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 ABSTRACT  To understand the genetic drivers of immune recognition and evasion in colorectal 

cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 

classifi ed as microsatellite instability–high (MSI-high). This set includes The Cancer Genome Atlas 

colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, 

immunogenic subtype of colorectal cancer, had a high rate of signifi cantly mutated genes in important 

immune-modulating pathways and in the antigen presentation machinery, including biallelic losses 

of  B2M  and  HLA  genes due to copy-number alterations and copy-neutral loss of heterozygosity. 

WNT/β-catenin signaling genes were signifi cantly mutated in all colorectal cancer subtypes, and 

activated WNT/β-catenin signaling was correlated with the absence of T-cell infi ltration. This large-

scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an 

immunoediting process that provides them with genetic events allowing immune escape despite high 

mutational load and frequent lymphocytic infi ltration and, furthermore, that colorectal cancer tumors 

have genetic and methylation events associated with activated WNT signaling and T-cell exclusion. 

  SIGNIFICANCE:  This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it 

should be possible to better monitor resistance in the 15% of cases that respond to immune blockade 

therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that 

currently do not.  Cancer Discov; 8(6); 730–49. ©2018 AACR.       
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  INTRODUCTION 

 Despite major advances in technologies to monitor com-
plex molecular profi les of cancer, translating molecular 
observations into treatment decisions remains challenging 
in routine patient care due to cancer heterogeneity and the 
rapidly expanding repertoire of treatment options, includ-
ing immunotherapy ( 1, 2 ). Precision medicine advances 
have been fueled by technological advances, such as targeted 
sequencing, and also by multi-omic sequencing efforts, 
such as The Cancer Genome Atlas (TCGA; ref.  3 ), which 
are powered to provide guidance for targeting molecular 
observations in the form of estimates of the frequencies of 
drivers to consider. 

 Colorectal cancer in particular represents a heterogenous 
group of dynamic diseases with differing sets of genetic 
events, accompanying immune response, and infl uences of 
exogenous factors, providing a challenge for personalized 
therapeutic approaches. The initial TCGA effort to molec-
ularly profi le colorectal cancer reported on 276 primary 
samples, providing a deep look at the common non-hyper-
mutated chromosome unstable subset, but only a prelimi-
nary consideration of 35 hypermutated cases due to the low 
overall number of microsatellite instability–high (MSI-high) 
cases ( 4 ). The NCI Genetics and Epidemiology of Colorectal 
Cancer Consortium (NCI-GECCO) effort, which relies on 
the TCGA colorectal cancer data as a basis for integration of 
epidemiology data and genome-wide association study data 
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from 40,000 participants to make recommendations regard-
ing colorectal cancer prevention (5), pursued the systematic 
completion of the TCGA colorectal cancer cohort, which 
now includes 592 cases with tumor exome, transcriptome, 
methylation, and copy-number alteration (CNA), as well as 
key subtyping and intermediate data as a resource for the 
community, including molecular pathologists. We present 
this resource here.

To further power the study of colorectal cancer, we inte-
grated exome data on 619 previously published primary 
tumor cases from the Nurses’ Health Study (NHS) and the 
Health Professionals Follow-up Study (HPFS; ref. 6), yield-
ing an unprecedented sample set of 1,211 primary colorectal 
cancer molecularly characterized cases for identifying sig-
nificantly mutated genes, pathways, and potential oncogenic 
hotspots. The large number of specimens, including a high 
number of hypermutated MSI-high cases (n = 179, or 15%) 
and POLE (16 cases), make it possible to carefully analyze 
genetic alterations in these hypermutation subtypes.

We were particularly interested in applying this large 
multi-omic colorectal cancer cohort to understand driv-
ers of immune infiltration, as recent advances in immu-
notherapy have necessitated a deeper consideration of 
the less frequent MSI-high colorectal cancers, which have 
been shown to respond to immune checkpoint blockade, 
whereas the much more common microsatellite stable 
(MSS) colorectal cancers do not usually respond to these 
immunotherapies (7, 8). The FDA recently approved pem-
brolizumab and nivolumab, two PD-1 immune checkpoint– 
blocking antibodies, for the treatment of patients with MSI-
high [or mismatch repair deficient (MMR-D)] colorectal 
cancer and, in the case of pembrolizumab, all MSI-high 
or MMR-D treatment-refractory solid malignancies. It is 
hypothesized that a higher somatic mutational load leading 
to increased presentation of neoepitopes mediates immu-
notherapy responses in MSI-high tumors (6–8). However, 
it has been observed previously that MSI-high or immune-
infiltrated tumors have evolved mutations that may confer 
resistance to recognition by the immune system in untreated 
samples (i.e., immunoediting; ref. 9). On the other hand, it 
has been postulated that a lower mutational load and poorly 
characterized effector T-cell exclusion processes underlie 
immunotherapy resistance in MSS colorectal cancer (10). 
Here, we demonstrate that there are other factors besides muta-
tion load affecting T-cell infiltration in both MSI-high and 
MSS. Specifically, we show that MSI-high tumors frequently 
undergo immunoediting through complete disruption of both 
alleles of key genes in the MHC–antigen presentation pathway 
and that both MSS and MSI-high cancers have lower T-cell 
infiltration when molecular events that upregulate the WNT 
pathway are present.

RESULTS

Colorectal Cancer Subtypes of MSI-High, POLE, 
and MSS Analyzed in the TCGA Cohort

MSI-high status was available for the previously published 
276 TCGA samples, using the clinical grade classification, 
which uses PCR on a set of microsatellite markers (4). To 
assess MSI-high status on the remaining samples for which 

we did not have coverage on these microsatellite mark-
ers, we relied on a benchmarked bioinformatics approach 
called mSINGS (11, 12), which considers whether there is an 
increased insertion and deletion (indel) rate at microsatel-
lite tracts throughout the exome (Supplementary Table S1 
and Methods). MSI-high samples are driven by disruptive 
mutations of mismatch repair genes or epigenetic silencing 
of MLH1, and we confirmed these driving events in all but 11 
samples, increasing our confidence in our assessment of MSI-
high status (Supplementary Fig. S1A). We also confirmed 
increased mutation load in MSI-high tumors with increased 
substitutions (P < 0.001) and indels (P < 0.001), often at 
microsatellite tracts due to MMR-D in MSI-high cases (Sup-
plementary Fig. S1B). Three Lynch syndrome cases were 
identified by manual inspection of the germline sequenced 
reads aligned to the human genome to identify disruptive 
mutations in MMR genes (Supplementary Table S1). These 
cases were typical of other MSI-high cases with respect to 
mutational load for number of substitutions and indels and 
were treated that way in downstream analysis. The 75 TCGA 
MSI-high cases presented here included transcriptome, CNA, 
and methylation data, in addition to exome data, making 
multi-omic analyses possible for these cases.

An additional rare hypermutation subtype exists in colo-
rectal cancer that could be potentially targetable by immune 
checkpoint inhibitors based on having an unusually high 
mutation load (13): POLE mutated cases that have muta-
tions in the exonuclease domain of the catalytic subunit of 
the polymerase epsilon, and that have an outlier number of 
substitutions, but not indels (Supplementary Fig. S2). We 
identified 16 of these cases on the basis of mutations in the 
gene POLE and an outlier number of substitutions (Fig. 1; 
Supplementary Tables S1 and S2). Three cases were also iden-
tified that were POLE and MSI-high, based on mutations in 
POLE, mSINGS results, and epigenetic silencing of MLH1. All 
of these cases had an extremely high mutation load, includ-
ing both indels and substitutions: The largest mutation load 
in the series was case TCGA-3821 with both a POLE muta-
tion and MSI-high resulting in 10,088 substitutions and  
143 indels.

Next, we subtyped the MSI-high and MSS samples fur-
ther to validate that the resulting TCGA colorectal cancer 
592-sample cohort recapitulated previously reported features 
of MSS and MSI-high colorectal cancer. CpG island methyla-
tor phenotype (CIMP) status was called using an array-based 
methylation method (14). Genomic subtypes, including 
BRAF+, KRAS+, APC+, TP53+, and CTNNB1+, were called using 
somatic mutation data generated as described in Methods. In 
addition, the colorectal cancer Consensus Molecular Subtype 
for each sample was generated using the mRNA (Supple-
mentary Table S1; ref. 15). Figure 1 shows that the colorectal 
cancer data in this cohort were consistent with previously 
described genetic and molecular subtypes of MSI-high and 
MSS status (4, 6, 16). As previously reviewed (16), MSI-high 
tumors were enriched for hypermethylation (CIMP-high, P < 
1 × 10−15), mutations in BRAF (P < 1 × 10−15), and RNF43 (P < 
1 × 10−15). On the other hand, MSS tumors were enriched for 
mutations in APC (P < 1 × 10−15) and KRAS (P = 0.004) and 
increased chromosomal instability, including CNAs (P < 0.001) 
and recurrent high gains and losses (Supplementary Fig. S1C;  
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Supplementary Table S3). These differences between MSS 
and MSI-high tumors reflect differences in precursor lesion 
and etiology (17) that may contribute to responses to immune 
checkpoint blockade therapy. A complete description of the 
data analysis methods, including somatic mutation calling, 
CNA calling, copy-neutral loss of heterozygosity (CN-LOH) 
calling, and HLA class I typing, along with available data, may 
be found in Methods.

