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We present the NaviCatGA package, a versatile genetic
algorithm capable of optimizing molecular catalyst structures
using well-suited fitness functions to achieve a set of targeted
properties. The flexibility and generality of this tool are
validated and demonstrated with two examples: i) Ligand
optimization and exploration for Ni-catalyzed aryl-ether cleav-
age manipulating SMILES and using a fitness function derived
from molecular volcano plots, ii) multi-objective (i. e., activity/

selectivity) optimization of bipyridine N,N-dioxide Lewis basic
organocatalysts for the asymmetric propargylation of benzalde-
hyde from 3D molecular fragments. We show that evolutionary
optimization, enabled by NaviCatGA, is an efficient way of
accelerating catalyst discovery through bypassing combinatorial
scaling issues and incorporating compelling chemical con-
straints.

Introduction

This work introduces NaviCatGA, a software package capable of
optimizing catalysts by exploiting any suitable fitness function
that describes their catalytic performance. It manipulates
catalyst structures generated in situ from a user-defined library
of catalyst components (metal centers, ligands or ligand
substituents, scaffolds, etc.); structures can be assembled from
the respective components using any molecular representation,
including SMILES strings and XYZ coordinates, and evaluated
according to any fitness function (e.g., molecular volcano plot
descriptors,[1,2] multivariate linear regression expressions[3]).
NaviCatGA is a modular part of the broader NaviCat (Navigating
Catalysis) platform for catalyst discovery, which includes other
utilities and tools (e.g., database constructors, automatic
volcano plot builder, etc.).

In the spirit of inverse design,[4–8] NaviCatGA uses a Genetic
Algorithm (GA)[9–12] to find optimal catalysts (Figure 1). This
pipeline represents a complementary approach to high-
throughput screening[13–17] that becomes comparatively more
efficient as the dimensionality of the combinatorial space of
catalyst components grows. Furthermore, evolutionary experi-
ments with GAs lead to alternative chemical insight into catalyst
performance, as demonstrated hereafter. GAs have been shown
to be well-suited for molecular optimization,[9,18,19] because they

are able to address discontinuities in structure-property space
(e.g., activity cliffs)[20,21] and, more importantly, do not require
meaningful gradients for the optimization. Nonetheless, flexible
and robust implementations of GA algorithms tailored for
homogeneous catalysis were lacking.

The versatility and efficiency of NaviCatGA are illustrated
with two representative applications to transition-metal and
organocatalyzed reactions. The goal is to show that closed-loop
optimisation with genetic algorithms is an efficient strategy to
streamline computer-aided catalyst discovery. The code, doc-
umentation, and examples are openly available at https://
github.com/lcmd-epfl/NaviCatGA.

Computational Methods

Overview of the NaviCatGA package

NaviCatGA is a lightweight genetic algorithm package that
offers a simple, versatile and scalable solution to catalyst
optimization problems. Simplicity is given by its Python
structure and small number of dependencies, facilitating its
adaptation and modification with minimal coding skills.
Versatility comes from its modular design, which allows the
user to define the optimization problem with utmost flexibility.
For scalability, NaviCatGA relies upon the main strengths of
genetic algorithms: the ability to tackle a large number of
dimensions that are run in parallel. The genetic optimization
loop is shown in Figure 2a.
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Figure 1. Schematic catalyst optimization pipeline powered by NaviCatGA.
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The three distinct levels in which the NaviCatGA package is
structured are represented in Figure 2b: the base solver class
with all core functionalities, the child solver class (several of
which are provided) that defines the problem type (crossover
and mutation), and the user input (assembler and fitness
function). This structure allows for significantly increased
flexibility and adaptability, whereas adapting existing optimiza-
tion tools could be difficult.[11]

Base Solver Class

The core genetic loop is provided by the GenAlgSolver base
class (see Figure 2b). By design, the base class is data-type
agnostic, with individuals represented by flexible lists of
elements, and contains the solve method, which performs the
optimization run (fitness evaluation, crossover, and mutation).
Five different selection strategies to decide which individuals to
recombine are provided (i. e., two-by-two, roulette wheel,
pairwise tournament, Boltzmann-weighted, and random). This
choice regulates the greediness of the optimization by defining
a number of individuals for cross-over. The number of selected
individuals is limited to a percentage of the total population
(i. e., the selection rate). Additional features are such as pruning
of duplicates in each successive generation, a least-recently
used cache of fitness evaluations and in situ scalarization of
fitness, are implemented (see Figures 2a and 2b for an over-
view). It is also possible to lock specific genes, so that they
remain unchanged during the optimization procedure.

