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Genetic mapping of cell type specificity for complex
traits
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Danielle Posthuma 1,2

Single-cell RNA sequencing (scRNA-seq) data allows to create cell type specific

transcriptome profiles. Such profiles can be aligned with genome-wide association studies

(GWASs) to implicate cell type specificity of the traits. Current methods typically rely only on

a small subset of available scRNA-seq datasets, and integrating multiple datasets is

hampered by complex batch effects. Here we collated 43 publicly available scRNA-seq

datasets. We propose a 3-step workflow with conditional analyses within and between

datasets, circumventing batch effects, to uncover associations of traits with cell types.

Applying this method to 26 traits, we identify independent associations of multiple cell types.

These results lead to starting points for follow-up functional studies aimed at gaining a

mechanistic understanding of these traits. The proposed framework as well as the curated

scRNA-seq datasets are made available via an online platform, FUMA, to facilitate rapid

evaluation of cell type specificity by other researchers.
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M
ore than a decade of genome-wide association studies
(GWASs) have yielded genetic risk variants for a wide
variety of traits including psychiatric disorders, neuro-

degenerative, cardiovascular, and metabolic disease, as well as
quantitative traits, such as intelligence (IQ), educational attain-
ment (EA), and height1. The emerging picture is that complex
traits are generally highly polygenic, with hundreds or even
thousands of risk variants each contributing a small incremental
effect. Although the identification of such risk variants is a major
step forward in our understanding of disease etiology and indi-
vidual differences in human traits, the high polygenicity of traits
also poses a challenge. Gaining biological insight from GWASs
entails considering the polygenic nature of traits, and rethinking
what we see as starting points for follow-up functional work.

Several recent studies have identified the involvement of spe-
cific tissues in complex traits by integrating tissue-specific gene
expression profiles with GWAS summary statistics2–6. Multiple
traits indeed showed significant enrichment in relevant tissue
types, such as schizophrenia (SCZ) and body mass index (BMI) in
brain7,8, waist hip ratio adjusted for BMI (WHR) in adipose
tissue9 and pulse pressure in the heart and arteries10. However,
human primary tissue samples are often a mixture of multiple cell
types, and the expression level of a gene in a certain tissue is an
average of the cell type-specific expression weighted by the pro-
portion of the cell types in the tissue samples. Tissue-specific
expression is thus a function of the distribution of cell types
present in that tissue. In addition, tissue-specific expression levels
can also be influenced by characteristics of the sampling process,
such as the specific region of the tissue that is sampled, which
may influence the distribution of cell types. Considering the
heterogenous population of cell types in a tissue, investigating the
genetically mediated association of specific cell types with traits
may provide more specific information, which is important for
gaining mechanistic insights. Indicating the cell types that are
involved in complex traits can guide designing functional follow-
up experiments. For example, recent Cre-mediated DREADD
technology allows to investigate effects of controlling the function
of a particular cell type11,12. We thus argue that the prioritization
of specific cell types needs to be part of the standard post-GWAS
annotation pipeline, and its analysis needs to be readily available
to researchers in the GWAS field.

In recent years, single-cell RNA sequencing (scRNA-seq)
technology has dramatically improved. Over a thousand cells can
now be sequenced with high quality in a single study, and several
studies have made their datasets publicly available13–15. Com-
pared to the traditional bulk RNA-seq, scRNA-seq can char-
acterize transcriptome profiles (TPMs) of specific cell types in
much higher resolution, as is done for example in large-scale
scRNA-seq studies such as the Human Cell Atlas16, Mouse Cell
Atlas17, and Tabula Muris18. Recent studies linking cell-specific
expression profiles with GWASs, have already implicated cell
types involved in, e.g. SCZ5,19, IQ20, and neuroticism (NEU)21.
While progress is made, these studies are still in their infancy;
typically, only a few scRNA-seq datasets are used, and these are
mostly confined to cell types from a single tissue. In addition, an
easy-to-use and benchmarked tool to conduct the cell type spe-
cificity analysis based on GWAS is not available, which hampers
replication of published studies.

In this study, we address the current limited use of publicly
available scRNA datasets, and propose a workflow to identify cell
type specificity of a trait using information from multiple scRNA-
seq resources. We systematically curated 43 publicly available
scRNA-seq datasets from 32 studies across a variety of tissues/
organs from human and mouse samples. Although direct inte-
gration of all the scRNA-seq datasets would be ideal, batch effects
induced by differences of protocols seriously complicate

generating a unified scRNA-seq dataset. Several approaches have
been introduced aiming to remove such batch effects22–26, yet
these for example, assume the presence of at least one overlapping
cell type25, or require that correlations between cell types are
highly similar across datasets22. However, there is not always a
one-to-one reference between cell types across datasets as the cell
type definition largely depends on the clustering methods used in
each study27. In addition, when integrating multiple datasets,
there is a risk of losing unique information that may be highly
informative, such as the presence of a cell type in one particular
study, but not in others. Because of these limitations, creating a
unified reference scRNA-seq set is currently not preferred.
Instead, we propose a workflow with cross-dataset conditional
analyses to systematically evaluate the association of cell types
based on multiple, independent datasets, without the need for
direct integration of scRNA-seq expression data and thereby
bypassing current hurdles, yet still using information from all
datasets. The workflow is implemented in the publicly available
web application FUMA28 (http://fuma.ctglab.nl), which facilitates
analyzing cell type specificity for traits (using GWAS results),
based on the combined, conditional effects of multiple scRNA-seq
datasets. To illustrate the utility of this approach, we applied it to
26 traits covering 6 trait domains for which well-powered
GWASs were available. We observed similar cell type association
patterns across traits within the same domain, such as endothelial
cells in cardiovascular domain, multiple sub-types of neuronal
cells in cognitive and psychiatric domains. In addition, we
demonstrated that within-dataset and cross-dataset conditional
analyses enabled us to identify independent association signals of
different cell types.

