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Multivariate analyses such as principal component analysis
were among the first statistical methods employed to
extract information from genetic markers. From their early
applications to current innovations, these approaches
have proven to be efficient for the analysis of the genetic
variability in various contexts such as human genetics,
conservation and adaptation studies. However, because
multivariate analysis is a wide and diversified area of
statistics, choosing a method appropriate to both the data
and to the question being asked can be difficult. Moreover,
some particularities of genetic markers need to be taken into
account when using multivariate methods. As a conse-
quence, multivariate analyses are often used as black boxes,
which results in frequent mistakes in the literature. In this

review, we provide a critical analysis of the application of
multivariate methods to genetic markers, using a general
framework that unifies all these methods for the sake of
clarity. First, we focus on some common mistakes in these
applications and ways to avoid these pitfalls. We then detail
the most critical particularities of allele frequencies that
demand adaptations of multivariate methods, and we
propose solutions to the subsequent problems. Finally, we
tackle several questions of interest in which multivariate
analysis has a great role to play, such as the study of the
typological coherence of different genetic markers, or the
investigation of spatial genetic patterns.
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Introduction

Statistical methods have long become an essential
component of the toolbox of population geneticists
(Fisher, 1952). Developments in statistical theories and
the continual increases in cheap computing power
provide numerous tools for genetic marker analysis,
allowing geneticists to address new and challenging
questions. Multivariate analyses (also called ordinations in
reduced space) such as principal component analysis
(Pearson, 1901) have been shown to be efficient in
extracting information from genetic markers (Cavalli-
Sforza, 1966; Johnson et al., 1969; Smouse et al., 1982)
because of their ability to summarize multivariate
genetic information into a few synthetic variables. From
these early applications to current innovative develop-
ments (Patterson et al., 2006; Pavoine and Bailly, 2007;
Jombart et al., 2008), these methods have proven to be
useful in various fields, such as human genetics
(Menozzi et al., 1978; Bertranpetit and Cavalli-Sforza,
1991; Cavalli-Sforza et al., 1993), conservation (Moazami-
Goudarzi et al., 1997; Escudero et al., 2003; Laloë et al.,
2007), phylogeography (Hanotte et al., 2002; Matsuoka
et al., 2002; Ciofi et al., 2006), landscape genetics (Angers
et al., 1999; McRae et al., 2005) and the identification of

adaptations (Johnson et al., 1969; Mulley et al., 1979;
Barker et al., 1986).

Multivariate analysis has several advantages over
other classical approaches used in population genetics,
like the Bayesian clustering implemented in the software
STRUCTURE (Pritchard et al., 2000; Falush et al., 2003).
First, multivariate methods are exploratory, that is, they
do not require strong assumptions about an underlying
genetic model, such as the Hardy–Weinberg equilibrium
or the absence of linkage disequilibrium. Although
clustering approaches suppose that genotypes are
structured in discrete populations, ordinations in re-
duced space simply aim at summarizing the genetic
variability, and can therefore reveal any kind of genetic
structuring including clines (for example, Jombart et al.,
2008). Multivariate methods are not computer-intensive,
and can be applied to huge datasets (such as ‘hundreds of
thousands of markers and thousands of samples’ in Patterson
et al. (2006)), for which Bayesian clustering would be
impractical. Moreover, multivariate analysis can address
complex questions such as identification of adaptation,
by linking genetic variability to environmental data
(Barker et al., 1986; Angers et al., 1999), whereas the
impossibility of formulating an explicit model of
adaptation would make Bayesian clustering methods
inapplicable, in most cases. Lastly, multivariate methods
have been developed and used extensively for more than
a century in various fields, such as psychometry and
ecology (Pearson, 1901). Currently, multivariate analysis
represents a whole, rich and diversified area of statistics
offering a wide choice of methods, each with its own
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properties (Takeuchi et al., 1982; Jambu, 1991; Legendre
and Legendre, 1998).

The unfortunate consequence of this diversity of
methods is that multivariate analyses are often used as
black boxes when applied to genetic markers, leading to
frequent mistakes that sometimes question the results of
an entire study. In fact, it can be difficult to know which
method can be efficiently applied to extract information
from genetic markers, what precautions need to be taken
and how the results should be interpreted. Moreover,
there is no doubt that multivariate analysis has been
under-utilized and has much more to offer to the study
of the genetic variability. The purpose of this paper is to
critically review the use of ordination in reduced space to
infer biological structures from genetic markers.

First, we attempt to clarify the rationale for these
methods and provide an overview of their current
application to genetic markers. Frequent mistakes re-
garding the utilization of these methods are then
detailed, and guidelines are provided to avoid these
pitfalls. The following section focuses on some particula-
rities of genetic markers that should be taken into
account to improve their multivariate analysis. The rest
of this review covers the use of multivariate analyses to
tackle specific questions of interest, such as the coherence
of the information of different genetic markers, linkage of
genetic markers to other types of data, and the study of
spatial genetic patterns. We conclude by examining some
promising perspectives offered by these approaches to
answer challenging questions in various fields, such as
conservation, spatial genetics and molecular ecology.

Multivariate analysis of genetic markers

Rationale of multivariate analysis
Throughout this paper, the terms ‘ordination in reduced
space’ and ‘multivariate analysis’ are used interchange-
ably. However, the first term is certainly more accurate
than the second because ordinations in reduced space
represent a particular class of multivariate methods,
another being, for instance, hierarchical clustering. The
purpose of these methods is to summarize a strongly
multivariate dataset into a small set of uncorrelated
synthetic variables. In other words, ordinations in reduced
space aim to provide a simplified, yet meaningful,
picture of complex information that is impossible to
perceive. This task implies a necessary loss of informa-
tion, and the crucial point in all these methods
is to define a criterion that is optimized by the
synthetic variables seeked. For instance, in principal
component analysis (Pearson, 1901; Takeuchi et al., 1982,
pp 185–224), synthetic variables best preserve the
variance among observations, whereas the w2 distances
are preserved in the correspondence analysis (Greenacre,
1966). Below, we introduce general concepts required to
describe multivariate analyses with accuracy.