Implemented solvers

The specificities of the optimization problem are imposed by a
child class (Figure 2b), which defines the way mutation and
cross-over are performed. Three child solver classes are
provided: the SmilesGenAlgSolver, based on SMILES strings,[22]

the SelfiesGenAlgSolver, based on SELFIES strings,[23,24] and the
XYZGenAlgSolver, which uses AaronTools.py geometry
objects,[25] representing a 3D molecular fragment. In these
respective solvers, each gene has the corresponding data type.
The SMILES and SELFIES solvers are suited for systems that can
be readily represented as strings. On the other hand, the XYZ
solver allows for detailed 3D control, as each gene contains a
set of coordinates. As child classes define the data type of
genes, they also contain all the possible values any given gene
on an individual can take, which in NaviCatGA parlance is called
an “alphabet” (Figure S1 in Supporting Information). Genes with
the same alphabet are considered to be equivalent (i. e., they
can be replaced and mixed with one another).

In the implemented child solver classes, mutation is defined
as substitution of a randomly chosen percentage of genes, or
mutation rate, by random elements of the respective alphabets
(Figure 2a). In turn, cross-over is achieved by combining the
equivalent genes over one or more randomly determined
crossover points (single-point cross-over is exemplified in Fig-
ure 2a but additional crossover operators could be considered
in the future).

Defining new child solver classes is simple, as the core
shared functionalities are kept in the base solver class. Different
data structures, supported by other libraries (e.g.,
Molassembler[26] or molSimplify[27]) could be used as alternative
back-ends. Additionally, child classes can be inherited to

Figure 2. (a) Optimization loop followed by NaviCatGA (b) Schematic representation of the user input and the functionalities implemented.
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incorporate additional definitions of mutation and crossover
without substantial modifications.

Fragmentation Scheme

The fragmentation scheme and the corresponding alphabets
define the total catalyst components combinatorial space to be
explored. This step has a twofold goal: Avoiding the consid-
eration of catalysts that are not expected to be stable and/or
synthetically accessible,[28] and ensuring the domain of applic-
ability and transferability of the fitness function (see below).

Assembler and Fitness Function

Once an appropriate catalyst space is defined through the
fragmentation scheme, the user is required to input the fitness
function and the assembler function into the solver (Figure 2).
The assembler function takes a given individual (a list of genes
of the specified data-type) and assembles them into a potential
catalyst. In the case of SMILES, assembly can be as simple as
concatenation of characters. In the XYZGenAlgSolver child class,
the fragments must be suitably assembled in 3D. The user is
free to define any assembler function in order to generate more
complex graph structures from the underlying chromosomes.

Finally, the fitness function takes as argument an individual
as interpreted by the assembler function and returns a fitness
value. By default, NaviCatGA attempts to maximize fitness,
although internal scalarizers can be used to change the default
(see Example 2 below for a complex demonstration of multi-
objective optimization).

Choosing a Fitness Function

The choice of fitness function for catalyst optimization depend
on the specific application. In a broad sense, NaviCatGA favors
fitness functions that map a candidate catalyst’s chemical
structure to a measure of its performance in a given reaction.

Molecular volcano plots, which have been favored by us,[2]

provide a way to connect a descriptor variable, typically the
energy change associated with a step of the reaction mecha-
nism (x-axis), to the overall catalytic performance (y-axis,
expressed in terms of the energy span or TOF).[29] Some of us
previously trained kernel-based ML models to predict the
volcano descriptor variables for large pool of catalysts, from an
approximate intermediate structure.[30,31] As demonstrated in
Example 1, this inexpensive mapping between chemical
structure and reactivity constitutes a natural fitness function
that can be exploited for the GA optimization. An alternative
approach to rapidly evaluate the catalytic properties and thus
the fitness function consists in fitting Multivariate Linear
Regression (MLR) expressions.[3] In Example 2, we fit and use
MLR expressions to relate both the activity (i. e., the volcano
descriptor) and the selectivity, expressed in terms of DDG�, to
an intermediate structure. However, NaviCatGA imposes no

constraint on the form of the fitness function and any
alternative defined by the user is possible. In general, any ML-
based models tailored for the prediction of catalytic properties
constitute a powerful alternative.[32,33]