Results
Single cell expression datasets. Forty-three scRNA-seq datasets
were derived from 32 studies17,18,29–54 for which processed
expression data, such as read count, unique molecular identifier
(UMI) count, read per kilo base per million (RPKM) or tran-
scripts per kilobase million (TPM) was available (see “Methods”
section and Supplementary Data 1 and 2 for details). Figure 1a
provides an overview of the curated datasets in terms of the
sample tissue types, and the number of available cell types per
tissue. Out of the 43 datasets, 11 were based on human samples
and 32 were based on mouse samples. There were two relatively
large mouse datasets covering a variety of tissues and organs:
Tabula Muris18 and the Mouse Cell Atlas17, while 29 datasets
were specific to brain samples (7 for human and 22 for mouse
including embryo and fetal brain samples).

We first evaluated the similarity of scRNA-seq expression
profiles between independent datasets by comparing the average
expression per gene across cell types, which represents a general
gene expression of the dataset. To account for batch effects
between datasets, the average expression per dataset was ranked
into 100 bins and Spearman’s rank correlation was computed for
all possible pairs of 43 datasets (see “Methods” section).
Correlations across datasets within the same species were
significantly higher than between different species (two-sided
Mann–Whitney U-test p= 3.1e−5 and p= 1.3e−24 for human
and mouse, respectively). This was mainly driven by the high
within-species correlation of brain-specific datasets (p= 7.2e−7
and p= 1.3e−36 for human and mouse). As expected, Fig. 1b
shows a clear separation between brain-specific and non-brain-
specific datasets in which correlations within brain-specific
datasets were significantly higher than correlations between
brain-specific and non-brain-specific datasets regardless of the
species (p= 1.0e−82). In addition, human brain-specific datasets
showed significantly higher correlation with mouse brain-specific
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datasets than with human non-brain datasets (p= 1.1e−2), and
vice versa for mouse (p= 8.3e−11). We also observed signifi-
cantly higher correlations within non-brain-specific datasets than
between brain-specific and non-brain-specific datasets (p= 2.9e
−15). However, we were not able to evaluate, for non-brain-
specific datasets, whether datasets are more strongly correlated
within a tissue type than across tissue types due to limited
availability.

Next, cell type-specific gene expression patterns were evaluated
across the 43 datasets. First, the average expression across cell
types within a dataset was regressed out, followed by ranking the
residual into 100 bins for each cell type per dataset. For all
possible pairs of cell types across 43 datasets, Spearman’s rank
correlation was computed and projected into a 2D map using t-
SNE55 (see “Methods” section). Each cell type was then manually
assigned to one of the six main categories of cell types (i.e.
neurons, glial cells, microglia, endothelial cells, immune cells, and
others) based on the original cell label (see Supplementary Data 3
for t-SNE coordinates and annotations). For three brain cell types
(neurons, glial cells, and microglia), correlations of cell-specific
expression profiles were significantly higher within each of the
three cell types than across these three brain cell types (two sided
Mann–Whitney U-test p < 1.0e−323 for all three cell types;
Fig. 2a). We also found that endothelial cells detected in brain-
specific datasets were clustered together with glial cells, and
showed a significantly higher correlation with glial cells than with
other endothelial cells that were detected in non-brain-specific
datasets (p < 1.0e−323; Fig. 2a). Cell types from non-brain-
specific datasets formed a large cluster distinctively apart from

brain-specific cell types. Within the non-brain-specific cluster,
immune cells tend to be clustered together and so did endothelial
cells, which showed stronger correlation within each cell type
than between other cell types from non-brain-specific datasets
(p < 1.0e−323 for both immune and endothelial cells). These
results show that, across these 43 datasets, cell type-specific
expression patterns are highly similar, suggesting the cell types
are roughly comparable across datasets, which includes both
human and mouse resources. We also observed that the same cell
types tended to cluster together across different tissue types (or
specific brain regions) of the samples (Supplementary Fig. 1).

We note that, cell types from the same study (or datasets
generated from the same lab) tended to cluster together within
the same general cell type (Fig. 2b). In addition, cell types from
the same species tended to form a cluster within the same
category of cell types (Fig. 2c). This clearly indicates the existence
of complex batch effects across datasets. In this study, we
therefore do not attempt to directly integrate multiple scRNA-seq
datasets, but bypass this problem by conducting conditional
analyses to allow systematic comparison across datasets.

Cell type specificity analysis with MAGMA. To test whether risk
variants for a specific trait converge on a specific cell type, we
conducted a MAGMA gene-property analysis, where the gene-
properties in this case are defined by the gene expression values in
a specific cell type. The gene-based P-values derived from GWAS
results were pre-computed with MAGMA for 26 well-powered
(N > 10,000) traits from multiple trait domains (see “Methods”
section). The gene-property analysis aims to test relationships
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between cell type-specific gene expression and disease–gene
associations10,56, which is based on the following regression
model:

Z ¼ β0 þ EcβE þ AβA þ BβB þ ε ð1Þ

where Z is a gene-based Z-score converted from the gene-based
P-value (obtained from MAGMA gene analysis), B is a matrix of
several technical confounders (such as gene length and correla-
tion between genes based on LD) included by default56. Ec is the
gene expression value of a testing cell type c and A is the average
expression across cell types in a dataset, defined as follows:

Ec ¼
1

n

Xn

i

log2ðei þ 1Þ ð2Þ

A ¼
1

N

XN

j2C

Ej ð3Þ

where n is the number of cells in the cell type c, ei is the
expression value of a cell in cell type c (e.g. UMI count or CPM),
N is the number of cell types in a dataset, and C= {cell type 1, cell
type 2,…, cell type N}. In the model, A (average expression across
cell types) is added as an additional covariate to identify cell
specificity10 (Supplementary Note 1 and Supplementary Fig. 2).
We performed a one-sided test (βE > 0) which is essentially testing
the positive relationship between cell specificity and genetic
association of genes. Note that the A depends on the available cell
types and the distribution of them within a dataset, and affects the
definition of the cell specificity. This issue is discussed in more
detail in the later section.