WNT Signaling and Immune-Related Genes and 
Pathways Significantly Mutated in the Combined 
1,211 Colorectal Cancer Cases

To get a deeper look at the mutational landscape of colo-
rectal cancer, we combined the somatic mutation data from 
the 592 fresh-frozen exomes from TCGA with the somatic 
mutations data from the formalin-fixed paraffin-embedded 
(FFPE) exomes from the 619 cases from the Nurses’ Health 
Study (NHS) and the HPFS (6), yielding a sample set of 1,211 
colorectal cancer molecularly characterized cases. The com-
bined large number of specimens, including 179 MSI-high 
cases (104 from the NHS/HPFS cohort typed for MSI-high 
status using a clinical grade test), provided sufficient power 
to identify significantly mutated genes and pathways in MSS 
and MSI-high tumors. This large dataset also had the power 
to identify rare mutation hotspots. For example, we identified 
the known activating mutation IDH1R132H (18) in five cases 
and AKT1E17K (19) in six cases. Figure 2A and Supplementary 
Table S4 detail which dataset was used for which analyses: 
The somatic mutations from the NHS/HPFS cohort were 
additionally used to identify potential drivers, whereas the 
multi-omic TCGA data were used to explore further the func-
tional roles of these drivers.

We utilized the MutSigCV algorithm (20) on the combined 
dataset to identify the significantly mutated genes that were 
found to be mutated more frequently than expected given 
the cohort-specific background mutation rate in MSS or 
MSI-high (6). We identified a total of 62 significantly mutated 
genes, of which 9 were identified in MSS tumors only, 40 in 
MSI-high tumors only, and 13 in both (Fig. 2B; Supplemen-
tary Table S5). Supplementary Table S6 shows which genes 
in Fig. 2B were novel with respect to the four previous large-
scale whole-exome sequencing studies of colorectal cancer 
(1, 4, 6, 21). The significantly mutated genes in MSS were all 
previously reported in TCGA (4) or in the NHS/HPFS study 
(6) except for B2M, which is more commonly mutated and 
significant in MSI-high, occurring less commonly in MSS 
(Supplementary Table S6). On the other hand, 27 of the 53 
significantly mutated genes in MSI-high were novel, likely 
resulting from the large increase in the number of MSI-high 
tumors in this combined series relative to previous stud-
ies (1, 4, 6, 21). WNT signaling genes were well represented 
as significantly mutated genes in both subtypes, whereas 
immune-related genes were significantly mutated in MSI-
high specifically (Fig. 2B).

We used MutSigCV on the TCGA cohort to identify signifi-
cantly mutated pathways in the MSS cohort using BioCarta, 
REACTOME, and KEGG gene sets. We identified 135 pathway 
gene sets with a Q-value less than 0.01 in the MSS cohort: Only 
four involved the immune system, specifically interleukin 
signaling (Supplementary Table S7). Next, we used MutSigCV 
to identify six significantly mutated pathways in the MSI-
high cohort, including two significantly mutated pathways 
involved in MHC class I antigen-presenting machinery (APM; 
Supplementary Table S8). The antigen-presenting genes  

Figure 1.  Frequently mutated genes in colorectal cancer. Mutation landscape showing the subtypes of the 592 TCGA tumor samples, sorted by increas-
ing mutation load, including MSI status, POLE status, and Lynch status. Samples reported on previously by TCGA (2012) are indicated. Molecular subtypes 
(see Methods) enriched in MSI-high or MSS are indicated: *, P < 0.01; **, P < 1.0 × 10−4; ***, P < 1.0 × 10−6. Consensus Molecular Subtypes (CMS) are shown; 
MSI-high is enriched for CMS1, the microsatellite instability immune subset (P < 1 × 10−15). Mutations defining genomic subtypes are in Methods.
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Figure 2.  Datasets and summary of significantly mutated genes. CRC, colorectal cancer. A, Sources of data, breakdown of subtypes, and types of 
analyses performed on each cohort. B, Significantly mutated genes (by MutSigCV) in MSS relative to MSI-high; all genes with Q < 0.01 in the combined 
TCGA + NHS/HPFS set and at least one of the individual cohorts are shown. Genes are labeled by functional class(es), prevalence of microsatellite  
mutations (*: significant with Q < 0.01 in indel-specific calculation), and incidence of biallelic disruptive mutations (∧: present in at least one sample).
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HLA-A, HLA-B, and B2M contribute a large number of the 
mutations in these pathways.

Immune-Related and WNT Signaling Genes 
Significantly Mutated in MSI-High Based  
on MMR-D

It had been previously observed that MMR-D mutations 
occur at specific microsatellite sites in the colorectal cancer 
genome (22), but the functional impact of these micros-
atellite hotspots was not previously known (22). A recent 
study (23) presented a method to use microsatellite indels, 
which occur at a high rate in MSI-high tumors, to identify 
cancer drivers. The study identified a JAK1 microsatellite 
indel as driving immune evasion in endometrial tumors and 
redemonstrated RNF43 microsatellite indels as inhibitors of 
WNT signaling in colon cancer, thereby demonstrating the 
utility of this approach. We applied a similar approach (see 
Methods) to the full 179 colorectal cancer MSI-high cohort 
to see whether each of the 53 significantly mutated genes 
in MSI-high had a higher than expected number of indels 
at microsatellite sites. We observed 29,429 total indels at 
1 billion possible microsatellite tracts in the entire MSI-
high cohort. Aggregating the data by gene, we observed 28 
of 53 genes significantly mutated by this MMR-D typical 
mechanism (Fig. 2B). Eight of these genes were related to 
WNT signaling, and 11 were related to immune pathways 
(Fig. 2B), indicating selection pressure on these genes in 
MSI-high resulting from the MMR-D mutation rate (Sup-
plementary Table S9).

Biallelic Losses of WNT and  
Immune-Related Genes

To add further evidence to the driver status of the 62 sig-
nificantly mutated genes, and to overcome concerns about 
hypermutation rates creating false positives, we integrated 
data on disruptive mutations, single-copy losses, and CN-
LOH in MSS (Fig. 3A) and MSI-high tumors and thereby 
identified cases with biallelic losses in 26 of the 62 signifi-
cantly mutated genes (Fig. 3A; Supplementary Table S10; 
short reads limit our ability to check whether both alleles are 
lost when there are two disruptive mutations, so these cases 
are less conclusive). Of these, 13 were WNT signaling genes 
and eight were immune-related genes. These data indicate 
selection pressure to disrupt WNT genes across all colorectal 
cancers, whereas immune-related genes are selected for dis-
ruption in MSI-high.

Although MSI-high cancers have relatively few CNAs 
(Supplementary Fig. S3), we found that CN-LOH events do 
occur at sites of disruptive mutations, resulting in biallelic 
loss of a gene and indicating selection pressure to inactivate 
that gene (Supplementary Fig. S4A shows focal CN-LOH 
events driving biallelic loss of B2M). Figure 3B shows all the 
CN-LOH and single-copy loss events overlapping disruptive 
mutations in the TCGA cohort, revealing recurrent CN-LOH 
events that occur in the HLA-A, HLA-B, and B2M regions, 
providing evidence that in MSI-high cases, CN-LOH events 
cluster in APM genes. Interestingly, a recent study of CN-LOH 
of the HLA class I region in lung cancer showed that biallelic 
loss in this region can drive immune escape (24), whereas 
a recent study in melanoma showed that biallelic losses of 

B2M are enriched in anti–PD-1 nonresponders relative to 
responders (25).

Selection for Disruption of Immune-Related  
Genes in MSI-High Tumors

Figure 4A shows the mutation landscape for the 75 MSI-
high samples from the TCGA, which has CNA and gene 
expression data. Fifteen significantly mutated genes (identi-
fied using MutSigCV on the combined cohort) have a docu-
mented role in the immune system specifically, including 13 
significantly mutated in MSI-high tumors, a subtype shown 
previously to have a high level of T-cell infiltration (6), and 
two significantly mutated, immune-related genes (ZFP36L2 
and B2M) in both MSS and MSI-high (Figs. 2B and 4A). Of 
these 15 genes, three had known roles in modulating diverse 
functions in hematopoietic lineage cells and effects beyond 
antigen presentation but no previously described roles in 
cancer cells: XYLT2, a gene necessary for dendritic cell traf-
fic and T-cell response in the lymph nodes, because of its 
role in the biosynthesis of heparan sulfate (26); ZFP36L2, a 
gene involved in thymocyte development (27); and KLF3, a 
gene involved in B-cell development (28). Four additional 
significantly mutated immune-related genes had been previ-
ously described as being expressed in cancer cells: CD58, a 
tumor surface protein involved in the activation of natural 
killer (NK) cells through interaction with CD2 (29) that is 
concurrently lost with B2M in some cancers (30); CASP8, a 
tumor-expressed gene involved in innate immunity through 
its role in apoptosis (31); ZBTB20, a tumor Toll-like receptor 
mediating innate immune response by repressing IκBα gene 
transcription (32); and RNF128, a tumor-expressed gene that 
is essential for IFNβ production and innate antiviral immune 
response (33). Together, these mutations indicate positive 
selection for immune escape through other mechanisms 
beyond mutations in APM.