In order to help users defining fitness functions and
assemblers conveniently, a number of predefined wrapper
functions are provided, built around RDKit[34] and pySCF.[35,36]

Frequent descriptors, such as frontier molecular orbital energies
or molecular volumes, are provided through wrappers from
multiple molecular formats, including SMILES. Coupling any of
the solvers to production-level quantum chemical computations
is equally possible. Thus, the set of wrappers allows users to
define highly customised fitness functions with minimal coding
effort.

Results and Discussion

Example 1: Exploration of Ligand Space for Ni-Catalyzed
Aryl-Ether Cleavage

One of us recently explored the ligand space for Ni-catalyzed
aryl-ether reductive cleavage (Figure 3) relying upon a tandem
volcano plot-ML approach to screen over 105 Ni catalysts
bearing over 140000 different phosphine or carbene ligands.[31]

The volcano peak (maximum activity, see Figure 3) was found
to correspond to DG(4)= � 33 kcal/mol, where DG(4) is the free
energy change associated with the formation of intermediate 4
(see Figure 3), used as a descriptor variable. Interestingly, very
few phosphine and carbene ligands lead to high turnover

Figure 3. Reductive Ni-catalyzed cleavage of the 2-methoxynaphthalene
C(sp2)� O bond with trimethylsilane. The volcano plot predicts optimal
catalytic activity at DG(4)= � 33 kcal/mol. The blue and orange curves
represent the approximate distribution of phosphine and carbene ligands,
respectively (adapted from[31]).
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frequencies, as they are spread in two gaussian distributions
approximately centered on DG(4)= � 20 kcal/mol (blue curve,
Figure 3) and DG(4)= � 5 kcal/mol (orange curve, Figure 3),
respectively.

Based on the aforementioned exhaustive screening, we
validate the capability of NaviCatGA by identifying the best
phosphine ligands for the Ni catalyst with minimal computa-
tional cost. Additionally, we demonstrate how evolutionary
experiments provide additional chemical insight and how they
can be used to purge the pool of bad candidates from the
database prior to further exploration. We finally demonstrate
the versatility of the assembler function in exploiting the same
procedure for the carbene ligands which, unlike phosphines,
are composed of a backbone and two side groups.

Problem Definition

In this example, chromosomes are composed of three genes,
accounting for the three different substituents in the phosphine
ligands, all represented by SMILES strings using the SmilesGe-
nAlgSolver class. The assembler is a function that generates the
complete SMILES of intermediate 4 (see Figure 3) from the
chromosome information. The combinatorial space, which was
taken from[31] (see it listed in the Supporting Information),
comprises a set of 68 possible substituents for the phosphine
ligands, as well as 77 ring and 30 backbone substituents for
carbene ligands. Note that these numbers could further
increase by including more exotic ligands or by decomposing
the fragments into smaller components. Yet, this extension
would potentially compromise both the experimental relevance
of the generated intermediates 4, a typical flaw of generative
models, and the accuracy of our fitness function (see below).

Fitness Function

Following our previous work,[31] a kernel ridge regression model
is trained to predict DG(4) from the approximate 3D structure
of intermediate 4 using the same database of 1473 catalysts.
The trained model has a cross-validated MAE of < 4 kcal/mol.
Details of the ML model can be found in the Supporting
Information. For prediction, the SMILES in the GA is embedded
to 3D coordinates using RDKit, then its SLATM representation[37]

is obtained, which leads to its predicted DG(4) through the
trained regression coefficients and kernel. For a candidate i final
fitness score f i is obtained by evaluating its DG(4)i value
compared to a normalized gaussian distribution centered in the

target value x, fi ¼ exp � 1
2

DGð4Þi � x
s

� �2� �
where s ¼ xj j=2.