As formalized by the duality diagram framework
(Escoufier, 1987; Dray and Dufour, 2007), most multi-
variate analyses are particular cases of a general
algorithm, and can be described using a small set of
concepts. The terminology we employ encompasses the
most common terms, which can be found in reference
textbooks (for examples, Takeuchi et al., 1982; Jambu,
1991; Legendre and Legendre, 1998; Lebart et al., 2004).

Central to the analysis of a dataset of n objects and p
descriptors is the question of whether we seek a
description of the relationships among the objects or
among the descriptors. When analysing genetic markers,
the main interest is in finding relationships among
objects (genotypes or populations) using p alleles. In this
case, data are seen as a cloud of n points embedded
inside a p-dimensional space, where each dimension is
defined by an allele. Inside this space, inertia measures
the dispersion of n points with respect to a given
distance: this measurement of variability is used as a
criterion that is optimized by the analysis. The directions
inside this space reflecting the highest ‘variability’ (that
is, with maximum inertia) among objects are the principal
axes, also referred to as the factors of the analysis. By
extension, a plane formed by two principal axes is often
called a factorial plane. Each principal axis is defined by p
coordinates inside the p-dimensional space, representing
the loadings of the alleles. The principal axes are
orthonormal (that is, perpendicular and with length
one), and can therefore be used as a new basis to
represent the n objects. The set of coordinates of the
objects in this new basis are the principal components, but
the terms scores (of objects) and synthetic variables are also
commonly used. Each principal component is associated
with an eigenvalue that quantifies the amount of inertia
contained in the component. Eigenvalues can also be
expressed as proportions of the total inertia of the
analysis to indicate what fraction of the entire genetic
variability is represented by the corresponding principal
components. The plot of the eigenvalues sorted in
decreasing order (the screeplot) is the basic tool used to
choose which principal components to interpret: it
describes how the total inertia is distributed across the
principal axes. The basic idea is that a boundary between
true structure and random noise would be indicated by a
sharp decay between two successive eigenvalues. How-
ever, this is a simplistic view, and such a boundary rarely
exists in practice: the screeplot merely provides insight
about which component likely contains interesting
structures, and which does not. Hence, the screeplot
and the proportions of inertia associated with the
principal components are two complementary tools,
respectively indicating the genetic structures to be
retained and their magnitude. The last criterion for
interpreting principal components is that of the biologi-
cal meaning, and is sometimes more useful than
statistical criteria. In some cases, the first principal
components (associated to large inertia) may indicate a
trivial structuring, and provide little biological insight.
Conversely, principal components associated to smaller
eigenvalues might contain biologically relevant informa-
tion; the interpretation of such components should not be
discarded on the basis of a small inertia.
If multivariate analyses are unified by a single

algorithm, the core difficulty is in choosing the method
that best matches the nature of the data and the questions
asked. Because of the variety of questions and data,
numerous ordinations in reduced space are used to
analyse genetic markers.

Applications to genetic markers
Multivariate analyses are natural tools to extract
biological structures from genetic markers, as these
data typically contain large numbers of genotypes or
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populations described by hundreds of alleles (in terms
of absolute or relative frequencies). A summary of the
application of these methods to genetic markers is
provided in Table 1.

Ordinations in reduced space are primarily used to
find a few principal components that reflect as much of
the genetic variability as possible. PCA was first
employed to infer population structuring (Cavalli-Sforza,
1966) and spatial genetic structuring (Menozzi et al.,
1978; Bertranpetit and Cavalli-Sforza, 1991; Cavalli-
Sforza et al., 1993) in humans. PCA was also used early
to infer adaptations from allozyme frequencies, by
testing the correlations between principal components
of genetic data and principal components of a PCA of
environmental variables (Johnson et al., 1969). In disease
studies, regression onto the principal components of the
PCA has been recently proposed to correct for popula-
tion stratification (Price et al., 2006). Another method
commonly used to infer genetic structuring among
genotypes or populations is principal coordinates analy-
sis (PCoA, Gower, 1966; Sanchez-Mazas and Langaney,
1988; Warnes, 2003). Although PCA preserves the
canonical Euclidean distance among the studied entities,
PCoA can be employed to summarize any Euclidean
genetic distance between genotypes or populations, but
does not provide a representation of the alleles. This
offers the advantage of using measures of genetic
variability that are directly related to a population
genetics model; for instance, PCoA has been used to
summarize matrices of pairwise FST (Zhivotovsky et al.,
2003) and of Roger’s distance (Baker and Moeed, 1987).
Non-metric dimensional scaling (NMDS, Cox and Cox,
2001) has also been employed to analyse matrices of
genetic distances (Baker and Moeed, 1987; Lessa, 1990).
However, NMDS differs from PCoA in that it attempts to
preserve the ordering of objects based on their genetic
distance rather than their genetic distance per se; in this

respect, NMDS can be thought of as a non-linear form of
PCoA (Lessa, 1990). It is noteworthy that unlike other
multivariate analyses, the NMDS solution is not analy-
tical: an iterative algorithm aims at finding a good
solution, but does not guarantee that this solution is the
best. As an alternative to PCA of allele frequencies and
PCoA (or NMDS) of genetic distances, correspondence
analysis (CA, Greenacre, 1966) can be used to analyse
a table of allele counts per population (She et al., 1987;
Li et al., 2002). The last multivariate analysis commonly
applied to genetic markers is discriminant analysis (DA,
Lachenbruch and Goldstein, 1979). DA is not a fully
exploratory approach, in that groups of genotypes must
be known in advance. However, it can be used to achieve
the best discrimination between groups inside a reduced
space, to test for genetic differentiation, and for assign-
ment purposes (Smouse et al., 1982; Beharav and Nevo,
2003).