We compared our MAGMA regression model with the
regression model previously applied by Skene et al.19, where
expression values were converted to a binned cell type specificity
of gene expression value, which is a proportional expression of a
gene in a cell type relative to the sum of all cell types (denoted
here as specificity (S) score to distinguish from the expression
value E used in our model)19. We showed that the model of Skene
et al. inflates the results of MAGMA gene-property analyses
because binned S scores can have strong positive correlations with
the average expression across cell types (Supplementary Fig. 3).
This suggests that the associations of the binned S score variables
are vulnerable to confounding by a general effect of gene
expression, making it very difficult to draw reliable conclusions
concerning cell type specificity (see “Methods” section, Supple-
mentary Note 2 and Supplementary Figs. 3–5). Therefore, we
believe correcting the average expression across cell types
independently from the cell-specific expression value is crucial
to identify cell specificity.

In addition, there are often genes with expression value zero or
very close to zero in all or the majority of cells in a scRNA-seq
dataset. It is not always known whether these genes are truly not
expressed or are expressed at levels that cannot be accurately
measured with current technology. The presence of genes with
low-expression values influences the distribution of cell type-
specific expression values. The decision how to treat them may
unintendingly influence outcomes of cell type-enrichment
analyses. The model we propose here showed highly similar
results regardless of including or excluding low-expression values,
and thus is not influenced by skewed distributions of expression
values and does not necessitate excluding low-expression values
(Supplementary Fig. 6).

We next compared our approach with two previously proposed
methods that aim to identify cell type specificity of a trait using
GWAS summary statistics: LD score regression (LDSC)5 and
RolyPoly6 (see “Methods” section for details). We found that both
LDSC and RolyPoly resulted in less significant trait-cell type

associations compared to the MAGMA regression model
(Supplementary Figs. 7 and 8 and Supplementary Note 3). We
therefore conclude that the MAGMA regression model may be
preferred. However, we do note that each of these methods tests
slightly different hypotheses and it can be informative to compare
outputs from multiple tools (Supplementary Note 3).

A workflow of cell type-specificity analysis. As mentioned pre-
viously, integration of scRNA-seq datasets across multiple studies
is challenging due to complex batch and sampling effects. Here
we propose a workflow that allows comparison of cell type-
specific gene expression profiles from different scRNA-seq data-
sets that are significantly associated with a trait, using a condi-
tional analysis to avoid the need for direct integration of the gene
expression profiles. The workflow consists of three steps as
described in Fig. 3.

In the first step, MAGMA cell-specificity analyses are
performed for each of the 43 scRNA-seq datasets separately
using the regression model described above. Multiple testing
correction is applied to the results for all tested cell types across
datasets (Supplementary Note 4 and Supplementary Fig. 9).

The second step is a within dataset conditional analysis. It is
often the case that there are multiple similar cell types defined in
a scRNA-seq dataset, especially when the resolution of cell types
is high. The gene expression profiles of those cell types tend to
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strongly correlate with each other, and when a cell type is strongly
associated with a trait, it is not clear whether that reflects a
genuine involvement of that cell type or whether there is
confounding due to expression in another cell type correlated
with it. The conditional analysis is, therefore, essential to
disentangle relationships between trait-associated cell types10. In
step 2, a systematical step-wise conditional analysis per dataset is
performed, by setting thresholds for proportional significance
(PS) of the conditional P-value of a cell type relative to the
marginal P-value (PSa,b=−log10(pa,b)/−log10(pa), where pa is
the marginal P-value for the cell type a and pa,b is the conditional
P-value of the cell type a conditioning on the cell type b). The
results will show which cell types to retain or discard from the
final step (see “Methods” section and Supplementary Table 1, as
well as ref. 10 for details).

The last step is to unravel relationships between significantly
associated cell types across datasets. Although the absolute gene
expression values in different datasets are not directly compar-
able, cross-datasets (CD) conditional analysis allows us to test the
extent to which the significant gene expression profiles found in
different data sets reflect the same or similar association signals.
The analysis is performed for all possible CD pairs of significant
cell types retained from the second step (see “Methods” section
for details). Then the PS of the CD conditional P-value of a cell
type relative to the CD marginal P-value is computed for each cell
type of all possible pairs. In this step, the pair-wise conditional
analysis provides an overview of independent clusters of signals
associated with a trait.

Application to GWAS summary statistics of 26 traits. To gain
insight into the cell types implicated in a variety of traits, we
selected GWAS summary statistics for 26 traits from six disease
domains (cardiovascular, immunological, metabolic, cognitive,
neurological, and psychiatric traits), which are well powered
(sample size > 10,000) and widely studied in terms of both
genetics and pathological pathways (Supplementary Table 2).

We first performed MAGMA gene analyses for 20,260 protein-
coding genes extracted from Ensembl v92 (GRCh37) with 1 kb
windows both sides. Note that we confirmed that gene analysis
results are not considerably sensitive to the size of the gene
window (Supplementary Fig. 10). We subsequently performed
cell type specificity analysis following the three steps described
above. For step 1, Bonferroni correction was employed across 43
datasets; in total 2679 unique dataset–cell type combinations were
tested, setting the significance threshold at Pbon= 0.05/2679=
1.87e−5. To evaluate the added value of scRNA-seq datasets
above the traditional tissue-specific RNA-seq datasets, we
computed tissue specificity for these 26 traits using RNA-seq
data from GTEx v7 (53 tissue types; see “Methods” section and
Supplementary Data 4).

We first evaluated the similarity of cell type association
patterns across 26 traits (see “Methods” section). Overall, we
observed that traits within the same domain tended to show
similar cell-type specificity, except for traits in the metabolic
domain, which did not form a single cluster (Fig. 4a). In addition,
cell-type association patterns of traits across three specific
domains (cognitive, neurological, and psychiatric domains)
tended to be very similar. Summarizing the proportion of
significantly associated cell types using the six main categories
of the cell types, we find that traits in cardiovascular domain
tended to show significant association in endothelial and glial
cells, immunological domain in immune cells and microglia, and
cognitive, neurological and psychiatric domains in neuronal cells
(Fig. 4b). Number of significantly associated cell types at each
steps and independent signals are summarized in Table 1 for 26

traits and full results are provided in Supplementary Data 5. For
each of the clusters of traits, specific cell types were implied as
detailed below.