Optimization

The genetic optimization is initiated with a population of 10
randomized ligands (individuals) and a mutation rate of 10%
for 50 generations. The maximum number of evaluations, 500,

is infinitesimal w.r.t. the combinatorial search space of 3� 105

(683). The first run is set up with a target value of x ¼ � 33 kcal/
mol, the peak of the volcano (maximum activity). Results are
shown in Figure 4a (blue curves and frame). The GA is able to
identify top candidates, lying exactly on the volcano top, within
the first 30 iterations – under 300 total evaluations. The top
candidate contains a bis(pentachlorophenyl)phosphine ligand,
in agreement with our previous screening,[31] in which the
pentachlorophenyl (65) substituent was identified as one of the
best options. The overall increase in fitness coinciding with the
selection of the pentachlorophenyl substituent by the optimizer
occurs in generation 20, as illustrated by the sharp increase in
the best fitness curve in Figure 4a. It is important to stress that
the GA takes three orders of magnitude less evaluations than
our previous screening approach to identify it.

Given the low computational cost of the run, ablation
evolutionary experiments are performed to obtain additional
insight and explore different possible local fitness maxima. First,
the pentachlorophenyl (65) substituent is removed from the
database and the optimization is run again. This run leads to
the identification of isopropylamino (48) as a good substituent,
shown in Figure 4b as the green curve and frame, again in
agreement with our previous work. Removing the aforemen-
tioned substituent and re-running leads to an increasingly
difficult start for the optimization run, as less good options are
available, but nevertheless ultimately identifying the 2,2,2-
trichloro-1-hydroxyethyl substituent (66) as a good candidate in
less than 20 iterations (Figure 4b, red curve and frame). Overall,
the three best substituents that had previously been identified
(diisopropylamino, pentachlorophenyl, and 2,2,2-trichloro-1-
hydroxyethyl) are correctly and systematically located by
NaviCatGA in less than 600 evaluations.

A similar optimization run is performed for a target of
DG(4)= � 10 kcal/mol. This value, which corresponds to the
right-hand-side of the volcano plot results in negligible catalytic
activity. The GA identify ligands with a predicted DG(4) close to
the targeted value, which leads to the identification of the least
optimum substituents for the phosphine ligands, in this case N-
containing heterocycles (Figure 4c). Both good and poor
candidates are identified with the same setup.

Finally, we optimize a N-heterocyclic carbene ligand using
the same parameters with a target of x ¼ � 33 kcal/mol. The
flexibility of NaviCatGA facilitates alternative definition of the
fragment combinatorial space (in this case, the N-atom
substituents, see Supporting Information for details). The
results, shown in Figure 4d, capture a key observation in line
with previous work: unlike phosphine ligands, N-heterocyclic
carbene ligands are generally unable to reach the top of the
volcano. The optimization problem thus becomes harder as
illustrated by the significantly lower fitness scores. Nevertheless,
the genetic algorithm finds the best possible candidates within
the combinatorial space, achieving a remarkably close value to
the top using diisopropylamino substituents.[31] This optimiza-
tion procedure provides a traceable evolution for every fit
candidate and for the relative preference of the different
substituents.
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Example 2: Achieving the Activity/Selectivity Trade-Off with
Enantioselective Organocatalysts

While Example 1 focuses on validation and comparison with
high-throughput screening, this second example is chosen to
illustrate the convenience of NaviCatGA to explore a large
combinatorial space and optimize several properties simulta-
neously. Whenever several properties are to be optimized, there
is often a trade-off between two or more targets preventing the
existence of optimum solutions. In such cases, a large number
of solutions to the optimization problem, the so-called Pareto
front, can be identified depending on the criteria selected by a
decision maker.

In catalyst design, a classic example of multi-objective
optimization is the activity versus selectivity conundrum, where
increased activity of a catalyst generally leads to decreased
selectivity. A good catalyst should be both as active and as
selective as possible. A pragmatic way to decide over this
particular Pareto front is to search specifically for catalysts that
retain noticeable activity while prioritizing selectivity, as

opposed to compromising selectivity for increased activity, or
reducing activity to a negligible level in search of perfect
selectivity.