Other methods have remained somewhat unnoticed,
such as constant-row multiple correspondence analysis
(CRT-MCA, Guinand, 1996; Guinand et al., 1996), factor
analysis (FA, Taylor and Mitton, 1974; Mulley et al., 1979)
and distance-based redundancy analysis (db-RDA,
Legendre and Anderson, 1999; Geffen et al., 2004).
The reason for this may be historical, or could arise
from problems associated with using these approaches.
For instance, CRT-MCA aims at finding synthetic
variables with maximum FST, but only proposes
an approximate solution. Denoting f as a set of
frequencies of an allele for q populations, f̄ as the mean
frequency computed across populations and var( f ) as
the variance between populations of f, FST is defined
as var( f )/f̄ (1�f̄ ), where f̄ (1�f̄ ) is the theoretical
variance of f (Weir, 1996, p 166). Unfortunately,
the quantity optimized by CRT-MCA is var( f )/sf

2,
where sf

2 is the empirical variance of f
(s2f ¼ 1

q

Pq
i¼1 ðfi � �fÞ2Þ:While for arbitrarily large samples

Table 1 Multivariate analyses applied to genetic markers

Method Criterion Application Data

Principal component analysis (PCA) Variance (same as squared Euclidean
distances)

Cavalli-Sforza (1966) Allozymes

Principal coordinates analysis (PCoA) Any Euclidean distance Sanchez-Mazas and Langaney (1988) Allozymes
Non-metric dimensional scaling
(NMDS)

Ordering of objects Lessa (1990) Roger’s and
Nei’s distances

Correspondence analysis (CA) w
2 distance She et al. (1987) Allozymes

Discriminant analysis (DA) Variance between groups/total
variance

Smouse et al. (1982) Allozymes

Constant-row total multiple
correspondence analysis (CRT-MCA)

Correlation ratio Guinand (1996) Allozymes

Factor analysis (FA) ’Common effect’ in allele frequencies Taylor and Mitton (1974) Allozymes
Canonical correspondence analysis
(CCA)

w
2 distances in predicted data Angers et al. (1999) Microsatellites

Redundancy analysis (RDA) Variance of predicted data Kölliker et al. (2008) AFLP and SSR
Canonical correlation analysis (CCorA) Squared correlation between

pairs of scores
Johnson and Schaffer (1973) Allozymes

Co-inertia analysis (COA) Squared covariance between
pairs of scores

Jarraud et al. (2002) AFLP

Multiple co-inertia analysis (MCOA) Squared covariance between a
set of scores

Laloë et al. (2007) Microsatellites

Spatial principal component analysis
(sPCA)

Product of variance and spatial
autocorrelation

Jombart et al. (2008) Microsatellites

Abbreviations: AFLP, amplified fragment length polymorphism; SSR, single sequence repeats.
Each method is indicated by its most frequent name and abbreviation. The ‘criterion’ is the quantity optimized by the principal components
of the method. The ‘application’ column gives the reference of an early and representative publication using the method to analyse genetic
markers.
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sf
2 converges towards f̄ (1�f̄ ), these quantities differ in
practice, and the principal components yielded by CRT-
MCA do not optimize FST. A possible cause for the minimal
use of FA is that it was introduced to correlate patterns in
allele frequencies with environmental variables (Taylor and
Mitton, 1974), which is not the purpose of this method. In
fact, FA estimates a model in which allele frequencies are
expressed as a sum of two components: a part common to
every allele and a residual part representing allele-specific
effects (Seal, 1966, pp 153–180). Lastly, it is not clear why
db-RDA has not been applied more often to genetic
markers, but this could simply be due to its recent
application (Geffen et al., 2004).

Although multivariate analyses can be efficiently used
to extract information from genetic markers, choosing a
method appropriate to the data and the question being
asked is sometimes difficult. As a matter of fact, a
number of mistakes occur quite frequently in such
applications. In the following, we point out the major
pitfalls, as well as strategies to avoid them.

Misuses, misinterpretations and specific
issues

Ensuring reproducibility
A first concern in data analysis is to ensure reproduci-
bility, or at least to provide all the elements required to
evaluate the relevance of the results. Unfortunately, the
literature regularly provides examples of studies in
which it is almost impossible to know which analyses
were actually performed.

The first problem lies in the absence of an accurate
description of the method used: reference articles are
rarely cited, and abbreviations sometimes do not match
the name of the method. For instance, ‘PCA’ is used to
refer to principal coordinates analysis (PCoA) in Pariset
et al. (2003). Such confusion adds to the ambiguities that
already exist between some methods, such as those
between PCoA and NMDS. PCoA is also sometimes
called ‘metric dimensional scaling’ (MDS), whereas
NMDS is indifferently abbreviated MDS or NMDS
(Legendre and Legendre, 1998). This is all the more
confusing since PCoA is routinely used to initialize the
algorithm of NMDS (Baker and Moeed, 1987). Papers
demonstrating an ambiguity between PCoA and NMDS
are not uncommon (for example, Preziosi and Fairbairn,
1992; Zhivotovsky et al., 2003).

Although required, providing a correct reference to a
method is usually not sufficient. Some methods exist in
different variants, according to the initial transform-
ations of the data. This is particularly true for PCA:
although centring (subtracting the mean allele frequency
from all observations) is always achieved, scaling of the
alleles (dividing each observation by allelewise values) is
optional and can be performed in several ways. Scaling
can drastically change the results of a PCA, but is rarely
disclosed (for example, Mitton, 1978; MacHugh et al.,
1998; Grivet et al., 2008). In PCoA and NMDS, the genetic
distance employed should always be specified, and in
the case of NMDS, how the algorithm was initialized
should be indicated. An example of such an application
can be found in Baker and Moeed (1987), who used an
NMDS initialized by a PCoA of Roger’s distances of
allozyme data to explore the genetic variation among

populations of common minas (Acridotheres tristis). Lack
of accuracy in the description of the method always
complicates interpretation of the results, and sometimes
brings their validity into question. For instance, some
papers show principal components of a PCA that were
clearly not centred (their range of variation did not
include zero), which indicates an error in the computa-
tions of the analysis and invalidates the results (for
instance, MacHugh et al., 1997, 1998; Pariset et al., 2003).
Moreover, it is difficult to ascertain precisely where the
problem came from, as the software used for the
computation was not mentioned in these publications.