Cardiovascular domain. Based on GTEx data, coronary artery
disease (CAD), diastolic blood pressure (DBP) and systolic blood
pressure (SBP) showed the most significant association with
artery tissue, high blood pressure (HBP) with uterus and cervix,
and pulse rate (PR) with heart tissue (Supplementary Data 4).
From cell specificity analyses, four traits (CAD, HBP, DBP, and
SBP) showed strong association with endothelial or other vascular
cells from multiple datasets (Table 1 and Supplementary
Fig. 11a). Conditional analyses showed that these associations of
endothelial cells across multiple datasets were mostly not inde-
pendent (Fig. 5a and Supplementary Fig. 12a–c), which indicates
that the association with endothelial cells is supported by multiple
independent datasets. We also observed an association of astro-
cytes for CAD, supporting the previously reported involvement of
astrocytes in CAD57. PR showed stronger association with cardiac
muscular cells in heart and smooth vascular cells than endothelial
cells (Table 1 and Supplementary Fig. 12d).

Immunological domain. All of the five traits in this domain
(inflammatory bowel disease (IBD), multiple sclerosis (MS),
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE),
and type 1 diabetes (T1D)) were associated with immune-
enriched tissues (e.g. whole blood and spleen) using GTEx data
(Supplementary Data 4). These traits all showed, based on
scRNA-seq datasets, association with at least one of the subtypes
of B cells from multi-tissue datasets (Table 1, Supplementary
Figs. 11b and 12e–i). Pathogenesis of B cells autoimmune/
immune-mediated disease has been widely reported58–60. In
addition, we found independent associations of microglial cells
with the five traits (Supplementary Fig. 12e–i), providing addi-
tional support for the recently implicated role of microglia in
autoimmune diseases61–63.

Cognitive, neurological, and psychiatric domains. Traits in
cognitive, neurological, and psychiatric domains tended to show
strong associations with multiple brain regions based on GTEx
data (Supplementary Data 4). Using scRNA-seq datasets, EA, IQ,
NEU, and SCZ showed the strongest association with the broadly
defined neurons from Tabula Muris FACS (TMF; Supplementary
Fig. 11c). These traits also showed association with multiple
subtypes of neural cells from a variety of datasets and a large
proportion of these associations were either driven by or jointly
explained by the broadly defined neurons from TMF (Fig. 5b and
Supplementary Fig. 12j–l). However, several subtypes of neurons
showed independent signals. For example, SCZ and IQ showed
association with an independent cluster of excitatory neurons
(Fig. 5b, Supplementary Fig. 12k). SCZ also showed an associa-
tion with a sub-class of inhibitory neurons in hindbrain samples
(HBINH2) independent from excitatory neurons (Fig. 5b). In
addition, GABAergic neuron and lateral neuroblast from
embryonic brain samples (Linnarsson GSE76381) showed inde-
pendent cluster in EA, IQ, NEU, and SCZ. Associations of the
general neuronal cell types with some of these traits has been
previously reported19–21, however here we show, for the first
time, independent associations of specific excitatory, inhibitory,
and embryonic neurons.

Major depressive disorder (MDD), insomnia (ISM), and
subjective well-being (SWB) showed association with inhibitory
neuron from human lateral geniculate, substantia innominate
from mouse brain, and neurons in layer 5 from mouse visual
cortex, respectively (Supplementary Data 5). For Alzheimer
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Table 1 Summary of cell specificity for 26 traits

Trait Datasetsa Step 1b Step 2c Step 3d Summary of independent cell typese

Cardiovascular

CAD 14 68 16 4 Endothelial cell, astrocytes and muscle cells

DBP 13 31 16 3 Endothelial cell and brain pericyte

HBP 15 45 19 3 Endothelial cell, brain pericyte and oligodendrocyte

PR 7 11 8 4 Cardiac muscle cell, smooth muscle cell, endothelial cell and mural cell

SBP 15 53 17 2 Endothelial cell and oligodendrocyte precursor cell

Immunological

IBD 22 104 25 4 Microglia, blood cell, endothelial cell and marrow B-cell

MS 8 15 10 4 Marrow B-cell, microglia, professional antigen-presenting cell and dendritic cell

RA 17 61 19 5 Marrow B-cell, blood cell, microglia and professional antigen-presenting cell

SLE 10 23 12 3 Mammary macrophage, lung B-cell and microglia

T1D 5 15 5 3 Marrow B-cell, endothelial cell and microglia

Metabolic

BF 0 0 − − −

BMI 17 147 20 4 4 cluster of neurons

CKD 0 0 − − −

OB 4 14 5 5 5 cluster of neurons and leukocyte

WHR 21 187 25 6 Endothelial cell, mesenchymal cell, vascular smooth muscle and outer bulge

Cognitive

EA 16 180 20 5 5 clusters of neurons

IQ 16 220 18 4 4 clusters of neurons

Neurological

AD 3 3 − 3 Monocyte and microglia

EPL 0 0 − − −

ISM 1 1 − − Substantia innominate

IV 0 0 − − −

Psychiatric

ADHD 0 0 − − −

MDD 1 1 − − Inhibitory neuron

NEU 13 87 15 5 5 clusters of neurons and pars tuberalis

SCZ 20 187 25 5 5 clusters of neurons

SWB 1 1 − − Layer 5 intratelencephaic neuron

aNumber of unique datasets of significantly associated cell types from step 1
bNumber of significant cell types after Bonferroni correction across datasets
cNumber of cell types retained after step 2 (within dataset conditional analyses)
dNumber of cell types which are mostly independent across datasets based on step 3 (cross-datasets conditional analyses)
eGeneral type of cell types which are mostly independent from step 3, detailed results are available in Supplementary Data 5
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disease (AD), we found a unique cell type association pattern,
implicating a role for microglia (Supplementary Data 5). For
attention deficit hyperactivity disorder (ADHD), epilepsy (EPL),
and intracranial volume (IV), we did not find any significant cell
type associations (Supplementary Data 5).