The observation of mutations consistent with cancer 
immunoediting motivated us to understand the extent of 
damage to the APM previously reported in MSI-high or more 
heavily T cell–infiltrated tumors (6–8, 34). We found that 57% 
of MSI-high cases had at least one mutation in HLA-A, HLA-B, 
or HLA-C, with 39% having a mutation in HLA-A, 33% in HLA-

B, and 21% in HLA-C, using an HLA mutation calling method 
that accounts for the polymorphic nature of this region  
(Fig. 4A; Supplementary Table S11). We included in Fig. 4A 
gene expression data for each HLA class I gene, demonstrat-
ing that HLA class I expression levels vary in colorectal cancer 
primary tumors. We observed both truncating mutations that 
lower expression of HLA-A and HLA-B (Fig. 4B) and missense 
mutations in exon 4, which disrupt the alpha 3 domain that 
binds to the CD8 coreceptor of T-cells (35), potentially disrupt-
ing antigen presentation. Because the HLA class I genes are 
adjacent on chromosome 6, a CN-LOH event in this region, 
referred to as an HLA LOH event, could simultaneously 
eliminate up to three maternal or paternal adjacent HLA class 
I alleles (Supplementary Fig. S5), potentially iteratively reduc-
ing the cell’s capacity for antigen presentation while expand-
ing the landscape of possible oncogenic mutations available 
to the tumor (36). Using a similar method to the one used 
here, HLA LOH events were observed recently in lung cancer 
metastasis with evidence that these cases can iteratively drive 
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immune escape (24). Here, we found six HLA LOH cases out 
of 75 primary untreated MSI-high tumors; two of these had 
additional disruptive mutations, potentially further reducing 
the number of HLA class I alleles in those cases (Fig. 4A).

Next, we considered significantly mutated genes in MSI-
high with a role in disrupting HLA class I presentation. 
We identified recurrent mutations in the genes NLRC5 and 
RFX5, which cooperatively regulate the transcription of HLA 
class I genes (37–40). NLRC5 was mutated in 33% of MSI-
high samples and RFX5 was mutated in 16% of TCGA MSI-
high samples (Fig. 4A). Mutations in either of these genes 
were found to be associated with decreased expression of 
HLA-A, HLA-B, and HLA-C (Fig. 4C), reducing the expression 

of each gene by approximately 50%. RFX5 was a significantly 
mutated gene in the TCGA and NHS/HPFS cohorts inde-
pendently. Although NLRC5 has been previously suggested 
to be a possible target for immune evasion (41), the size of 
the gene (1,866 AA) makes it difficult to identify as signifi-
cantly mutated by MutSigCV. Instead, NLRC5 was identified 
here because it was significantly enriched for insertions/
deletions at homopolymer and dinucleotide sites in MSI-
high based on the MMR deficiency significance calculation 
performed here (P = 1 × 10−4).

Antigen presentation machinery genes have been shown 
to be enriched for mutations in MSI-high relative to MSS 
tumors (6), in particular TAP2, a gene that helps transport 

Figure 3.  Biallelic loss events in significantly mutated genes in colorectal cancer broken down by MSI status. A, Stacked bar plot showing genes with 
recurrent biallelic disruptions in MSS and MSI-high tumors, by number of biallelic disruptions of each type. B, CN-LOH and single-copy loss events in MSI-
high and MSS. Each panel shows all disruptive somatic mutations (i.e., splice site mutations, nonsense mutations, start site mutations, and frameshift 
indels) that overlap single-copy losses and CN-LOH events. Each horizontal segment represents a single event, with the length of the segment propor-
tional to the length of the alteration; colored dots represent mutations.
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peptides to be presented by the APM, and B2M, a necessary 
component of HLA class I complexes on the surface; we 
found 6 of 75 MSI-high cases (8%) with biallelic disruption of 
TAP2 (a gene that is not significantly mutated in MSI-high by 
itself) and 8 of 75 MSI-high cases (11%) with biallelic disrup-
tion of B2M (Fig. 4A and D). Six of the MSI-high cases with 
biallelic disruption of B2M appeared to be clonal based on 
the tumor purity, the variant allele fraction, and the CNA or  
CN-LOH data, and all six showed significantly reduced expres-
sion of B2M (Supplementary Figs. S4A and S6). Biallelic disrup-
tion of B2M has been shown to confer resistance to anti–PD-1 
(PDCD1) therapy in a patient with melanoma undergoing ther-
apy (25, 42), as well as lung cancer (43) and colorectal cancer (7).

Figure 4A shows that clustering the samples based on the 
HLA class I and class II gene expression yields four clusters: 
Cluster I has both HLA classes upregulated, Cluster II has 
both clusters downregulated, Cluster III has HLA class I 
downregulated and HLA class II upregulated, and Cluster IV 

has HLA class I upregulated and HLA class II downregulated, 
indicating different subtypes within MSI-high based on HLA 
gene expression. Cluster II is enriched for NLRC5/RFX5–
mutated samples (P = 0.01 by a one-sided Fisher exact test) 
consistent with the role of these genes in regulating HLA class 
I expression and the role of RFX5 mutations in decreasing 
HLA class II expression in MSI-high colorectal cancer (44). 
Clusters I and IV, which have HLA class I genes upregulated, 
are enriched for TAP1, TAP2, and B2M biallelic loss cases  
(P = 0.02 by a one-sided Fisher exact test), indicating that 
these genes may be selected to be disrupted in cases where 
HLA class I gene expression is intact.

Overall, 20 of 75 (27%) MSI-high primary tumor cases 
were found to have biallelic disruptions to one of eight 
genes important for antigen presentation to CD8 T cells, 
whereas another 49 of 75 (65%) cases were found to have less 
severe forms of damage to the same gene set (Fig. 4E). These 
mutations are predicted to affect MHC class I  expression, 

Figure 4.  Mutation landscape of immune-related genes and consequences in MSI-high tumors. A, Mutation landscape of 9 genes frequently mutated 
in MSI-high and involved in antigen presentation, as well as 11 significantly mutated immune-related genes that regulate other hematopoietic cell types 
beyond antigen presentation. Gene expression for HLA class I (red bar) and class II (blue bar) genes is shown for comparison. Total number of coding 
mutations in MSS samples for each gene is shown to the left. Samples were clustered by gene expression; the four main clusters are indicated above the 
dendrogram: Cluster I (green), Cluster II (purple), Cluster III (yellow), and Cluster IV (orange bars). B, Decreases in HLA-A and HLA-B expression in samples 
with disruptive mutations in those genes. C, Decreases in HLA class I gene expression in samples with mutations in either NLRC5 or RFX5. D, Decreases in 
TAP2 and B2M expression in samples with disruptive mutations in those genes (*, P < 0.01; **, P < 0.001; ***, P < 1.0 × 10−4 for B–D). E, Mutation counts in 
pathways affecting antigen presentation broken down by type.
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upstream antigen processing, and antigen presentation 
itself. The biallelic mutations were predominantly mutually 
exclusive of one another, indicating that these mutations 
potentially have similar roles in tumor survival. Beyond the 
biallelic disruption mutations, however, the majority of these 
mutations likely help tumor survival only marginally, by, for 
example, downregulating MHC class I epitope presentation 
by the tumor. In both of these cases, cross-presentation of 
tumor-derived antigens by dendritic cells, macrophages, and 
other cell types may remain an avenue for activating an anti-
tumor CD8 T-cell response, and characterizing these effects 
in the context of APM mutations is an important area for 
future work. Together, these mutations suggest the existence 
of positive selection for immune escape through the disrup-
tion of APM, editing the cancer cell genome likely to avoid the 
presentation of the most immunogenic neoepitopes result-
ant from high mutational burden.

Mutation Load as a Predictor of T-cell Infiltration

To assess CD8+ T-cell infiltration levels in the TCGA colo-
rectal cancer we applied the expression-based pan T-cell infil-
tration measurement used on the melanoma TCGA cohort 
in (45). The T cell average is the average log-expression of 12 
canonical T cell–associated genes (CCL2, CCL3, CCL4, CXCL9, 

CXCL10, CD8A, HLA-DOB, HLA-DMB, HLA-DOA, GZMK, 

ICOS, and IRF1). T-cell average is correlated with tumor-infil-
trating lymphocyte (TIL) score, a pathology-based measure 
of T-cell infiltration, based on 429 pathology slides available 
for TCGA samples (see Methods, Supplementary Table S12; 
Supplementary Fig. S7A). This measurement is highly cor-
related with CD8A expression by itself (R2 = 0.73) and the 
“CYT” score (the average of GZMA and PRF1 expression, a 
measure of immune cytolytic activity based on two genes not 
present in the T-cell average; R2 = 0.67; Supplementary Fig. 
S7B; ref. 46). We use the measurement with more genes here 
for robustness and for consistency with recent analyses (45).

