and Phytozome (v12.1.6) (https://phytozome.jgi.

doe.gov) was used to check if the selected genes had

relevant expression levels in the tissue of interest. A

gene was declared a candidate if its gene ontology de-

scription in Phytozome (v12.1.6) included a function re-

lated to the trait evaluated.
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Additional file 1. (a) Crossing and selection scheme of the common
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Additional file 2. Precipitation, maximum and minimum temperatures
during trials at Palmira, Colombia.

Additional file 3. Phenotypic variability, least significant difference (LSD)
and broad-sense heritability (H2) for best linear unbiased predictors
(BLUPs) of the evaluated traits in the trials of 2013, 2014 and 2016 of the
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Additional file 4. Distribution of markers per chromosome obtained
from WGS of the eight founder lines. Markers from GBS of the whole
population and the resulting thinned markers used to construct the
genetic map for QTL analysis are listed.

Additional file 5. Heat map of the density of markers called from WGS
and GBS along the eleven chromosomes of the P. vulgaris reference
genome. Each color band represents a region of 250 kbp. The inner black
lines represent the boundaries of the pericentromeric regions as defined
by Schmutz et al. [47].

Additional file 6. Pedigree tree for six of the eight founder lines of the
MAGIC population. The founders are highlighted in dark gray at the
lower tips of the tree. Exact pedigrees of INB lines are not currently
available. This tree was generated using Helium (v1.18.03.15).

Additional file 7. Haplotype composition of the MAGIC lines. The
parental source, the length and genomic construction of each haplotype
in each MAGIC line is shown, using the method proposed by Kover et al.
[10].

Additional file 8. Comparison between the physical location and the
recombination frequency (genetic map position) based on thinned GBS
markers (5.738 markers). The dashed horizontal lines represent the
boundaries of the pericentromeric regions as defined by Schmutz et al.
[47].

Additional file 9. Pattern of linkage disequilibrium (LD) decay calculated
genome-wide (black-dashed line) and for each chromosome separately
(colored lines) in a MAGIC population of common beans. The pairwise
measures of LD were calculated in sliding windows of 100 markers and
corrected for kinship relationships in the population (rV2). Each line corre-
sponds to a locally estimated scatterplot smoothing (LOESS) regression
on the LD measures.

Additional file 10. Significant markers identified in genome wide
association studies, genetic and physical position, p value, allele
frequency, phenotypic effect and founder genotypes associated with 9
traits in the MAGIC population evaluated in 2013, 2014 and 2016.
Favorable alleles are colored in green.

Additional file 11. Details of QTL identified by interval mapping,
genetic and physical position, LOD, phenotypic variation explained, and
founders’ allelic effects mapped for 7 traits in the MAGIC population
evaluated in 2013, 2014 and 2016.

Additional file 12. Manhattan, quantile-quantile and LOD plots of the
association and linkage mapping for each of the evaluated traits. The
Bonferroni correction threshold (p = 0.05) using the WGS (1,972,528) and
the GBS (20,615) markers are depicted as red and green horizontal
dashed lines, respectively, in the Manhattan plot. The significance thresh-
old for the QTL mapping analysis is depicted as the blue dashed line in
the LOD plot.

Additional file 13. Phenotypic performance of top 10 RILs of the
common bean MAGIC population and their genotypes at 12 major QTL.
Phenotypic values for each of the top ten MAGIC RIL lines are shown for
each trial, color coded from desirable (green) to undesirable (red) values.
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values or haplotype effects are shown below. Letters indicate significant
differences using Tukey test (α = 0.05).

Additional file 14. Haplotype composition per chromosome of the top
10 RILs of the common bean MAGIC population.

Additional file 15. Significant polymorphisms in major QTL identified
by both methods MLM GWAS and QTL mapping based on haplotypes
that affect protein coding regions of candidate genes with moderate or
high effect as defined by SnpEff (v4.3). Gene expression data added from
O’Rourke et al. [105] and Phytozome.org (v12.1.6).
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