Metabolic domain. Of the five traits in the metabolic domain,
BMI and obesity (OB) showed association with brain, while WHR
showed the strongest association with adipose tissues using GTEx
dataset (Supplementary Data 4). Based on cell-specificity ana-
lyses, BMI and OB showed very similar cell type association
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patterns with EA, IQ, NEU, and SCZ, which were significantly
associated with the broadly defined neurons from TMF (Sup-
plementary Fig. 11d). Involvement of central nervous system in
these metabolic traits has been previously suggested8. In addition,
both BMI and OB showed significant association with inhibitory
neurons that are independent from associations with other neu-
ronal cell types (Supplementary Fig. 12m, n). On the other hand,
WHR showed distinct cell type specificity compared to other
metabolic traits (Fig. 4), with independent signals in endothelial
cells, smooth vascular cells, and mesenchymal cells (Supple-
mentary Fig. 12o). Body fat percentage and chronic kidney dis-
ease did not show any significant association with any cell type
(Supplementary Data 5).

We also provide a step-by-step interpretation of results from
the three steps in the analysis workflow, for three specific traits
(CAD, IBD, and SCZ) in Supplementary Note 5.

Effects of general expression across cell types. In studies inte-
grating scRNA-seq datasets with GWAS summary statistics to
identify trait relevant cell types (including this study), the speci-
ficity of a cell type is defined by the gene expression of the cell
type relative to the general expression of genes within a dataset
(e.g. the average expression across cell types)5,6,19. Therefore, the
cell-type specificity depends on the tested cell types in the dataset,
and on the decision which cell types to include in the analysis. For
example, the specificity of a cell type in a brain-specific dataset is
relative to the overall expression of genes in the brain, while in a
multi-tissue dataset, it is relative to a general gene expression
across different tissues. To evaluate whether and how the average
expression affects trait–cell type associations, we compared
associations of neuronal cells and immune cells in the context of
differences in cell types included in the analysis (see “Methods”
section for details).

We observed decreased significance of the association of
neurons from multi-tissue dataset (TMF) when we conditioned
on the average across only brain cell types compared to all cell
types (Fig. 6a). This explains, for brain-related traits, stronger
associations of neurons from TMF compared to associations to
neuronal cells from other brain-specific datasets. For a brain-
specific dataset, the association of a specific sub-type of an
excitatory neuron (TEGLU4 from Mouse Brain Atlas (MBA)
dataset) slightly decreased by conditioning on the average
expression across only neuronal cell types, while a larger decrease
was seen when it was conditioned on the average expression
across only excitatory neurons (Fig. 6b). Since 81% of defined cell
types in the MBA dataset are neuronal cells, the average across all
cell types could be already biased by the neuronal expression,
which is why the decrease of significance conditioning on the
average of neuronal cells was minimal. Indeed, when a
distribution of cell types is balanced (see “Methods” section for
details), the significance of the associations increased (Fig. 6c). On
the other hand, a large decrease of the significance with

conditioning on the average across all excitatory neurons
indicates the association of TEGLU4 is largely confounded by
the general expression of excitatory neurons (Fig. 6b).

Similarly, the associations of marrow B-cells from a multi-
tissue dataset (TMF) decreased by conditioning on the average
across only immune cell types defined in marrow samples
(Fig. 6d). This suggests that the association of B-cells with these
immunological traits is partially explained by the general
expression of immune cells.

To summarize, the strength of the cell type associations is
highly sensitive to the definition of the cell type specificity, which
depends on the distribution of cell types available in a dataset.
This can make the magnitude of the effects highly variable across
traits, cell types, and datasets. The conditioning general gene
expression changes the definition of the cell type specificity and
thereby changes the exact hypothesis that is tested. It is crucial to
be aware of what hypothesis is exactly tested given the
distribution of cell types available in the datasets.

Discussion
GWASs have successfully identified genomic loci associated with
various human phenotypes, yet so far they provided little insight
into the specific cellular mechanisms. Gene expression is a critical
intermediate phenotype between genes and functions. The recent
advances in sequencing technology provide single-cell resolution
of the transcriptome, which allows the collection of information
in unprecedented detail. This increase in resolution of cellular
taxonomies provides several advantages over the bulk RNA-seq of
sampled tissues: first, scRNA-seq enables to single out a specific
cell type that is associated with a trait, and second, it increases the
power to detect such associations as expression profiles are less
heterogenous for single cells than for bulk tissues. By comparing
the cell type specific expression patterns across datasets, our
results showed that the same cell types tend to cluster together
across datasets with different taxonomy or tissue types of the
samples.

We note that cell type specificity can be also implicated by
other types of data resources, such as ATAC-seq64 and chromatin
markers65. We focused on scRNA-seq in this manuscript because
of the relatively large availability of the datasets. In addition, the
MAGMA gene-property analysis requires annotations per gene
while ATAC-seq and chromatin markers are genome-based
annotations, although this may not be a problem for approaches,
such as LDSC where annotations at SNPs level are used. When
data resources such as ATAC-seq and chromatin markers become
available more abundantly in single cell resolution, they might
also be advantageous for the identification of cell type specificity
of a trait.

With increasing availability of scRNA-seq data, combining
datasets from multiple independent resources could theoretically
reduce dataset specific noise by increasing the number of cells per
cell type. However, direct integration of scRNA-seq datasets is

Fig. 5 Pair-wise cross-datasets conditional analysis for coronary artery disease (a) and schizophrenia (b). Heatmap of pair-wise cross-datasets conditional

analyses (step 3) for cell types retained from the step 2. Cell types are labeled using their common name with additional information in parentheses (which

is needed when referring back to the label from the original study). The index of the dataset is in square brackets. The heatmap is asymmetric; a cell on row

i and column j is cross-datasets (CD) proportional significance (PS) of cell type j conditioning on cell type i. The CD PS is computed as −log10(CD

conditional P-value)/−log10(CD marginal P-value). The size of the square is smaller (80%) when 50% of the marginal association of a cell type in column j

is explained by adding the average expression of the dataset in row i (before conditioning on the expression of cell type i). Stars on the heatmap represent

pair of cell types that are colinear. Double starts on the heatmap represent CD PS > 1. The bar plot at the top illustrates marginal P-value of the cell types on

x-axis and stars represent independently associated cell types. Cell types are clustered by their independence, and within each cluster cell types are

ordered by their marginal P-value. For example, there are four independent associations in (a) and cell types without a star are not independent from the

association of the first independent cell type (with star) on its left. The complete results are available in Supplementary Data 5. The heatmap for other traits

are available in Supplementary Fig. 12
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complicated due to batch and sampling effects. We therefore
proposed CD conditional analyses to detect cell types implicated
in diseases, while benefiting from the availability of multiple
scRNA-seq datasets. By applying this method to 26 traits using
43 scRNA datasets, we demonstrated that multi-step conditional
analyses can disentangle relationships between associated cell
types which reveal independent signals of specific cell types. For
example, EA, IQ and NEU and SCZ showed independent asso-
ciations of excitatory, inhibitory, and embryonic neurons from
the most significant broadly defined neurons.