This T-cell infiltration measurement was well supported by 
1,346 correlated T-cell inflammation signature genes (Sup-
plementary Table S13; Supplementary Fig. S8A). Also, RNA 
sequencing (RNA-seq)–based cell deconvolution of tissue-
infiltrating immune and stromal populations using MCP-
counter (ref. 47; based on 111 genes, including CD8A and 
ICOS, two genes in the T-cell average measurement) showed 
that the T-cell average was correlated with all immune cell 
populations present during immune inflammation, includ-
ing cytotoxic lymphocytes (R2 = 0.76), monocytic lineage cells 
such as macrophages (R2 = 0.62), and myeloid dendritic cells  

(R2 = 0.61; Supplementary Fig. S8B and S8C; Supplemen-
tary Table S14). On the other hand, NK cells were not as 
correlated with the T-cell average (R2 = 0.21) and a group of 
samples had outlier high amounts of NK-cell expression, one 
of which was a B2M biallelic loss case (Supplementary Fig. 
S5) possibly attracting NK cells due to the lack of HLA class I 
on the surface.

The T-cell average was higher for MSI-high samples, which 
have on average approximately 1,000 coding mutations, rela-
tive to MSS samples, which have on average approximately 
100 coding mutations. However, the T-cell average was not 
directly correlated with mutation load (we use mutation 
load because accurately predicting neoantigens is still an 
open research problem) within MSS (R2 = 0.001) or MSI-high  
(R2 = 0.004; Fig. 5B). We sought to identify other explanations 
for the variability of T-cell average that is not explained by 
mutation load.

WNT Signaling Is Inversely Correlated with T-cell 
Infiltration in the TCGA Colorectal Cancer Cohort

Recently, it has been demonstrated that high WNT signal-
ing excludes T-cell infiltration in melanoma primary lesions 
(45), and that T cells failed to control a melanoma tumor 
with overexpression of CTNNB1 (48). Further evidence has 
demonstrated a role of WNT signaling in shaping immunore-
sponse in ovarian (49) and prostate (50) cancers. We identi-
fied 19 significantly mutated genes using MutSigCV (20) in 
overall colorectal cancer with a role in WNT signaling (Figs. 
2B and 5A). APC, TP53, RNF43, FBXW7, SOX9, ARID1A, and 
TCF7L2 are significantly mutated genes in all colorectal can-
cer tumors. On the other hand, AMER1, TGIF1 (51), ELF3 (52), 
SMAD4, and SMAD2 are significantly mutated in MSS tumors 
specifically, and ZNRF3 (53), BCL9L, DOCK3 (54), CD58 (55), 
AXIN2, and WNT16 are significantly mutated in MSI-high 
tumors. CTNNB1 is recurrently mutated with activating driver 
mutations (see Methods) in 16 tumors. Using MutSigCV, we 
also identified KEGG_WNT_SIGNALING_PATHWAY as a 
significantly mutated pathway in overall colorectal cancer  
(Q < 1.0 × 10−15) and MSS samples (Q < 3.4 × 10−14). In MSI-
high, the WNT signaling pathway was significantly mutated 
on the basis of the microsatellite indel significance calcula-
tion using the BioCarta (Q < 1.0 × 10−15) and REACTOME  
(Q < 9.8 × 10−4) gene sets, but not by MutSigCV ( Supplementary 
Table S15).

To investigate whether, as in primary melanomas (56), 
WNT signaling is inversely correlated with TILs in colorec-
tal cancer, we tested the correlation between WNT target 

Figure 5.  WNT signaling anticorrelated with T-cell infiltration. A, Mutation landscape of significantly mutated genes involved in WNT signaling in MSS 
versus MSI-high tumors. B, Scatter plot showing T-cell average versus the number of coding mutations in MSS and MSI-high samples. Box and whisker 
plot of the number of coding mutations versus T cell–inflamed status (“T-cell high” samples are those with T-cell average greater than the median for MSS 
and MSI-high). C, Scatter plot showing the T-cell average versus AXIN2 gene expression in MSS and MSI-high samples. D, IHC analysis of T lymphocyte 
infiltrates according to nuclear CTNNB1 (β-catenin) status. Box plot showing that nuclear CTNNB1 is anticorrelated with TILs (P = 0.027). Boxes are 
95% confidence intervals; lines are estimated ORs. Crohn-like reaction was defined as transmural lymphoid reaction. Peritumoral lymphocytic reaction 
was defined as discrete lymphoid reactions surrounding tumor. Intratumoral periglandular reaction was defined as lymphocytic reaction in tumor stroma 
within tumor mass. TILs were defined as lymphocytes on top of cancer cells. E, Box plot showing that nuclear CTNNB1 is anticorrelated with CD3+ density 
(P = 0.054), CD8+ density (P = 0.0019), CD45RO+ density (P = 0.0080), but not FOXP3+ density (P > 0.1; *, P < 0.1; **, P < 0.01 for D–E). F, The top row 
depicts a tumor with positive nuclear staining for CTNNB1 (left, highlighted by inset) that harbors a low level of CD3, CD8, and CD45RO-positive TILs 
(arrows) compared with the tumor in the bottom row that shows a membranous-only expression pattern for CTNNB1 and harbors higher levels of CD3, 
CD8, and CD45RO-positive TILs. In contrast, levels of FOXP3+ T lymphocytes are lower than the other T-cell subsets and do not show a significantly dif-
ferent density based on nuclear CTNNB1 status. Note that the degree of periglandular lymphocytic response (marked by asterisks) within the stroma is 
not significantly impacted by nuclear CTNNB1 status.
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gene expression and the T-cell average. Although the role 
of AXIN2 in cancer is still being understood, here we are 
using it as a biomarker of WNT signaling expression, as 
it is a WNT target gene whose gene expression level has 
been shown to be upregulated in tumors with high nuclear 
CTNNB1 protein levels (57). In the TCGA cohort, AXIN2 
gene expression was significantly inversely correlated with 
the T-cell average (R = −0.36, Q = 4.8 × 10−18; rank = 1,754, 
Fig. 5C). Supplementary Figure S9 shows a heat map of 
the T-cell average and the expression level of 11 other 
WNT target genes (58–63) that were significantly inversely 
correlated with the T-cell average: RNF43 (Q = 8.1 × 10−18) 
and ZNRF3 (Q = 1.5 × 10−16; refs. 53, 64), NKD1 (Q = 1.6 ×  
10−11), TCF7 (Q = 4.0 × 10−15), APCDD1 (Q = 9.3 × 10−3), 
ASCL2 (Q = 1.7 × 10−9), NOTUM (Q = 2.9 × 10−8), EPHB2  
(Q = 2.7 × 10−14), ETS2 (Q = 2.5 × 10−7), MYB (Q = 7.4 × 10−6), 
and MYC (Q = 0.57). These findings support our conclusion 
that WNT signaling, as shown using the expression levels of 
12 WNT target genes in colorectal cancer, is anticorrelated 
with T-cell infiltration.

Nuclear CTNNB1 (a-Catenin) Expression Is Inversely 
Associated with Pathologically Determined Immune 
Infiltration in Colorectal Cancer

Given our findings of the inverse association of WNT signal-
ing with activated T-cell transcriptional signatures, we sought 
to confirm this result using well-validated IHC markers of pro-
tein expression and immune infiltration. Specifically, we tested 
1,150 colorectal cancer FFPE cases, procured from the NHS/
HPFS cohorts, for nuclear CTNNB1 as a marker of activation 
of the WNT signaling pathway (65). To reduce bias result-
ing from spatial heterogeneity, we assessed hematoxylin and 
eosin (H&E) whole-tissue sections and four tissue microarrays 
(TMA) per tumor. Next, we assessed spatially and functionally 
distinct immune infiltrates in colorectal cancer through histo-
pathologic examination of four lymphocytic reaction patterns 
from: TILs, intratumoral periglandular reaction, peritumoral 
lymphocytic reaction, and Crohn-like lymphoid reaction (see 
Methods; ref. 66), as well as four T-cell functional subsets [CD3+ 
cells, CD8+ cells, CD45RO+ (PTPRC protein isoform) cells, and 
FOXP3+ cells], using TMA and IHC and image analysis (67).

Consistent with our finding of inverse association between 
WNT signaling and T-cell average, nuclear CTNNB1 protein 
expression was inversely associated with TILs (P = 0.027;  
Fig. 5D; Supplementary Table S16). Intratumoral, peritu-
moral, and Crohn-like lymphoid reactions were not signifi-
cantly associated with nuclear CTNNB1 expression (P > 0.14). 
As previously shown (66), TILs were more frequently occur-
ring in MSI-high tumors. However, the inverse association 
between TILs and nuclear CTNNB1 expression was apparent 
in both MSI-high and MSS cancers (Supplementary Fig. 
S10A; Supplementary Table S17). We further examined the 
correlation between nuclear CTNNB1 and CD3+ cells (pan T 
cells), CD8+ cells (cytotoxic T cells), CD45RO+ cells (antigen-
experienced memory T cells), and FOXP3+ cells (regulatory T 
cells, which suppress cytotoxic T cells). We observed a signifi-
cant inverse association between nuclear CTNNB1 expression 
with CD8+ cells (P = 0.002), CD45RO+ cells (P = 0.008), and 
CD3+ cells (P = 0.054), but not with FOXP3+ cells (P > 0.1) 
(Fig. 5E; Supplementary Table S18). Figure 5F shows an 

example of a colorectal cancer with nuclear CTNNB1-high 
and a low level of TILs and another colorectal cancer lacking 
nuclear CTNNB1 expression (cytoplasmic-only) but exhibit-
ing a higher level of TILs. This finding was consistent across 
both MSI-high and MSS cancers (Supplementary Fig. S10B; 
Supplementary Table S19) and provides independent evi-
dence for attenuation of the antitumor immune response in 
tumors with active WNT signaling.