Given the flexible structure of NaviCatGA, the user imposes
selected criteria on the optimization problem by assigning
weights to different properties (e.g., the final fitness is defined
60% by selectivity and 40% by activity), or using step functions
to define hard boundaries (e.g., give a fitness of 0 whenever
selectivity drops under some value). However, translating
human criteria into mathematical functions is difficult. NaviCat-
GA thus supports fitness functions which return several values,
which are then processed by a scalarizer to derive the final,
singular fitness value. Although any internal scalarizer object
can be used, we recommend the achievement scalarizing
function Chimera[38] to process multi-objective fitness functions
within the optimization run. Chimera requires a priority ranking
and a degradation threshold to be assigned for each optimiza-
tion objective and generates a score for each candidate by
assessing its relative performance in the population (for further
details, we refer the reader to the original publication[38]).

Figure 4. Evolution of mean population fitness and best candidate fitness over the optimization runs. Fitness is defined as fi ¼ exp � DGð4Þi � x
xj j

� �2� �
. The most fit

ligands from each run are highlighted in the corresponding boxes (H atoms omitted for clarity). (a) Complete run over the whole combinatorial space with
x ¼ � 33 kcal/mol. (b) Ablation experiments in which fragments with x ¼ � 33 kcal/mol are removed from the combinatorial space; removal of 65 is
represented with green lines, removal of both 48 and 65 is represented in red. (c) Complete run over the whole combinatorial space with x ¼ � 10 kcal/mol.
(d) Complete run over the carbene combinatorial space with x ¼ � 33 kcal/mol.
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Chimera’s versatility matches NaviCatGA’s and allows for the
effortless formalization of complex human criteria.

To demonstrate conflicting multi-objective optimization,
this example exploits a Chimera scalarizer to find optimal Lewis
base organocatalysts for the enantioselective propargylation of
benzaldehyde (Figure 5).[32,39–41]

Problem Definition

In this case, chromosomes are composed of three genes: a
chiral scaffold (e.g., the parent scaffold S1 is a (S)-2,2-bipyridine
N,N-dioxide, S2 and S3 include additional Ph or tBu substituents
at the 6,6-positions, S4 is a (S)-8,8-disubstituted 2,2-biquinoline
N,N-dioxide, etc.) and two substituents at the 6,6-positions (see
the Supporting Information for the full list of scaffolds S1-S14).
The 3D coordinates of all substituents and scaffolds are
obtained from DFT computations, and thus the XYZGenAlgSolv-
er class is used. The assembler in this case is a function capable
of building the 3D structure of intermediate 1 (Figure 5a) from
a given chromosome by substituting the 3D structures of the
two substituents in the 6,6-positions of the scaffold (R1and R2 in
Figure 5a), with no reoptimization necessary. The combinatorial
space is given by 14 N,N-dioxide scaffolds and 34 different
substituents (16184 combinations, see Supporting Information
for details). Note that, to increase the size of the combinatorial
space, catalysts with different 6 and 6’substituents, in addition
to the more synthetically accessible symmetrically substituted
ones, are considered.

Fitness Function

Based on previous work,[32,41] reference energies of intermedi-
ates 1–3 and of TS1 are computed at the
PCM(dichloromethane)/B97-D/TZV(2p,2d) level for 78 different
organocatalysts using structures optimized at the same level of
theory. Relative energies (i. e., electronic energies plus solvation
free energies) at this level were found to be more robust to
reproduce experimental results for this reaction.[40,41] A volcano
plot is constructed for the propargylation of benzaldehyde with
allenyltrichlorosilane (Figure 5a), leading to the identification of
the descriptor variable DE(1) and of the the region of maximum
activity (DE(1)�3 kcal/mol). Enantioselectivity is calculated as a
function of DDE�, which is defined as the difference between
the (R)- and (S)-Boltzmann-weighted activation energies of the
2!TS1 reaction step, relative to the lowest-lying (R)- or (S)-
ligand arrangement of 2 (see Supporting Information for further
details).

Two Multivariate Linear Regression (MLR) expressions are
then parametrized to predict DE 1ð Þ and the DDE� from the
unoptimized 3D structure of intermediate 1 assembled by the
genetic algorithm (Figure 5), using as parameters five dihedral
angles, the Sterimol B5 and L values of the 6; 60-substituents,
and ELUMO (see Supporting Information for details). The para-
metrized MLR expressions lead to RMSE values of 1.65 kcal/mol
and 0.25 kcal/mol for DE(1) and DDE�, respectively. Details and
cross-validation of the MLR models are given in the Supporting
Information.