Making graphics
Another classical problem lies in the graphical display of
results. As mentioned previously, the screeplot is the
basic tool used to assess which principal components
should be interpreted, but it is most often omitted in
publications. The amount of inertia associated with each
principal component is often indicated, but this informa-
tion is complementary to the screeplot and cannot be
used as a substitute. For instance, in their study of the
genetic differentiation among different yak (Poephagus
grunniens) populations, Xuebin et al. (2005) presented
a scatterplot of PCA displaying 80% of the whole
variability, but this scatterplot was merely uninformative
in terms of genetic differentiation. Conversely, two
principal components of PCA containing less than 10%
of total inertia provided insights about the phylogeny of
different maize subspecies in Matsuoka et al. (2002).
When used alone, the amount of inertia can therefore be
a misleading criterion for choosing the principal compo-
nents to interpret (see ‘Interpreting genetic structures’).
Another widespread custom is the use of 3-dimen-

sional scatterplots (van Pijlen et al., 1995; Xuebin et al.,
2005). Although these representations add a fancy touch
to multivariate analyses, they also have the unfortunate
effect of sacrificing the mathematical properties of an
analysis, and thus its interpretability. By definition,
principal axes and the associated principal components
provide the best possible planar representation of the
data. If three principal components are retained, their
representation requires two factorial planes, with one
axis being redundant. Scatterplots in three dimensions
are ultimately always viewed on a screen or on a sheet of
paper, and are thus re-projections of three principal
components in two dimensions. The obtained represen-
tations are necessarily worse than the true representation
of principal components because they no longer have
maximum inertia nor orthogonality. Hence, 3-dimen-
sional visualization should be restricted to interactive
data analysis (where it can be useful), and is better
avoided in publications.
Apart from these pitfalls common to every multi-

variate analyses, some specific issues also arise when
certain methods are applied to genetic markers.

Some specific issues
A first particular issue concerns the use of CA. This
method is appropriate for the analysis of a contingency
table, that is, a matrix of positive integers (Greenacre,
1966), and is thus appropriate for the analysis of a table
of allele counts. A good example of such an application is
provided by She et al. (1987), who used a CA of allozyme
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data to investigate the genetic differentiation between
populations of teleost fishes. Interestingly, this study also
showed that ‘correspondences’ highlighted by CA can
reflect linkage disequilibrium existing between alleles. In
some cases, CA has been used for allele (relative)
frequencies (Li et al., 2002), which has been proven to
significantly alter the results of the analysis (Perrière and
Thioulouse, 2002). In such a case, it seems much more
appropriate to use PCA or PCoA. However, even when
CA is correctly used, one should be aware that scarce
descriptors are given a stronger weight by the w2

distance, which is optimized by the analysis (Legendre
and Legendre, 1998, p 285). The typical consequence is
that a population possessing a rare allele would appear
as an outlier in CA components. Simple simulations
show that such an artifactual pattern arises even when
studying groups of genotypes are randomly chosen from
the same population (results not shown). Away to avoid
this problem is to remove rare alleles from the data prior
to the CA, although this solution requires some
investigations regarding which frequency should be
considered as ‘rare’ from the point of view of the CA.

A second specific issue occurs in DA. This method
finds principal components maximizing the variance
between populations while keeping the variance inside
populations constant, assuring optimal discrimination
between the populations (Krzanowski and Marriott,
1995, pp 1–56). However, this method involves computa-
tion of the Mahalanobis metric (Beharav and Nevo,
2003), which is the inverse of the matrix of covariances
between alleles. For this inverse to exist, the covariance
matrix must be of full rank, that is, of rank p if there are p
alleles (Harville, 1997, p 80). This is never the case for
allele frequencies: each marker spans a space of at most
one dimension less than the number of its alleles because
any frequency is entirely defined by all the others. That
is, if there are k markers, the rank of the covariance
matrix is at most min(p�k, n). Thus, the discriminant
analysis can only be performed on a matrix of allele
frequencies after removing a given number of alleles,
and assuring that there are more objects (genotypes or
populations) than alleles. In fact, the number of objects n
should be consequently larger than the number of alleles
p: (Williams and Titus, 1988) reported that n should be at
least three times larger than p for DA to yield reliable
results. Multicollinearity can also exist among alleles
(that is, when alleles are correlated), especially when
linkage disequilibrium occurs. In these cases, the
Mahalanobis metric is said to be ill-conditioned, result-
ing in numerical instability. As a result, principal axes
and principal components of DA cannot be computed
with accuracy, and small changes in allele frequencies
induce large changes in the results (Seber, 1977, pp 319–
322). As a consequence, the alleles used in DA should be
carefully selected before performing the analysis. An
empirical approach consists of retaining only the most
frequent allele of each locus (Sagnard et al., 2002), but this
does not ensure that the subset of alleles obtained is
optimal with regard to discrimination. In fact, it does not
even ensure that the multicollinearity problem is solved,
as linkage disequilibrium can still exist between the most
frequent alleles. One can preferentially use statistical
approaches that are especially devoted to the selection
of variables in DA (Lachenbruch and Goldstein, 1979),
where such approaches proved useful for selecting a

subset of best discriminating alleles (Fahima et al., 1999;
Beharav and Nevo, 2003). However, investigations
should be carried out to assess whether a particular
variable selection procedure is preferable to the others in
the case of allele frequencies.

Interpreting genetic structures
A major concern in multivariate analysis of genetic
markers lies in interpreting the results. This issue can be
illustrated by examining one case of misinterpretation,
raising the question of which result of a multivariate
analysis could be interpreted as genetic structuring.