APC Biallelic Mutations Associate with  
Increased WNT Signaling and Decreased TILs  
in MSS and MSI-High

Using the TCGA colorectal cancer cohort, we sought to 
identify specific genomic drivers of increased WNT signal-
ing and decreased T-cell average. We first considered bial-
lelic disruptive mutations in APC, because APC loss results 
in increased nuclear CTNNB1, thereby driving expression 
of WNT target genes (68). In samples with biallelic disrup-
tive mutations in APC, AXIN2 expression was significantly 
increased (P < 2.2 × 10−16) and T-cell average was significantly 
decreased (P = 4.0 × 10−12) relative to samples with no disrup-
tive mutations in APC (Fig. 6A and B). This was evident for 
MSI-high and MSS taken separately (Fig. 6C), so that 71% of 
all colorectal cancer cases having APC biallelic loss have lower 
T-cell infiltration based on the T-cell average measurement.

Superenhancer Hypomethylation of AXIN2 Is 
Associated with Decreased TILs Independent of 
APC Alterations in MSS Tumors

Recent work showed that key WNT signaling genes, includ-
ing AXIN2, are controlled by superenhancers, which are con-
tinuous genomic regions that drive up gene expression when 
hypomethylated in cancer (69). AXIN2 is overexpressed in 
tumors relative to normal tissue as a result of hypometh-
ylation of a superenhancer region located within AXIN2 
(chr17:63540803-63558867). A methylation driver of T-cell 
infiltration is of interest because it has the potential to drive 
changes in T-cell infiltration much faster than somatic muta-
tions. To assess whether the methylation status of this super-
enhancer might be potentially driving T-cell infiltration, we 
first showed that in the TCGA multi-omic cohort, which has 
methylation data, AXIN2 expression was inversely correlated 
with the methylation status of a set of CpG islands near the 
AXIN2 superenhancer (Fig. 7A). Although this region was 
uniformly hypermethylated in MSI-high and normal samples, 
in MSS samples, the methylation state (β-value, the fraction 
of methylated reads at that CpG site) of this superenhancer 
region is bimodally distributed (Fig. 7B; Supplementary Fig. 
S11A and S11B). AXIN2 was significantly increased (P < 2 × 
10−16) and T-cell average was significantly decreased (P = 1 ×  
10−4) in MSS tumors with hypomethylation of the AXIN2 
superenhancer region, even though these samples do not dif-
fer significantly in mutation load (P = 0.4; Fig. 7C).

The methylation state of this superenhancer varied 
within APC biallelic loss cases and cases without APC dis-
ruptions (Fig. 7D), indicating the possibility of it being a 
driver independent of APC mutation status. Figure 7E shows 
that AXIN2 superenhancer hypomethylation significantly 
increased AXIN2 expression within the set of cases without 
APC disruptions and also within the set of cases with APC 
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biallelic losses. However, T-cell average was only significantly 
decreased within the APC cases with biallelic losses. Together, 
these observations indicate that there may be multiple path-
ways to immune resistance in colorectal cancer by way of 
altering WNT signaling.

DISCUSSION

At a time when cancer immunotherapy is becoming a 
mainstream treatment for patients with several cancer types, 
it is important to understand how cancer cells interact with 
the immune system and avoid being eliminated by it. As a 
cancer evolves from its normal cell of origin with progres-
sively accumulated mutations, it needs to evade immune 
recognition and prevent tumor antigen-specific T cells from 
infiltrating and attacking it. A main mechanism by which 
cancers avoid immune attack is by triggering immune check-

points that are inhibitory pathways crucial for limiting self-
attack and minimizing collateral damage in normal tissues 
(70). Antibody therapy can be used to block the CTLA4 or 
PD-1 (PDCD1) checkpoints, releasing the T cells to attack the 
tumor (71, 72). These T cells likely recognize neoepitopes cre-
ated by nonsynonymous somatic mutations (73) and result 
in tumors with higher mutational loads being more likely to 
respond to immunotherapy (74, 75), regardless of tumor type 
or site of origin (7, 8). Among colorectal cancers, MMR-D 
tumors are the major molecular subtype with a high muta-
tional load, and these are the patients that preferentially 
respond to anti–PD-1 therapy (7, 8). However, not all patients 
with colorectal cancer with high mutational load respond to 
immune checkpoint inhibitor therapy, suggesting that the 
cancer cells may have evolved alternate mechanisms to evade 
immune recognition prior to treatment. Others respond ini-
tially and then develop resistance.

Figure 6.  APC biallelic loss a genomic driver of immunosup-
pression of TILs by WNT signaling. A, Scatter plot showing T-cell 
average versus AXIN2 gene expression for MSS biallelic APC  
loss cases (APC++), MSI-high biallelic APC loss cases, and MSS 
and MSI-high cases without disruptive mutations in APC (APC−). 
B, Differences in AXIN2 expression and T-cell average for all  
colorectal cancer samples without APC disruptive mutations 
(APC−) and with biallelic APC disruptive mutations (APC++).  
C, Differences in AXIN2 expression and T-cell average for samples 
without APC disruptive mutations and with biallelic APC disrup-
tive mutations separated by MSS and MSI-high status (*, P < 0.01; 
**, P < 0.001; ***, P < 1.0 × 10−4; NS, not significant).
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Figure 7.  AXIN2 superenhancer hypomethylation a cis-driver of immu-
nosuppression of TILs by WNT signaling. A, Gene structure for AXIN2 
showing the location of the superenhancer (black horizontal bar) and 
the level of anticorrelation of the CpG sites in this region with the T-cell 
average. Red CpG sites are averaged to yield a β-value for the AXIN2 
hypomethylated region (HMR); black sites are not included in the average. 
B, Histogram showing the AXIN2 HMR β-value for matched normal (green, 
n = 35), MSS (blue, n = 322), and MSI-high (red, n = 55) samples. In MSS, 
112 samples are hypomethylated and 210 are hypermethylated based 
on an average beta of 0.4 after adjusting for tumor purity. C, Differences 
in AXIN2 expression and T-cell average for hypomethylated (HypoMR+) 
AXIN2 MSS cases, hypermethylated (HypoMR−) AXIN2 MSS cases, and 
MSI-high cases. Mutation load for hypomethylated and hypermethyl-
ated AXIN2 MSS cases. D, Histogram showing the AXIN2 HMR β-value 
adjusted for tumor purity for matched normal (green, n = 35), MSI-high 
(red, n = 55), and MSS restricted to APC biallelic loss cases (light blue, n = 
206) and cases without APC disruptions (dark blue, n = 46). E, Differences 
in AXIN2 expression and T-cell average for MSS broken down by AXIN2 
hypomethylation status and APC biallelic mutation status.

Colorectal cancer provides a clear opportunity to identify 
immune resistance mechanisms present in untreated sam-
ples, because MSI-high is a subtype that does respond to 
immune blockade therapy and MSS does not. As a result of 
the large number of MSI-high samples in this cohort and the 
use of analysis techniques that account for the high MMR-D 
mutation rate, we were able to identify 11 significantly 
mutated immune-related genes with roles in modulating 
diverse hematopoietic cell types and effects beyond antigen 
presentation, suggesting potential novel therapeutic targets. 
Additional genes with a role in the immune system were 
found to be frequently mutated by these techniques. Of par-
ticular relevance to this study, NLRC5 is a large gene that was 
only identified in the MMR-D significance calculation. It reg-
ulates HLA class I gene expression (40) and has been shown 

to activate WNT signaling in hepatocellular carcinoma (76), 
suggesting that master regulators connecting tumor biology 
and immune response can still be discovered.

In our recent study (6), we observed an increased num-
ber of mutations in HLA class I and APM genes in tumors 
with higher numbers of TILs. Here, we show enrichment of 
APM and other immune-related genes in MSI-high versus 
MSS tumors. These findings potentially explain why not all 
colorectal cancers respond to immune checkpoint blockade 
therapy or go on to progress later. Similarly, HLA LOH has 
been recently reported in 40% of mostly smoking-induced 
non–small cell lung cancers with a high mutational load, 
being associated with a high subclonal neoantigen burden 
and increased T-cell infiltration. The frequency of HLA LOH 
was enriched in metastatic sites (24). Taken together with 
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the data here on MSI-high colorectal cancer, this further 
supports that highly mutated cancers develop escape mecha-
nisms upon strong immune selection pressures.