Using the two MLR models, activity is gauged by the
proximity of DE(1)�3 kcal/mol (plateau of maximum activity,
see Figure 5b) and selectivity is defined as proportional to
DDE�. While the explicit MLR equations give a rough idea of
the balance between different parameters, an explicit criterion
has to be used to narrow down the Pareto front. Several

Figure 5. (a) Catalytic cycle for the bipyridine N,N-dioxide-catalyzed enantioselective propargylation of benzaldehyde (R=H or Me).[40,41] (b) Enantioselectivity
TOF-molecular volcano plot for the 78 test set organocatalysts depicted in Figure S12. Larger and darker blue spheres indicate catalysts with higher ee values
favouring (R)-product formation, smaller and red spheres indicate catalysts favouring (S)-product formation. The different slopes of the volcano correspond to
different TOF-determining intermediates (TDI) and transition states (TDTS).
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options are explored (see below) to showcase the importance
of proper multi-objective criteria.

Optimization

Three GA runs are started with an initial population of 25
randomized individuals, consisting of a bipyridine N,N-dioxide
scaffold and two R1and R2 substituents each, a mutation rate of
5% and a selection rate of 25%. All optimizations are run for 15
generations leading to a maximum of 375 evaluations out of
the > 104 combinatorial possibilities. The fitness functions are
all based on the aforementioned MLR expressions but scalarized

differently using Chimera: for the first run, a minimum absolute
DDE� ¼ 1:5 kcal/mol is imposed while DE(1) is minimized with
a 25% degradation threshold, due to the flatness of the activity
plateau around DE(1)=0 kcal/mol. This exemplifies a standard
situation in which enantioselectivity is to be guaranteed and
only subsequently activity has to be optimized. After the
optimization procedure (Figure 6a), several good candidates are
found with predicted DDE� of � 2 kcal/mol and DE(1) of
1 kcal/mol, with the top candidate having the (S)-2,2-bipyridine
N,N-dioxide scaffold with Ph substituents at the 5,5-positions,
R=Me, and R1=3,5-Me-4-F� Ph and R2=2,4,6-tBu� Ph. NaviCat-
GA, driven by the scalarizer, is able to explore activity and
selectivity and find a good compromise between both. The

Figure 6. Evolution of maximum selectivity and activity over optimization runs with three different scalarization setups. The best catalyst candidate from each
run is highlighted (H atoms omitted for clarity). Shaded lines indicate the optimal activity region of DE(1) (light hue) and a minimum DDE� threshold for
guaranteed enantioselectivity (dark hue). The distribution of DDE� and DE(1) for the final populations of each run are shown right. (a) First setup with
minimum DDE� ¼ 1:5 kcal/mol and 25% compromise on minimizing DE(1) (b) Second setup with maximum DE(1)=10 kcal/mol and 25% compromise on
maximizing DDE� (c) Third setup with minimum DDE� ¼ 2:5 kcal/mol and 50% compromise on minimizing DE(1).
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distribution of values in the final population shows how it is
enriched with high DDE� and low DE(1) candidates after 15
generations: a rightmost bump in the distribution of DDE� and
a bump in the region between 0 and 10 in the distribution of
DE(1) (Figure 6a).

For the second run, a maximum value of DE(1)=10 kcal/
mol is imposed, while DDE� is maximized with a 25%
degradation threshold. This represents the opposite setting, in
which good activity is guaranteed (the estimated TOF for
DE(1)=10 is �50000 s1, see Figure 5b) and selectivity comes as
a second priority. By inverting the priorities, the optimization
problem becomes noticeably more difficult. For the first 10
generations, the top candidate found with this setup is stuck at
the DE(1)=10 kcal/mol mark, having DDE� slightly over
2 kcal/mol (scaffold= (S)-1,1-disubstituted 3,3-biisoquinoline
N,N-dioxide, R=H, R1= I, R2=4-tBu� Ph). In this case, the
scalarizer setup leads to a very steep local optimum after a few
exploratory generations, and evolution is hindered due to the
relatively tight 25% degradation margin. The final population
thus shows a very large percentage of nearly identical
candidates. However, through mutation, the optimizer finds an
optimal candidate with high selectivity and acceptable activity
in the last four generations, depicted in Figure 6b. Here, the
scaffold is (S)-2,2-bipyridine N,N-dioxide with 5,5-Ph substitu-
ents, R=H, R1=3,5-Cl� Ph, and R2=4-tBu� Ph. Some common
trends are evident comparing the top performer of this
optimization run with the results from the previous one,
particularly the presence of a tBu-substituted phenyl group in
the R2 position and of halogen-containing groups as R1, as well
as the similar (S)-2,2-bipyridine N,N-dioxide scaffold. The small
change in scaffold (R=Me in the first run, R=H in the second
one), which is associated to reduced activity in the second
evolutionary experiment, exemplifies the difficulties associated
with activity cliffs in catalyst design.