In the controversy regarding the relevance of definiting
human races based on genetic information (Lewontin, 1978;
Mitton, 1978; Powell and Taylor, 1978), Mitton (1978)
argued that genetic differentiation between ‘human
races’ was important because they clearly appeared as
distinct groups on the factorial map of a PCA. This
misinterpretation of the results is related to the common
mistake of not displaying the screeplot of the analysis
along with the values of inertia associated with principal
components. Ordinations in reduced space do not
summarize the essential part of the genetic variability:
they attempt to show as much genetic variability as
possible in a few axes, which is different. Mitton (1978)
showed that ‘racial’ groups were well separated on the
factorial plane and that two principal components were
sufficient to assign each population to a given group.
However, this did not contradict the well-acknowledged
fact that the genetic variability within ‘races’ is much
larger than between ‘races’ (Edwards, 2003), as sug-
gested by the author. For example, it would be possible
to perfectly discriminate two populations using only one
allele, but this allele may represent only 1% of the
variability of a dataset containing 100 alleles. This point
was discussed by (Edwards, 2003), who emphasized the
fundamental difference between being able to assign
genotypes to taxonomic groups, and observing larger
genetic variability between these taxonomic groups.

We can ask what criterion the principal components of
an analysis should meet to be considered as true genetic
structuring. The relative amount of inertia cannot be
used as a single criterion, because it depends directly on
the number of alleles considered. As stressed previously,
the screeplot can be used to assess which principal
components likely contain interesting structures. Re-
cently, Patterson et al. (2006) tested the significance of the
eigenvalues from a PCA of genetic markers to infer
population stratification. Another testing approach to
select interpretable principal components of a PCA has
been proposed by (Dray, 2008), and could also be used to
identify significant genetic structures. It is noteworthy
that both approaches are reserved to PCA (Patterson
et al., 2006; Dray, 2008), and it would be valuable to
extend these tests to other multivariate methods.
Another way of assessing relevant genetic structures
emerging from an ordination method is to quantify the
amount of genetic differentiation contained in the
principal components. The main difficulty is then
identifying clusters of genotypes from the principal
components retained. This can be achieved using a given
clustering algorithm (Legendre and Legendre, 1998,
pp 303–381), such as the unweighted arithmetic average
clustering (UPGMA, Rohlf, 1963). It is then possible to
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measure the amount of genetic differentiation between
the obtained clusters of genotypes using classical
approaches like FST. Note that the obtained statistics
can only be used to quantify genetic differentiation, but
not to test it, because the principal components are by
definition, optimized with regard to some measurement
of genetic differentiation. To conclude this point, the
identification of interpretable structures is a major
question in multivariate analysis, and is of particular
interest when seeking genetic structures from molecular
markers.

As we have seen, the application of multivariate
analysis to genetic markers can be improved by avoiding
a number of pitfalls. However, further improvements can
be gained by adapting multivariate methods to several
particularities of genetic markers.

Respecting the very nature of data

Scaling in PCA
In many cases, genetic markers are analysed as allele
frequencies, which are subjected to a PCoA or a PCA.
PCoA is usually well suited to genetic markers because
several genetic distances can be used to summarize the
genetic variability. In this case, it is necessary to use a
Euclidean distance like Roger’s (Weir, 1996, p 197), so
that genetic relationships among entities can be fully
represented in a plane and to choose a distance whose
underlying model best matches the data (see for instance
Weir, 1996, pp 190–198). In the case of PCA, attention
must be devoted to the transformations of data: if
centring of allele frequencies is almost mandatory, the
scaling of allele frequencies can be discussed. The
general reason for scaling is to compensate for trivial
differences that occur in the variance of the descriptors,
for instance, when descriptors are expressed in different
units. A reason for not scaling allele frequencies is that
doing so is not necessary (scales of variation are
inherently the same for every allele), and could mask
differences in the genetic variability contained by
informative and non-informative markers, ultimately
hiding structures in the data. Nonetheless, one good
argument for scaling allele frequencies would be to
compensate for differences in variance among alleles due
to their underlying binomial nature: the theoretical
variance associated with the jth allele frequency, fj
(j¼ 1,yp where p is the total number of alleles), is
proportional to fj(1�fj). The result is that the variance of
an allele frequency is expected to be ‘naturally’ larger for
frequencies close to 0.5, and smaller for frequencies close
to 0 or 1. The PCA seeking linear combinations of alleles
with maximum variance, alleles with frequencies closer
to 0.5 would be favoured by the analysis, although
not necessarily reflecting a genetic structure. One
way to correct this is to divide fj by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fjð1� fjÞ
p

,
as has been previously proposed (Cavalli-Sforza et al.,
1994, pp 41–42). Mulley et al. (1979) used a related
standardization of allele frequencies, which does not
amount to unit theoretical variance, but accounts for
the number of genotypes used to compute frequencies
in each population. Interestingly enough, the variance
between populations of the allele frequency
standardized by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fjð1� fjÞ
p

is exactly the classical FST
(Weir, 1996, p 166). Therefore, the between-class PCA

(Dolédec and Chessel, 1987), which maximizes the
variance between populations, would yield principal
components with maximum FST if performed on allele
frequencies centred to a mean of zero and scaled
by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fjð1� fjÞ
p

. Even though between-class PCA has
only recently been applied to genetic markers by Parisod
and Christin (2008, presented as ‘inter-class PCA’) and
Jombart (2008), this method seems promising for
investigating genetic differentiation between groups of
genotypes.