Another opportunity presented by large-scale cancer genom-
ics studies like this one is the ability to assess the frequency 
of established drivers of resistance to immunotherapy in the 
untreated colorectal cancer population. Our study showed that 
11% of untreated MSI-high patients with colorectal cancer har-
bor biallelic loss of B2M, which is the subunit of MHC required 
for the stable surface expression of all HLA class I molecules. 
Loss of B2M, long known to be an escape mechanism to cancer 
immunotherapy strategies (77–79), has been recently shown to 
confer resistance to anti–PD-1 antibody therapy (25, 42, 43).

In addition, our study showed that the majority of MSI-high 
cases had at least one mutation likely to play a role in decreas-
ing antigen presentation. Although in most cases these initial 
mutations are not predicted to be sufficient to confer resist-
ance to immune checkpoint blockade therapy, they indicate 
that immune editing is happening prior to treatment and that 
patient tumors are on a resistance continuum that needs to 
be monitored in advance of treatment. For example, although 
a B2M mutation may be sufficient to cause resistance due to 
a loss of all HLA class I antigen-presenting alleles, a patient 
whose cancer has four HLA class I parental alleles disrupted 
may be farther along the path to resistance than a patient with 
all HLA class I parental alleles intact. In fact, we observed here 
that 55% of cases (41/75) had multiple alterations in the HLA 
class I antigen-presenting pathway. This does not suggest that 
these cases will not respond to immune blockade, when a large 
percentage do. It means that these cancers are hypermutating 
and evolving a means of immune escape even before treatment 
and that we need to consider other approaches. For example, 
HLA class II antigen-presenting genes were expressed and not 
significantly mutated in MSI-high tumors, providing evidence 
that there is a population for which HLA class II–based thera-
pies, currently being pursued (80), might prove effective.

Many colorectal cancers, particularly MSS tumors, are non–
T-cell-infiltrated (274/490 MSS cases). A study in melanomas 
(45) has shown that WNT signaling upregulation may sup-
press immune infiltration. Because mutations in WNT signal-
ing pathway genes, including APC and CTNNB1, are commonly 
observed in colorectal cancer, we sought to assess whether 
there was an anticorrelation between the activation of WNT 
signaling and T-cell infiltration. Both by transcriptome analy-
ses in the TCGA set and by IHC evaluation of T-cell infiltration 
and CTNNB1 nuclear localization in independent tumor sam-
ples, it was evident that colorectal cancers with high-level WNT 
signaling exhibit low levels of T-cell infiltration independent 
of mutation load. In addition, our data show that biallelic loss 
of APC (a gene that upregulates WNT signaling), occurring in 
62% of MSS cases and 20% of MSI-high cases, is associated with 
downregulation of T-cell infiltration.

In summary, our findings suggest that MSI-high tumors 
display strong evidence of cancer hypermutation of immune 
genes to evolve a means of escape even before immune block-
ade treatment, allowing these highly mutated tumors to grow 
unimpeded by immune recognition. On the other hand, MSS 
tumors that harbor a lower mutational load exhibit less can-
cer immunoediting while exhibiting higher WNT pathway 
signaling and decreased T-cell infiltration.

METHODS

TCGA Data Access

The results published here are in whole or part based upon data 

generated by the TCGA Research Network: http://cancergenome.

nih.gov/. All the raw sequence data for TCGA exomes and transcrip-

tomes, as well as the SNP6 array data, are available through Database 

of Genotypes and Phenotypes (dbGaP) access. The raw exome data 

for this study are available through TCGA using the barcodes pro-

vided in Supplementary Table S1. Access to methylation array data 

is available through the TCGA Genomic Data Commons (GDC) at 

https://portal.gdc.cancer.gov.

Data Harmonization Yields a 592-Sample  
TCGA Colorectal Cancer Cohort

The original TCGA colorectal cancer publication provided an anal-

ysis of 276 colorectal samples (4). In the current study, we added 

the 242 prior samples that had complete multi-omic data to 350 

unpublished TCGA colorectal cancer samples to produce a cohort of 

592 TCGA colorectal cancer cases with exome sequencing, DNA copy 

number, methylation, and RNA-seq for multi-omic analyses (4). As a 

first step, we assessed tumor purity with InfiniumPurify (81) using 

methylation array data. We chose this method because the other pop-

ular method, ABSOLUTE (82), relies on CNAs, and MSI-high cases  

(n = 75) have few to no CNAs. To minimize tumor heterogeneity, TCGA 

assessed the tumor mass area. Next, we called somatic mutations from 

all 592 whole-exome sequencing data, ensuring consistency with prior 

calls using a previously published and validated method (83) that has 

been used in several settings (Supplementary Table S2; refs. 84–86). 

We benchmarked our variant calling against Mutect2 on the 528 

TCGA samples from our cohort to which the GDC has applied their 

Mutect2 pipeline (GDC results available at https://portal.gdc.cancer.

gov). Our overall coverage of Mutect2 results was high, with 95% of 

that method’s reported coding mutations either called by our method 

or specifically flagged by one of our filters (see Supplementary Table 

S20 for sample-by-sample details). Finally, we provided additional 

evidence for the somatic mutations by providing variant allele frac-

tions for the matched tumor transcriptome samples, in addition to 

the exomes. These data show that missense mutations are typically 

expressed, whereas disruptive mutations result in reduced expression 

of the variant due to nonsense mediated decay, consistent with ref. 87 

(Supplementary Fig. S12; Supplementary Table S2).

Calling indels continues to present challenges due to insufficient 

coverage, alignment quality, the presence of repeats, short inter-

spersed elements, and homopolymer/dimers, microsatellite instabil-

ity, that result in false negatives (88). Prior calling methods filtered 

out indels at homopolymer runs likely to decrease false positives due 

to polymerase slip errors during massively parallel sequencing (64). 

We did not exclude such indels and instead aggregated the indels 

with respect to the microsatellite runs for downstream analyses, 

including but not limited to annotating biallelic losses and identi-

fying significantly mutated genes based on MMR-D at the level of 

microsatellite sites (see below).

We also generated CNA calls using the TCGA SNP array data using 

a method previously published and validated (83–86). CN-LOH 

events were called as described in Methods. We call CNA and CN-

LOH events conservatively by not adjusting for tumor purity, instead 

setting uniform tighter cutoffs that decrease the likelihood of false 

positives. Supplementary Tables S21 and S22 detail all the CNAs and 

CN-LOH events we generated for all 592 TCGA samples with infor-

mation on the amplitude of the gain or loss and the genes affected 

where possible. To call HLA class I typing, we used POLYSOLVER 

(35) when applicable to the available exome data type and seq2HLA 

(89). Once the HLA class I type was identified, we remapped the 

data and called point mutations, CNA events, and CN-LOH for the 
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HLA region using the approaches cited above (Supplementary Table 

S11). Figure 2A shows the analyses for which we use these data, and 

Supplementary Table S4 indicates how we integrated cohorts. We 

assessed our overall accuracy by checking whether the data recapitu-

lates known subtype relationships and frequencies (Fig. 1).

TCGA Sample Collection

The TCGA cohort was collected and molecularly characterized 

by the NCI (Rockville, MD) as part of a multi-institute effort. The 

colorectal cancer cohort includes 592 primary colorectal adeno-

carcinomas, 48 normal adjacent tissues used for gene expression 

and methylation controls, and 592 germline DNA used for somatic 

mutation, CNA, and CN-LOH calling. All patients were untreated by 

chemotherapy or radiotherapy and provided informed consent; tis-

sue collection was approved by the Institutional Review Board.

MSI-High Status Calling

We compared the mSINGS calls and the clinical grade calls on the 

previously annotated and published 276 samples using the default 

settings and 0.27 cutoff for the score. This gave us agreement with 

the MSI-PCR results, where they existed, for all but three samples. 

For the samples with disagreements, we checked the other indicators, 

which consistently pointed toward the clinical classifications being 

correct: case TCGA-AA-3715 (NEG by mSINGS; but called MSI-H by 

clinical grade testing, with MLH1 epigenetic silencing, high mutation 

rate, and MMR mutations), case TCGA-AA-A02R (NEG by mSINGS; 

but called MSI-H with clinical grade testing, with MLH1 epigenetic 

silencing, high mutation rate, and MMR mutations), and case TCGA-

AA-A00L (POS by mSINGS; but MSS by clinical grade testing, high 

MLH1 expression, low mutation rate, no MMR mutations). We ran 

mSINGS on the remaining 316 TCGA samples using 0.27 as a cutoff 

for the score, verifying the resulting classification with MLH1 epige-

netic status, MMR-D mutation status, and mutation load for mis-

sense mutations and indels. As an independent verification, we were 

able to identify confirming MMR gene disruptions in all but 11 cases 

in the samples classified as MSI-high, and none of the MSS cases had 

MMR gene disruptions.