Our results also showed the advantage of using scRNA-seq
over bulk RNA-seq datasets by pinpointing associations of spe-
cific cell types with traits. For instance, CAD showed significant
associations with artery in coronary and aorta using GTEx
dataset, and results of cell type specificity associations suggest that
this association is likely to be driven by endothelial cells. In
addition, the high resolution of cell type definitions allowed us to
pinpoint slightly different association patterns across traits.
Indeed, BMI in general showed a very similar cell type specificity
pattern with multiple traits from neurological, cognitive, and
psychiatric domains, however the strong associations of a subtype
of excitatory neurons in the cortex from the MBA dataset
(TEGLU) with neurological, cognitive, and psychiatric traits was
not retained in BMI. Instead BMI showed stronger association
with inhibitory neurons of the hindbrain (HIBNH), which jointly
explained the association of TEGLU, while the associations of
TEGLU and HIBNH were independent from each other for both
EA and SCZ. These differences between BMI and brain-related
traits were not distinguishable when examining tissue specificity,
demonstrating that scRNA-seq datasets can provide more specific
information compared to bulk RNA-seq.

We also highlighted the potential effect of how cell type spe-
cificity is defined in the context of which other cell types are
included in the analysis. We note that it is important to interpret
cell type associations in the context of how cell type specific was

defined, e.g. an association with neurons from multi-tissue or
brain-specific dataset, each represents an association with
neuron-specific expression given general expression across cell
types from multiple tissues or general expression of the brain. We
provide pre-processed expression value per cell types (https://
github.com/Kyoko-wtnb/FUMA_scRNA_data), to allow users to
customize which cell types to include depending on their research
questions.

Aligning cell type-specific expression profiles with GWAS
results can lead us one step closer to functional follow-up
experiments. Current availability of scRNA-seq datasets allow a
first glimpse into how genes associated with a trait may exert their
influence. However, gene expression in phenotypically identical
cells can surprisingly vary during the lifespan, and identifying
cellular subtypes not only at spatial but also at temporal resolu-
tion will also be important in understanding how cellular func-
tions may affect the risk of disease throughout development. In
the future, large-scale efforts, such as the Human Cell Atlas, hold
a great promise for providing a comprehensive overview of cell-
specific gene expression in most of human tissues with much
larger sample sizes16.

Methods
URLs. GEO: https://www.ncbi.nlm.nih.gov/geo/, Linnarsson’s group: http://
linnarssonlab.org/, Mouse Brain Atlas: http://mousebrain.org/, Tabula Muris:
https://hemberg-lab.github.io/scRNA.seq.course/tabula-muris.html, Allen Brain
Atlas: http://celltypes.brain-map.org/download, The Mouse Cell Atlas: http://bis.
zju.edu.cn/MCA/, DropViz: http://dropviz.org/, Broad single cell portal: https://
portals.broadinstitute.org/single_cell, GTEx: https://www.gtexportal.org/,
MAGMA: https://ctg.cncr.nl/software/magma, CARDIoGRAMplusC4D: http://
www.cardiogramplusc4d.org/, Immunobase: https://www.immunobase.org/
downloads/protected_data/GWAS_Data/, GIANT consortium: https://portals.
broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files,
IGAP: http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php,
ENIGMA: http://enigma.ini.usc.edu/, SSGAC: https://www.thessgac.org/, PGC:
https://www.med.unc.edu/pgc, FUMA: http://fuma.ctglab.nl/
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Fig. 6 Effects of the general expression conditioned in the regression model. a Association of P-values of neuron from Tabula Muris FACS conditioning on

average expression across all available cell types from multiple tissues (pink) or only brain cell types (blue). b Association of P-values of TEGLU4

(excitatory neuron from cortex) from Mouse Brain Atlas conditioning on average expression across all available cell types (pink), only neuronal cell types

(blue), or only excitatory neurons (green). c Association of P-values of TEGLU4 (subtype of excitatory neurons from cortex) from Mouse Brain Atlas

conditioning on average expression across all available cell types (pink) or randomly selected 35 cell types (including TEGLU4) with uniform distribution

across seven cell type classes (blue). d Association of P-values of Marrow B-cell from Tabula Muris FACS conditioning on average expression across all

available cell types (pink) or only immune cell types in Marrow samples (blue). The percentages displayed on the blue and green bars represent the

proportional significance (in −log10 scale) compared to the pink bars. EA educational attainment, SCZ schizophrenia, IQ intelligence, BMI body mass index,

NEU neuroticism, OB obesity, ISM insomnia, RA rheumatoid arthritis, MS multiple sclerosis, T1D type 1 diabetes, IBD inflammatory bowel disease
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Curation and pre-processing of scRNA-seq datasets. Single-cell RNA-seq
(scRNA-seq) datasets were curated from NCBI GEO and other resources (see
URLs). We first selected datasets with a total number of cells > 250 and when
samples are Homo sapiens or Mus musculus . We further selected datasets in which
both the processed expression data and pre-assigned cell label was available.
Processed expression data could be read count, UMI count, RPKM, or TPM. We
did not perform any pre-analysis on FASTQ files.