Compositional data
The principal particularity of allele frequencies may be
that they are sets of compositional data, that is, data with
a constant sum for each population and locus. This
feature induces non-independence between allele fre-
quencies inside each locus (a frequency can always be
deduced from all the others), and has several conse-
quences on ordinations in reduced space. Developments
in the multivariate analysis of compositional data were
led by the work of Aitchison (Aitchison, 1983, 1999, 2003;
Aitchison and Greenacre, 2002), but remained mostly
ignored in genetics, apart from a few exceptions
(Romano et al., 2003; Reyment, 2005). As stressed before,
allele frequencies at a given locus are not independent, as
one can be entirely deduced from the others. Populations
described by pj alleles at the jth locus are not embedded
inside a pj-dimensional space, but are instead inside a
space whose maximum dimensionality is (pj�1), known
as a simplex space (Aitchison, 2003, pp 24–28). A variety
of problems can occur when directly computing an
ordination in reduced space in the simplex space (or in a
set of simplex spaces in the case of several loci), like the
impossibility of identifying structures that are intrinsi-
cally non-linear and the numerical instability of principal
components. The solutions proposed to account for these
problems rely on transforming frequencies (mostly using
logarithms) and performing a classical analysis like PCA
of the obtained data. Reyment (2005) showed that the
results of PCA could be strikingly improved by such
practices, even when considering a simple log trans-
formation of the data. Henceforth, these approaches
should be considered when analysing allele frequencies.

Diversity inside the diversity

A portion of the literature in conservation biology
stresses the idea that different genetic markers can
provide different information about the genetic diversity
of a set of populations (Moazami-Goudarzi and Laloë,
2002). In fact, genetic markers are usually taken as a
whole to seek a global, common typology of individuals
or populations, without trying to assess if such a
common typology exists. There are, however, good
reasons for this typology not to occur, the first being
that selection can affect different loci in different ways. If
this is obvious for selected markers like allozymes, it can
also be true for supposedly neutral markers that are
physically linked to selected regions of the genome.
Interestingly, the first studies linking the genetic varia-
bility in allozymes to environmental features analysed
each locus separately by PCA (Johnson et al., 1969;
Johnson and Schaffer, 1973).
To tackle the question of the typological coherence of

genetic markers, the locus must be considered as the unit
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of analysis. In this perspective, if there are K markers,
K analyses should be performed and compared. A class
of multivariate analyses, called the K-table methods
(Dray et al., 2007), is devoted to this particular task. Such
methods were introduced in genetics by Laloë et al.
(2007), who used multiple co-inertia analysis (Chessel
and Hanafi, 1996) to compare the typological information
provided by different microsatellites. This study showed
that microsatellites could provide different pictures of
the genetic diversity among populations: whereas some
microsatellites reveal the entire genetic structure, some
perceive only particular aspects of the genetic diversity
and others are simply not informative in terms of genetic
differentiation patterns. The typological value of a
marker can be used to quantify the extent to which this
marker contributes to displaying a particular genetic
structure (Laloë et al., 2007). The application of K-table
approaches to genetic markers was further developed by
(Pavoine and Bailly, 2007), who introduced other
K-table methods coupled with a multivariate analysis
of biodiversity (Pavoine et al., 2004). Their results
confirmed the fact that summing the information coming
from different genetic markers, as is usually performed
for ordinations in reduced space, does not always
provide the most accurate picture of biodiversity. Note
that if K-table methods can suggest that loci experience
different selective pressures, they cannot be used as a
direct test for these differences. In fact, K-table ap-
proaches are first and foremost designed to identify
common typologies, and not discrepancies, among a set
of markers.

If K-table methods are more complex tools than
single-table analyses, their use in genetics should be
considered with attention. Note that the linkage of
multilocus genetic information to environmental
features like in Johnson et al. (1969) still raises challen-
ging questions in terms of data analysis: How can we
describe the genetic-environment relationships at
several loci? What are the different patterns of adapta-
tion among loci?

Linking genetic markers to other data

One of the greatest applications of ordinations in
reduced space is in the linkage of genetic markers to
other types of data (Johnson et al., 1969; Taylor and
Mitton, 1974; Mulley et al., 1979; Barker et al., 1986;
Jarraud et al., 2002). This is typically the case in the study
of genotype-environment relationships, where multi-
variate methods can be used to investigate correlations
between genetic data and environmental features (John-
son et al., 1969; Mulley et al., 1979). Another application
of such an approach is to relate genetic information to
phenotypic data (Jarraud et al., 2002). Note that when
patterns of selection are being investigated, the genetic
diversity should be inferred from non-neutral rather than
neutral markers. Various methods are available for
coupling two different kinds of information, some of
which have been introduced into population genetics.
These can be divided into two categories, depending on
whether they treat both types of information symme-
trically or not. Approaches like DA and between-class
PCA are also methods for coupling genetic markers with
a different information (some partitions of individuals).
However, because their aim is very different from the

methods presented below (their purpose is to investigate
the genetic differentiation between groups of genotypes),
DA and between-class PCA are not presented in this
section.

Asymmetric methods
The first type of method is formed by constrained
ordinations, which are devoted to investigating the
variability in one dataset that can be explained by
another dataset. This is achieved by a multivariate
regression of a ‘response’ dataset onto an ‘explanatory’
dataset (Ter Braak, 1986). These methods are thus
asymmetric, in that the variability in one dataset is
explained by another. There are two main techniques in
this context: redundancy analysis (RDA, Rao, 1964),
which is a constrained version of PCA, and canonical
correspondence analysis (CCA, Ter Braak, 1986), which
is based on CA. RDA and CCA therefore inherit their
properties from PCA and CA: RDA can be used for allele
frequencies, whereas CCA is more appropriate to
analysis of tables of allele counts. Both RDA (Kölliker
et al., 2008) and CCA (Angers et al., 1999) have proven
useful in population genetics, mostly to investigate the
portion of the genetic variability that can be explained by
a set of environmental variables. For instance, in Angers
et al. (1999), the CCA revealed that the genetic diversity
among a set of brook charr populations (Salvelinus
frontalis) was mainly driven by the structure of the
hydrographic network and by a few environmental
variables. Another interest of this study is that analyses
were applied to two different levels, to study the effects
of hydrographic and environmental features on the
genetic diversity inside, and between populations.