Somatic Mutation Calling

We called somatic mutations for the whole TCGA cohort from 

the alignments available from TCGA (4). We used the published and 

validated methodology in ref. 83 checking to ensure consistency with 

the TCGA somatic mutation calls available in ref. 4. Mapped tumor 

and matched normal whole-exome sequencing data were obtained 

from TCGA, with reads mapped to the human genome (either hg18 

or hg19). Functional annotation was performed relative to the full set 

of Refseq transcripts, as obtained from the UCSC Genome Browser 

database on March 14, 2016. During the process of calling somatic 

mutations, we identified 38 samples that were excluded to yield the 

final set of 592 samples, because they did not pass QC measures due 

to missing files, low coverage, or contamination; details are provided 

in Supplementary Table S23. The final set of barcodes for accessing 

the raw sequence data through TCGA are in Supplementary Table S1.

HLA Typing and Somatic Mutation Calling  
of HLA Class I Genes

HLA allele types were first determined for the HLA class I genes 

for each sample, using either POLYSOLVER (35) or seq2HLA (89). 

For those samples already analyzed in ref. 35, we used the HLA types 

provided by S. Shukla and C.J. Wu; for the remaining samples, we 

applied seq2HLA to RNA-seq data when correctly matepair-labeled 

paired-end RNA-seq data were available, and applied POLYSOLVER 

to whole-exome data in all other cases. The TCGA colorectal cancer 

cohort had to be analyzed using both approaches because some 

of the data were generated using the SOLiD sequencing platform, 

which cannot be run using POLYSOLVER. We then remapped all 

reads that were originally mapped to the HLA region of chromosome 

6 to the consensus sequence for the HLA alleles determined by HLA 

typing (consensus sequences were obtained from the IMGT/HLA 

Database; see http://www.hla-alleles.org), using bowtie2 (90) to per-

form the realignment. Somatic variants, CNA events, and CN-LOH 

events for HLA-A, HLA-B, and HLA-C were then called on the basis of 

the realigned reads using the method described above.

CNA Assessment

We evaluated the presence or absence of CNAs on the basis of 

SNP6 arrays, when available, or whole-exome sequencing data using 

the published and validated method in ref. 83. To assess whether 

the segment is gained or lost, we calculate the copy-number ratio  

for the segment by taking the average of the log2 copy-number ratio 

of the individual SNP6 probes (resp., exon depths) for that segment. 

Segments for which the copy-number ratio increased (decreased) by 

at least 30% are called single-copy gains (losses); similarly, increases 

(decreases) of 60% are defined as two-copy gains (losses). We did not 

account for tumor purity directly; instead, we set cutoffs sufficiently 

high to ensure that gains and losses were present. This approach 

increases the number of false negatives relative to methods that 

account for tumor purity. However, CNAs that are identified are 

more likely to be real. Two-copy gains and losses were considered 

to be focal when they included 10 or fewer genes. This method was 

applied to HLA class I genes after typing and remapping data to the 

correct allele(s).

CN-LOH Assessment

To identify CN-LOH events, we first restricted attention to SNPs in 

the SNP6 panel that appeared heterozygous in the matched normal 

sample (B-allele frequency at least 25%). When SNP6 data were not 

available, we instead used probable coding SNPs identified in exome-

sequencing data using the method described above for calling variants 

and identifying SNP variants that had a B-allele frequency at least 25% 

in the tumor and the normal. For each such SNP, we calculated its 

expected B-allele frequency in the tumor sample based on its observed 

copy number and assuming a monoallelic gain or loss. We call the 

difference between this quantity and the actual B-allele frequency the 

“B-allele deficit.” The B-allele deficit, defined in this way, should be 

positive for actual instances of CN-LOH, zero for monoallelic gains 

or losses and negative for gains involving both alleles. We segmented 

the B-allele deficits for each of the samples using the Circular Binary 

Segmentation Algorithm (91). This resulted in a set of segments for 

each sample, each corresponding to a piece of DNA with consist-

ent B-allele deficit; we averaged the log2 copy-number ratio and the 

B-allele deficit over each such segment. Segments that were copy 

neutral (i.e., less than 30% gain or loss) and had a mean B-allele deficit 

of at least 0.15 were called as CN-LOH. Once a segment is assessed as 

having CN-LOH, then all the genes on that segment are considered 

to be CN-LOH. This method was applied to HLA class I genes after 

typing and remapping data to the correct allele(s).

Subtyping Using Somatic Mutation Data

To identify a sample as positive for a particular genomic subtype, 

we used somatic mutation data. For TP53, APC, PTEN, RNF43, 

ZNRF3, AXIN2, AXIN1, ATM, MSH6, TGFBR2, SMAD4, MLH1, MSH2, 

MSH6, PMS2, MLH3, and MSH3, any disruptive mutation was used as 

a positive identification. For KRAS, any mutations at codons 12, 13, 

59, 61, 117, and 146 were used. For BRAF, any mutations at codons 

600, 601, 466, and 469 were used. For PIK3CA, any mutations at 

codons 88, 110, 111, 345, 542, 545, 546, 1043, 1046, and 1047 were 

used. For CTNNB1, any mutations at codons 31–35, 37, 40, 41, 45, 

383, and 387 were used.
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Identification of MLH1 Epigenetically Silenced Cases

We assessed the MLH1 DNA methylation status of each sample fol-

lowing the method used by ref. 4, which relied on the specific probe 

(cg00893636) in the promoter of MLH1.

Tumor Purity Assessment Using Methylation Data

To assess tumor purity, we used DNA methylation levels from a 

specific set of CpG probes that are differentially methylated between 

cancer and normal cells, as described in ref. 81 and published as 

InfiniumPurify. We used this approach because copy number–based 

approaches, like ABSOLUTE (82), are not effective on samples with 

few CNAs, like MSI-high cases. The published methodology contains 

a list of approximately 1,000 differentially methylated probes (DMP) 

on the Illumina 450 k platform, each specific to a different cancer 

type, including colorectal cancer–specific DMPs that we used for 

this analysis. To apply InfiniumPurify to the maximum number of 

TCGA samples, including the cases with 27 k methylation arrays, 

we restricted the colorectal cancer DMP list to the 46 probes shared 

between the 27 k and 450 k methylation microarrays and confirmed, 

using samples where both 27 k and 450 k data was available, that this 

restriction had a minimal effect on the estimated tumor purity rela-

tive to running the full set of colorectal cancer DMPs. We then used 

this restricted set of DMPs for the cases with only 27 k methylation 

arrays and the full set of DMPs on the cases with 450 k methylation 

arrays. Other than this modification, we calculated tumor purities 

using the published method, making a final linear adjustment sug-

gested in ref. 81 to improve agreement between InfiniumPurify and 

ABSOLUTE.

Significantly Mutated Genes and  
Pathways Using MutSigCV

We ran MutSigCV on the set of coding variants using the MutSigCV 

package as described in ref. 20 with minor adjustments. We used 

the covariates file provided by the Broad Institute that accounts for 

the effect that DNA replication time, chromatin state (open/closed), 

and general level of transcription activity have on the background 

mutation rate for each gene. To generate an accurate coverage file, 

we used the exome kits Roche v2 and VCRome 2.1, used on the 

samples run on Solid and Illumina, respectively, taking the union 

of the exons included in each kit to define the gene, and the read-

ing frame for each exon provided by the UCSC Genome Browser for 

the corresponding Refseq transcript. A gene was included in the list 

of significantly mutated genes if it was significantly mutated in the 

TCGA cohort and the combined cohort, the NHS/HPFS cohort and 

the combined cohort, or the TCGA cohort, the NHS/HPFS and the 

combined cohort. This was done to ensure that we did not include 

genes for which increasing the number of samples did not decrease 

the evidence that the gene is significantly mutated. Also, to avoid arti-

facts, the cohorts were considered independently because the TCGA 

samples were fresh-frozen and the NHS/HPFS cohort was FFPE, 

and each was done on a different exome kit. To identify significantly 

mutated pathways, we did that same analysis after treating each 

pathway as a union of genes. A few aspects of the MutSigCV that are 

gene specific will not be run in this mode, including DNA replication 

time, chromatin state, and transcription activity.

Significantly Mutated Genes and Pathways  
by MSI Resulting from MMR-D

To assess significantly mutated genes on the basis of MMR-D–

induced mutations alone, we developed a modified version of the 

original MutSig algorithm (20). We located all homopolymer runs at 

least 3 bases long (about 4.2 million) and all dinucleotide repeats at 

least 4 bases long (about 2.5 million) within the coding exons of any 

Refseq genes. These constitute our potential MMR-D mutation sites 

of interest. Because the base MMR-D mutation rate differs signifi-

cantly depending on the run length and content, we partitioned the 

sites into 48 different contexts (length 3, 4, 5, 6, 7, 8, 9, or ≥ 10, for 

homopolymer base A/T or C/G or dinucleotide pair AT, AC/GT, AG/

CT, or CG) and determined the background mutation rate (BMR) for 

each context as the number of run-lengthening or run-shortening 

indels observed in that context divided by the number of candidate 

sites within a particular set of samples, in this case all MSI-high cases 

in TCGA and NHS/HPFS.