Each dataset was processed separately according to the following steps: (1)
When the obtained value was the read count, the count was converted into the
count per million (CPM) to allow correction for the total number of reads per cell.
Other values, UMI count, RPKM, and TPM were used as is. (2) Quality control
(QC) of cells was performed as described in the original study unless the obtained
dataset was already QC-ed. (3) Cells with uninformative cell type labels (e.g.
‘unclassified’ or missing cell label) that are defined as outliers in the original study
were excluded with an exception to ‘unknown’ cell clusters in Tabula Muris
datasets which have a potential of being novel cell types. (4) The expression value
(UMI count, CPM, RPKM, or transcript per million (TPM) was log2 transformed
with pseudo-count 1 and the per gene per cell type average was computed. (5)
Genes provided in the processed datasets were mapped to human Ensembl gene ID
(v92). Mouse genes were mapped to human genes using BioMart. Genes which
were not mapped to a human Ensembl gene ID were excluded. For all datasets, cell
labels were used as provided in the original dataset. Further details and exceptions
for each dataset are described in Supplementary Data 2. Then, for each dataset,
average expression per cell type was computed with additional column of average
across cell types. When there are multiple levels of cell labels, average expression
was computed for each level which created multiple files. Similarly, when there are
multiple tissue types or developmental stages are available, one average expression
file with all cell types from all tissues/developmental stages and multiple files for
each tissue/developmental stage separately were created for a single scRNA-seq
dataset.

Mapping genes to human Ensembl gene ID. We used Ensembl v92 as the pri-
mary gene ID in this study. When gene symbols are annotated to expression value
in human scRNA-seq dataset, gene symbols were mapped to Ensembl gene ID by
matching ‘external_gene_name’ from BioMart. Genes with duplicated Ensembl
gene ID were filtered out. For mouse gene, first mapped mouse Ensembl gene ID to
human Ensembl gene ID using BioMart and only genes with one-to-one assign-
ment between human and mouse were extracted. Then mouse gene symbols and
aliases are assigned to Ensembl gene ID using NCBI gene information (Mus_-
musculus.gene_info.gz). Gene symbols in mouse scRNA-seq datasets were then
mapped to human Ensembl gene ID by matching either symbol or any of aliases
and genes with duplicated Ensembl ID were excluded.

Datasets and cell types used in analyses. For each of 43 datasets, we used cell
type labels at the highest possible resolution when multiple levels are available. For
example, when level 1 and level 2 cell type annotations are available (level 2 defines
greater number of cell types), level 2 label was used. For GSE93374, level 2 was used
instead of level 3, since level 3 cell type annotation is only assigned to neuronal
cells. Similarly, for GSE74672, level 1 was used instead of level 2 which was only for
neuronal cells. For GSE60361, level 1 was used instead of level 2, since there are 189
cells without informative label at level 2. This resulted in 2,679 unique cell
type–dataset pairs.

Comparison of scRNA-seq expression profiles across datasets. To compare
general gene expression profiles across datasets, first, the average expression across
available cell types per dataset was computed. Then, for any pair of datasets, the
correlation coefficient was computed by taking genes present in both datasets and
ranking genes into 100 bins to account for batch effects. Genes with an expression
value of zero were kept as zero, therefore, there are 101 values in the end (from 0
to 100).

To compare cell type specificity across datasets, expression values of each cell
type were regressed on the average expression across cell types per dataset and
residuals were used as cell type-specific expression. For each pair of cell types both
within and between datasets, correlation coefficient was computed by taking genes
present in both datasets and ranking genes into 100 bins as described above.
Similarity of cell types was visualized by projecting on to 2D map by performing t-
SNE55 on average expression per cell type per dataset with perplexity 30. t-SNE was
performed 100 times for each dataset and optimal projection was obtained by
minimizing Kullback–Leibler divergence.

Comparison with LDSC and RolyPoly. We used the Tabula Muris FACS dataset
including 119 cell types to compare results of cell type specificity based on different
methods for three traits; CAD, IBD, and SCZ as examples. To perform cell type
specificity analyses with LDSC, genes are required to have binary state; i.e. they are
either specific to a cell type or not. As previously applied by Skene et al.19, the top
10% of genes with the highest S score were defined as cell type-specific genes for
each of 119 cell types. We also defined another set of cell type-specific genes by
taking the top 10% of genes with the highest residuals after regressing out the
average expression across cell types from gene expression per cell type. Then SNPs

within 1 kb windows (both sides) were mapped to cell type-specific genes. We
corrected for 53 baseline annotations66. To account for presence of genes in TMF
datasets, one additional annotation by annotating 1 for SNPs located within 1 kb
window of any of genes available in TMF dataset was included for each of 119
cell type.

The input of RolyPoly is a matrix with genes in rows and cell types in columns
and it is recommended to scale the expression value across the dataset6. We
therefore used the average log2-transformed expression per gene per cell type and
further scaled across the dataset. Since the software does not allow negative values
as an input, the scaled expression values were shifted by the minimum value so that
all genes in all cell types have positive value. The RolyPoly implements bootstrap to
compute specificity of the cell type which is computationally very expensive and
time consuming. Therefore, we limited the analyses to chromosomes between 10
and 22. To compare with the MAGMA regression model, we re-run MAGMA
gene-property analyses only using genes on chromosomes 10–22.

GTEx expression data. GTEx v7 TPM was obtained from GTEx portal (URLs).
Genes with average TPM per tissue > 1 in at least one tissue were included. TPM
was log2-transformed with pseudocount 1 after winsorizing at 50, and average
expression was computed for each of 53 tissue types.

MAGMA gene and gene-property analyses. MAGMA gene analyses were per-
formed for all GWAS summary statistics with matched reference panel, i.e. 1000
Genomes67 (1000G) or UK Biobank release 268 (UKB). Reference panel used for
gene analyses are labeled in Supplementary Table 2 for each trait. For 1000G, 504
European subjects were used. For UKB, randomly selected 10,000 unrelated Eur-
opean subjects were used. Although some meta-analyzed GWAS summary statis-
tics contain multiple populations, the majority of subjects were of European
ancestry, and we used European population as a reference panel. To maximize the
matching of SNPs between GWAS summary statistics and reference panel, unique
SNP ID (consists of chromosome:position:allele1_allele2 where alleles are alpha-
betically ordered) was used instead of rsID. SNPs were assigned to one of the
20,260 coding genes from Ensembl v92 with 1 kb window for both sides. Gene
analysis was performed with SNP-wise mean model56.