Like discriminant analysis, RDA and CCA involve
computation of the Mahalanobis metric which is, in this
case, the matrix of covariances between explanatory
variables (Legendre and Legendre, 1998). These analyses
therefore require that the number of explanatory variables
(for instance, environmental variables) be fairly lower than
the number of studied objects (genotypes or populations)
to be computable. Following the previously cited study of
Williams and Titus (1988) concerning DA, we can
recommend that the number of objects should be at least
three times larger than the number of explanatory
variables. RDA and CCA also demand that the explanatory
variables are reasonably uncorrelated to achieve numerical
stability and interpretability of the results. As a rule of
thumb, we suggest avoidance of correlations greater than
0.7, so that no more than one half of the variability of any
predictor could be explained by another predictor (that is,
R2

o0:5 , jrjo
ffiffiffiffiffiffiffi

0:5
p

’ 0:7 ). Note that genetic markers
could also be used as explanatory variables, for example,
with an ‘explained’ dataset of phenotypic traits. In such
cases, the dimension of the genetic information should be
reduced, either by applying a standard variable selection
procedure (for example, forward selection) to the allele
frequencies, or by reducing the genetic data to a few
principal components using PCA or PCoA.

When the above conditions are respected, constrained
ordinations can be efficiently used to explain one kind of
variability by another. However, when the purpose of a
study is to investigate common patterns of variability in
two datasets, or when RDA and CCA cannot be used for
technical reasons, an alternative can be found in certain
symmetric approaches.
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Symmetric methods
Symmetric methods allow one to study the structures
common to two datasets by treating the two types of
information similarly. They differ from constrained
ordinations in the same way that linear regression differs
from correlation. Symmetric approaches include canoni-
cal correlation analysis (CCorA, Hotelling, 1936; Takeu-
chi et al., 1982, pp 225–280) and co-inertia analysis (COA,
Dolédec and Chessel, 1994; Dray et al., 2003a). CCorA
was introduced by Johnson and Schaffer (1973) to
describe and test the correlations between allele frequen-
cies in allozymes and a set of environmental features.
The principle of this technique is to find two sets of
orthogonal axes (one for each dataset), such that the
obtained pairs of principal components have a maximum
squared correlation (Takeuchi et al., 1982, pp 225–229). It
is worth noting that Johnson and Schaffer (1973) were
following another pioneering work (Johnson et al., 1969)
in which the same authors used correlations between
principal components of two PCAs (one of allele
frequencies, one of environmental variables) to test
genetic-environment relationships. A series of subse-
quent papers provided remarkable illustrations of the
insights that CCorA can bring to the study of adaptation
(Schaffer and Johnson, 1974; McKechnie et al., 1975;
Mulley et al., 1979). A nice example is provided by
Mulley et al. (1979), which used the CCorA to investigate
patterns of adaptation in populations of Drosophila
buzzatii. The authors have shown that the allelic variation
observed at some allozyme loci was significantly
correlated to climate descriptors, which strongly sug-
gested the existence of local adaptations in these
populations. A recurrent problem in these studies is that
gene-flow can act as a confounding effect when assessing
genetic-environment correlations. Schaffer and Johnson
(1974) addressed this issue by regressing allele frequen-
cies onto spatial coordinates prior to the analysis, and
hence removing linear spatial trends from the data. Note
that more efficient methods of removing spatial patterns
have since been developed, some of which are described
in the next section.

A typical problem in CCorA is that, like RDA and
CCA, it requires to compute the Mahalanobis metric of
both datasets: it cannot be used when there are more
descriptors than studied objects and it requires descrip-
tors to be uncorrelated to yield interpretable results. In
some of these cases, a CCorA can still be performed after
selecting a small subset of uncorrelated variables (for
example, Mulley et al., 1979). A common criticism of
CCorA is that pairs of principal components with
maximum squared correlation could have a very small
variance, and therefore have in general no real biological
meaning (Taylor and Mitton, 1974). Taylor and Mitton
(1974) suggested that a symmetric analysis should yield
pairs of principal components reflecting both a fair
amount of variance and be correlated with each other,
that is, reflecting common parts of the variability in the
two datasets. This is the definition of a method
developed later in ecology; the co-inertia analysis
(Dolédec and Chessel, 1994; Dray et al., 2003a).

COA has been imported into genetics to relate the
genetic variability of several bacterial strains to the
expression of toxin genes (Jarraud et al., 2002). It is worth
noting that COA is closely related to Procustean analysis
(Dray et al., 2003b), which has been proposed for the

analysis of genetic markers coupled to other kinds of
information (Cavalli-Sforza et al., 1994, p 41), although
we were unable to find any applications of this technique
to genetic markers. COA finds two sets of principal axes
(one for each dataset), such that the pairs of principal
components have a maximum squared covariance
(that is, co-inertia). This criterion is particularly interest-
ing as it amounts to maximizing the product of the
variances of each principal component and their squared
correlations (because cov2(a,b)¼ var(a)var(b)cor2(a,b)).
Interestingly, the COA does not require inversion of a
covariance matrix; consequently, it does not require the
number of descriptors to be lower than the number of
objects and it is not hampered by correlations among the
descriptors. Moreover, COA relies on a modification of
two separate analyses, each of which can be, for instance,
a PCA, a PCoA, or a CA. For example, Jarraud et al.
(2002) employed the co-inertia between a PCoA of a
genetic distance matrix derived from AFLP markers and
a PCA of distributions of toxin genes in several strains of
Staphylococcus aureus to assess the evolution of virulence
factors with respect to the genetic background of the
strains. The COA appears to be a good alternative to
RDA, CCA and CCorA when these methods cannot be
applied for the reasons described above. In other cases,
the COA may still be favoured whenever the squared
covariance criterion is more satisfying than criteria used
by other analyses, that is, when one is interested in
identifying common patterns of variation between two
different sources of information.