If each site were mutated independently at random with the 

appropriate BMR, then the number of MMR-D indels within gene 

G would be Poisson-distributed with expected value EG = sum_c 

BMR_c * sites_c(G), where the sum is over context. We assign each 

gene a z-score on the basis of its actual observed number of run-

lengthening or run-shortening somatic indels, NG, as compared with 

the expected number: ZG = (NG − EG)/sqrt(EG). To determine the 

unlikeliness of a given z-score, we repeatedly shuffle the observed 

MMR-D indels at random through the available sites, preserving 

their contexts, and recompute z-scores for all genes; doing this 1,000 

times gives an empirical z-score distribution with >107 samples, and 

we assign P values with respect to this empirical distribution. In other 

words, the P value for gene G is the probability that an arbitrary gene 

would achieve a z-score as high as ZG if the indels in each context were  

randomly distributed among the available sites. To identify sig-

nificantly mutated pathways, we did that same analysis after treating 

each pathway as a union of genes. A similar method for using micro-

satellites to identify drivers was published recently (23).

T-cell Inflammation Score and Identification of T-cell 
Inflammation Signature Genes

We denoted the average log-expression of 12 canonical T cell– 

associated genes (CCL2, CCL3, CCL4, CXCL9, CXCL10, CD8A, HLA-DOB, 

HLA-DMB, HLA-DOA, GZMK, ICOS, and IRF1) as the “T-cell average” 

for each sample with expression data (45, 92, 93). To identify T-cell 

inflammation signature genes that are correlated with T-cell average, 

we followed the method in ref. 56. We partitioned the samples into 

eight classes of T-cell inflammation, with divisions at the 12.5th, 25th, 

37.5th, etc., percentiles of the T-cell average within the set of MSS 

and MSI-high samples. Samples with T-cell average below (above) the 

median are designated as T-cell noninflamed (inflamed). We restricted 

attention to protein-coding genes that were expressed with at least 1.0 

FPKM in at least 80% of the MSS and MSI-H samples; this constituted 

around 15,000 genes. We fit the log-expression of each gene to its T-cell 

class with a linear model; we reported those genes that changed expres-

sion by at least 2-fold between the inflamed and noninflamed sets and 

for which the relation had a P value of <1 × 10−4 by ANOVA as T cell–

inflamed signature genes (Supplementary Table S13).

Prospective Cohort Study Dataset

We utilized incident colorectal cancer cases identified within two 

prospective cohort studies in the NHS (which has followed 121,701 

women ages 30–55 years at 1976) and the HPFS (which has followed 

51,529 men ages 40–75 years at 1986). We collected FFPE tumor 

tissue blocks from hospitals throughout the United States where 

patients with colorectal cancer had undergone surgical resection (94). 

Cases with available tissue showed characteristics similar to cases 

without available tissue (94). Among participants diagnosed with 

colorectal cancer until 2012 in the NHS and HPFS, we analyzed 1,150 

cases with available data on nuclear CTNNB1 status and immune 

response in tumor tissue samples. After whole-exome sequencing on 

DNA from tumor and normal FFPE tissue pairs underwent an assay 

validation using 185 colorectal cancer cases in the NHS and HPFS 

cohorts (64), we conducted whole-exome sequencing in additional 

cases with available ample tissue materials. We did not have gene 

expression data for these cases, because they were FFPE.
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Pathologic Evaluation of Tumor Immunity Status

In the NHS and HPFS, a single pathologist (S. Ogino), blinded to 

other data, reviewed H&E–stained tissue sections, confirmed diagno-

sis of colorectal carcinoma, and recorded pathologic features, includ-

ing four components of lymphocytic reaction (TILs, intratumoral 

periglandular reaction, peritumoral lymphocytic reaction, and Crohn-

like lymphoid reaction) as described previously (66). In the TCGA 

dataset, a single pathologist (K. Inamura), blinded to other data, 

reviewed publicly available images of H&E-stained tissue sections 

and recorded pathologic features, including TILs. TILs were precisely 

defined as lymphocytes on top of neoplastic epithelial cells, as has 

been defined in the literature. Intratumoral periglandular reaction 

was defined as lymphocytic reaction in tumor stroma within a tumor 

mass. Peritumoral lymphocytic reaction was defined as discrete lym-

phoid reaction surrounding a tumor mass. Crohn-like lymphoid 

reaction was defined as transmural lymphoid reaction. Each of these 

features was graded as negative/low, intermediate, or high (66).

IHC

In the NHS and HPFS, we constructed TMAs to include up to 

four cores from colorectal cancer and up to two cores from normal 

tissue blocks. We conducted IHC analysis for CTNNB1 using an 

anti-CTNNB1 antibody (clone 14, dilution 1:400; BD Transduc-

tion Laboratories), as described previously (95). A single pathologist  

(T. Morikawa) graded cytoplasmic, nuclear, and membrane CTNNB1 

expression status separately as no expression, weak expression, or 

moderate/strong expression. Cytoplasmic and nuclear CTNNB1 

positivity was defined as the presence of moderate/strong expression, 

and loss of membrane CTNNB1 as no or weak membrane expression. 

A selected set of tumors (n = 292) was independently examined by 

a second pathologist (S. Ogino), and the concordance between the 

two pathologists was 0.90 for nuclear CTNNB1 (κ = 0.80), 0.78 for 

cytoplasmic CTNNB1 (κ = 0.54), and 0.86 for membrane CTNNB1 

(κ = 0.72), indicating good to substantial agreement (all P < 0.0001; 

ref. 95). We performed IHC for CD3, CD8, CD45RO, and FOXP3 as 

described previously (67). We used an automated scanning micro-

scope and the Ariol image analysis system (Genetix) to measure 

densities (cells/mm2) of CD3+ cells, CD8+ cells, CD45RO+ cells, and 

FOXP3+ cells in colorectal cancer tissue.

Analyses of MSI, DNA Methylation, and KRAS, BRAF, and 
PIK3CA Mutations in the NHS and HPFS

DNA was extracted from FFPE tissue blocks using QIAamp 

DNA FFPE Tissue Kit (Qiagen). MSI status was determined using  

10 microsatellite markers (D2S123, D5S346, D17S250, BAT25, 

BAT26, BAT40, D18S55, D18S56, D18S67, and D18S487), and MSI-

high was defined as the presence of instability in ≥30% of the markers, 

as described previously (96). Using bisulfite-treated DNA, methyla-

tion status of eight CIMP-specific promoters (CACNA1G, CDKN2A, 

CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1) and long 

interspersed nucleotide element-1 (LINE-1) was analyzed (97, 98). 

CIMP-high was defined as methylation in ≥6 of eight promoters (97). 

PCR and pyrosequencing were performed for KRAS (codons 12, 13, 

61, and 146; ref. 99), BRAF (codon 600; ref. 96), and PIK3CA (exons 

9 and 20; ref. 94).

Statistical Analysis NHS and HPFS IHC Cohort

We used logistic regression analyses to assess the association 

of nuclear CTNNB1 status (positive vs. negative) with immune 

response to tumor. We assessed four lymphocytic reaction patterns 

(TILs, intratumoral periglandular reaction, peritumoral lympho-

cytic reaction, and Crohn-like lymphoid reaction) and four T-cell 

subsets (CD3+ cells, CD8+ cells, CD45RO+ cells, and FOXP3+ cells) 

in tumor tissue. Multivariable logistic regression models initially 

included age (continuous), sex, year of diagnosis (continuous), fam-

ily history of colorectal cancer (present vs. absent), tumor location 

(proximal colon vs. distal colon vs. rectum), MSI status (high vs. 

low/MSS), CIMP-specific promoter status (high vs. low/negative), 

LINE-1 methylation level (continuous), KRAS (mutant vs. wild-

type), BRAF (mutant vs. wild-type), and PIK3CA (mutant vs. wild-

type). A backward elimination with a threshold of P = 0.05 was used 

to select variables for the final model. The cases with missing data 

[family history of colorectal cancer (0.9%), tumor location (0.4%), 

MSI status (4.0%), CIMP status (7.7%), KRAS (3.7%), BRAF (3.0%), 

and PIK3CA (10.5%)] were included in the majority category of a 

given categorical covariate to limit the degrees of freedom of the 

models. For cases with missing data on LINE-1 methylation level 

(5.0%), we assigned a separate indicator variable. We confirmed that 

excluding cases with missing data in any of the variables did not 

substantially alter our results. We assessed statistical interactions 

between nuclear CTNNB1 status (positive vs. negative) and MSI sta-

tus (high vs. low/MSS) in relation to tumor immunity status using 

the Wald test for the cross-product in logistic regression models. 

The proportional odds assumption was assessed using the ordinal 

logistic regression model. We observed evidence for violation of this 

assumption in two of four lymphocytic reaction patterns (intra-

tumoral periglandular reaction and Crohn-like lymphoid reac-

tion) and, therefore, used binary histologic lymphocytic reaction 

variables as outcome variables for logistic regression analyses. To 

compare characteristics between subgroups according to nuclear 

CTNNB1 status, we used the χ2 test for categorical variables, and 

the unpaired t test for continuous variables.

All statistical analyses were performed using SAS software (version 

9.4, SAS Institute), and all P values were two-sided.
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