MAGMA gene-property analyses (v1.07) were performed using the output of
gene analysis and gene expression datasets processed as described above. Average
expressions per cell/tissue type were provided as gene covariates to magma by the
following flag, ‘–gene-cov < file name > –model condition-hide=Average
direction= greater’ which perform one-side test conditioning on average
expression across cell/tissue types. For Supplementary Figs. 3–6 where binned S
score was used as expression value, ‘condition-hide=Average’ option was
excluded. Similarly, for Supplementary Figs. 2–4 where we did not condition on
average expression across cell/tissue types, ‘condition-hide=Average’ option was
excluded.

Within dataset conditional analysis. In the second step of the workflow, step-wise
conditional analyses were performed, per dataset, from the cell type with the most
significant marginal P-value. In summary, forward selection (retain the cell type
with the lowest marginal P-value) was performed for a pair of cell types which were
jointly explained (PSa,b < 0.2 and PSb,a < 0.2) or one association was mainly driving
the other’s (PSa,b ≥ 0.5 and pb,a ≥ 0.05, or PSa,b > 0.8 and PSb,a < 0.5). In the case of
partially joint associations (PSa,b ≥ 0.5 and PSb,a ≥ 0.5) or independent (PSa,b ≥ 0.8
and PSb,a ≥ 0.8), both cell types were retained. Note that when associations of two
cell types are jointly explained, only one cell type with the lowest marginal P-value
is retained for the third step. However, this does not mean the discarded cell type is
less important than the retained cell type, but the result suggests that the asso-
ciations of these two cell types cannot be distinguished. Although conditional P-
values are often proportional to marginal P-values, it is possible that cell type with
higher marginal P-value results in less conditional P-value for a pair of cell types
(i.e. pb,a < pa,b). Therefore, when PSa,b < 0.2 and PSb,a ≥ 0.2, the order of cell types
was flipped for forward selection.

Although only retained cell types were used for the third step, the results of
within-dataset conditional analyses for any pair of cell types were further broken
down into eight categories, as described in Supplementary Table 1. This is to
provide better understanding of the relationship of two significantly associated cell
types. For example, in both scenario 4 and 5, cell type B is dropped and cell type A
is considered as the main driver of the association. However, in scenario 4,
association of cell type B cannot be completely explained by cell type A as
conditional P-value of cell type B is still < 0.05. Therefore, there might still be a
unique signal to cell type B, however, as large amount of significance is dropped,
the cell type B is not retained for the further step.

CD conditional analysis. For each pair of cell types from different datasets, the
following three regression models were tested to incorporate the effect of the
average expression from the other dataset:

Z ¼ β0 þ Ec1βEc1 þ A1βA1
þ A2βA2

þ BβB þ ε ð4Þ

Z ¼ β0 þ Ec2βEc2 þ A1βA1
þ A2βA2

þ BβB þ ε ð5Þ

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11181-1 ARTICLE

NATURE COMMUNICATIONS | (2019)10:3222 | https://doi.org/10.1038/s41467-019-11181-1 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Z ¼ β0 þ Ec1βEc1 þ Ec2βEc2 þ A1βA1
þ A2βA2

þ BβB þ ε ð6Þ

where Ecx is an average log-transformed expression of cell type c from dataset x,
and Ax is an average expression across cell types in dataset x. In this step, we define
P-value of testing alternative hypothesis βEcx > 0 from 1st and 2nd models as CD
marginal P-value, and βEcx > 0 from 3rd model as CD conditional P-value for a cell
type c from a dataset x. Note that, when associations of two cell types from different
datasets with a trait are largely disappeared by conditioning on each other, it
suggests that associations of those cell types were driven by similar genetic signals
but this does not measure the similarity of two cell types (i.e. it cannot be con-
cluded that the cell types from the different datasets are the same). To summarize
the results from step 3, we defined independently associated cell types based on
forward-selection (by ordering the cell types with marginal P-value), where we
considered cell types with PS > 0.5 on each other are independent.

Effects of the average gene expression across cell types. To compare average
expression across all cell types and only brain cell types, we used TMF (multi-
tissue) dataset. For brain-specific expression, 9 cell types with the label of tissue
‘Brain Non_Myeloid’ or ‘Brain Myeloyd’ in the original dataset were extracted. We
used six traits which showed significant marginal association with the neurons for
the comparison.

To compare average expression across all brain cell types and only neuronal cell
types, we used MBA dataset. For neuron-specific expression, 214 neuronal cell
types with ‘Neuron’ in the highest class in the original dataset were extracted. For
excitatory neuron-specific expression, 60 excitatory neurons which contained a
word ‘excitatory’ in the description of the cell type in the original dataset was
extracted. To create a dataset with cell types evenly distributed across the highest
class of the brain cell types, five-cell types were randomly selected for each of seven
classes defined in the MBA dataset (i.e. astrocytes, ependymal, immune, neurons,
oligodendrocytes, peripheral glia, and vascular), resulted in 35-cell types including
TEGLU4. We used five traits that showed significant marginal P-value with
TEGLU4 for the comparison.

To compare average expression across all cell types and only immune cell types,
we used TMF dataset. For immune cell-specific expression, 21-cell types from
marrow samples were extracted. We used four immunological traits which showed
significant marginal P-value with B cell.

Binning of expression value for model comparison. To compare our regression
model with the model used in Skene et al. we created binned S score as described in
their original study19, S score was binned into 40 bins by equally binning genes
based on average expression (each gene gets a value between 1 and 40) and genes
with S score 0 were kept as it is. Therefore, by including 0 there are 41 bins in total.
For Supplementary Fig. 3, we binned log-transformed average expression per cell
type into 40 bins in the same way as S score. For Supplementary Fig. 4, we changed
the number of bins to 20, 100, 1000, and the number of genes with S score (or log-
transformed expression value) > 0.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Pre-processed scRNA-seq datasets are available at: https://github.com/Kyoko-wtnb/

FUMA_scRNA_data.

Code availability
Scripts for pre-processing of scRNA-seq datasets are available at: https://github.com/

Kyoko-wtnb/FUMA_scRNA_data. Implementation of MAGMA gene-property analysis

on FUMA web application is available at: https://github.com/Kyoko-wtnb/FUMA-

webapp.
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