Spatial multivariate analysis
Many population genetics studies in which multivariate
analyses were used involve georeferenced data. When
processes related to gene-flow are being investigated—
which may be the most common case—spatial genetic
patterns are researched in neutral markers (Menozzi
et al., 1978; Cavalli-Sforza et al., 1993). In contrast, when
non-neutral markers are used to infer patterns of
adaptation, spatial structures induced by gene flow can
act as a confounding effect that would have to be
removed (Schaffer and Johnson, 1974). As noted by
Mulley et al. (1979), the drawback of this strategy is that
‘if environmental factors with selective effects are strongly
correlated to geographic location, adjustment for location may
remove a major fraction of the selective effects’. In such a case,
it would be worthwhile to compare the selective effects
detected with and without removing the effects of spatial
patterns. Spatial information can be used in multivariate
analysis of genetic markers, to investigate the part of the
genetic variability that is or is not spatially structured.
Unfortunately, the methods commonly used to inves-

tigate spatial genetic patterns almost never take
spatial information into account explicitly, that is, they
do not incorporate spatial information as a component of
the criterion optimized by the analysis (Jombart et al.,
2008). This contrasts with other methodological
frameworks such as analysis of molecular variance
(Excoffier et al., 1992) or Bayesian clustering (Pritchard
et al., 2000), in which spatially explicit methods are used
(respectively, Dupanloup et al., 2002; François et al., 2006).
However, spatial ordinations exist and are widely used
in other domains, the closest to genetics being ecology. It
is, therefore, not surprising that spatial ordinations were

Multivariate analysis of genetic markers
T Jombart et al

337

Heredity



first proposed to analyse genetic markers in vegetation
sciences (Escudero et al., 2003) and landscape genetics
(Grivet et al., 2008).

Recently, Grivet et al. (2008) used the canonical
trend surface analysis (Wartenberg, 1985) to detect
spatial patterns using microsatellite markers. This
approach relies on performing a CCorA to identify
correlations between genetic and spatial data. Grivet
et al. (2008) used polynomials of spatial coordinates as
spatial predictors, although this approach was criticized
in ecology (Borcard and Legendre, 2002; Dray et al.,
2006), mainly because the obtained variables are gen-
erally correlated and can only model broad-scale
patterns. Other spatial predictors, Moran’s eigenvectors,
are now used in ecology (Dray et al., 2006; Griffith and
Peres-Neto, 2006). Contrary to polynomials of spatial
coordinates, these spatial predictors are uncorrelated,
and can model spatial patterns on a wide range of scales.
To reveal spatial genetic patterns, Moran’s eigenvectors
can be used as explanatory variables in a CCA or an
RDA of genetic markers. In studies in which spatial
structures need to be removed to infer adaptations,
Moran’s eigenvectors could also be used as covariables
in partial RDA or partial CCA (Legendre and Legendre,
1998, pp 769–779).

To our knowledge, the only spatial ordination devel-
oped within the genetic framework is the spatial
principal component analysis (sPCA, Jombart et al.,
2008). This method relies on a modification of PCA such
that not only the variance of the principal components,
but also their spatial autocorrelation, is optimized.
Jombart et al. (2008) identified various kinds of
spatial structuring that can arise in genetic data, and
showed that sPCA can be efficiently used to reveal
these patterns. In particular, a comparison between
PCA and sPCA demonstrated that sPCA should be
preferred to PCA whenever spatial genetic patterns
are researched. Note that a similar approach was
developed in the vegetation sciences by Dray et al.
(2008), who proposed a spatial version of CA. Although
sPCA is devoted to investigating spatial genetic patterns
in allele frequencies, the approach of Dray et al. (2008)
could be used to study spatial genetic patterns in allele
counts.

Perspectives and conclusion

We reviewed how a multivariate analysis can be used to
extract biological information from genetic markers. The
large diversity of existing multivariate methods allow to
investigate a wide variety of genetic structures, which
depend on the nature of data as well as on the question
being asked. One important observation emerging from
this review is that application of multivariate methods to
genetic markers could sometimes benefit from more
rigorous practices. Methods should always be referred to
clearly and with a distinction between the method itself
and its implementation. An accurate description of an
ordination in reduced space would include all data
transformations, such as centring and scaling in PCA, the
chosen distance in PCoA and NMDS, the selection of
alleles in DA or algorithm initialization in NMDS. To
facilitate reproducibility, free and script-based software
should be favoured over other software. In this context,
R software (R Development Core Team, 2008) is clearly

an appealing choice: in addition to allowing exact
reproducibility, it provides an interface between a large
number of implemented multivariate methods (Chessel
et al., 2004; Dray et al., 2007) and genetic marker data
(Jombart, 2008), in addition to supporting the usual
population genetics tools (Warnes, 2003; Goudet, 2005).
From a more theoretical point of view, it seems important
to further investigate the relationships between multi-
variate methods and genetic models. A step in this
direction has been made by Patterson et al. (2006), who
applied recent developments in statistics (Soshnikov and
Fyodorov, 2005) to infer the number of populations in a
set of genotypes and define a threshold for genetic
structuring to be detectable by PCA.

More generally, several multivariate analyses devel-
oped in other disciplines can be adapted to search
biological structures within genetic markers. This is
clearly the case in spatial genetics, where constrained
ordinations based on Moran’s eigenvectors (Dray et al.,
2006) could be used to investigate or correct for
spatial genetic structures. It is also true for K-table
methods, which were only recently introduced into
population genetics (Laloë et al., 2007; Pavoine and
Bailly, 2007), and open appealing perspectives for the
study of the genetic diversity. These methods can also be
used to investigate common patterns of variation
inferred from genetic markers and other sources of
information, like biological traits and environmental
features. As noted by Patterson et al. (2006), multivariate
analysis can analyse larger datasets than other usual
approaches such as Bayesian clustering, and thus
represents a relevant approach to extracting information
from huge datasets produced by the detailed mapping of
genetic variation for a large number of genotypes. This is
the case, for instance, with the ‘1000 Genomes’ project
(http://www.1000genomes.org/), which aims at se-
quencing one thousand human genotypes to provide
high-resolution information that is directly valuable for
disease studies. Promisingly, a wide range of questions
are raised by or through genetic markers, some of which
can currently be solved by existing methods. Some of
these questions will undoubtedly require specific devel-
opments in which multivariate models will have to
closely match the genetic concerns, which makes the
multivariate analysis of genetic markers a whole area of
research in biometry.
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