In the third run, we exemplify a more flexible setup
requiring a minimum DDE� value of 2.5 kcal/mol while
attempting to reach the top of the volcano as before, but
accepting a 50% degradation of the latter to enforce the
former, which provides much more flexibility than in the
previous examples. In this case, the top candidates quickly
present significant selectivity, but no compromise is achieved
with respect to activity, and thus DE(1) is barely improved over
the run and remains over 10 kcal/mol, in spite of the noticeable
trade-off exploration in the early generations (with even a
generation exploring structures that would lead to (S)-product
formation in search of improved activity), which is afforded by
the increased degradation margin. The final population of the
run, shown in Figure 6c, excels in selectivity but is worse than
the first two runs in terms of activity, with the distribution
heavily centered around the 10 kcal/mol mark. The top
candidate has a (S)-H8-[1,1’biisoquinoline] 2,2-dioxide backbone
with R1=CCH, R2=4-tBu� Ph; this scaffold is shown to be
associated with improved selectivity because of its dominating
presence in the final population.

The comparison between the three runs highlights how the
same optimization setup, guided by slightly different human
input, ends up exploring very different areas of the combinato-

rial space and finds diverse solutions in the Pareto front. Hence,
the use of scalarization and careful problem definition is
recommended in order to navigate multi-objective optimiza-
tion. For typical bipyridine N,N-dioxide-derived organocatalysts,
selectivity is believed to arise from favorable electrostatic
interactions between the formyl C� H of benzaldehyde and the
nearby Cl ligand in the lowest-lying transition state structure
leading to the (R)-alcohol.[41] Activity is largely a function of the
organocatalyst’s Lewis basicity, with better electron-donors able
to more efficiently activate the allenyltrichlorosilane substrate
(and hence being located closer to the volcano plateau), while
catalysts bearing strongly electron-withdrawing substituents
are less active and found lower on the right slope of the
volcano. The evolutionary experiments highlight how changes
in the scaffold and in the nature of R1and R2 affect this
selectivity-activity interplay and reveal the unique role played
by aromatic substituents. Ph groups at the 6 or 6-position with
electron-donating alkyl substituents are clearly important for
enhanced activity, although additional tBu substituents (at the
ortho-positions) cause unfavorable steric interactions with the
formyl C� H, overwhelming the stabilizing effect from favorable
C� H…Cl interactions and hence reducing selectivity (this is the
case of the first run, Figure 6a). When placed at the 5,5-
positions, the Ph groups lead to additional p-stacking inter-
actions favoring the (R)-pathway (benzene trimer-like interac-
tions involving benzaldehyde and two Ph substituents)[42] and
offsetting otherwise unfavorable p-stacking and CH/p interac-
tions that stabilize the (S)-pathway.[41,43] Thus, in the second run
(Figure 6b), the presence of less electron-rich substituents
(including hydrogen atoms instead of methyl groups at the R
position) results in a slight loss of activity, but ensures favorable
noncovalent interactions that yield very high selectivity. In line
with recent experimental results,[43] the presence of aliphatic
substituents (instead of aromatic ones) is associated with
reduced activity (as in the third run, Figure 6c), however the
ethynyl group as R1 helps improve selectivity, since it leads to a
more favorable electrostatic environment for the formyl C� H in
the (R)-pathway (partially positively charged C� H interacting
with the p-bonds in CCH).[41]

Conclusions

We presented NaviCatGA, a tool capable of optimizing the
structure of homogeneous catalysts to find top candidates with
tailored properties for a given reaction. Using evolutionary
techniques, it is possible to perform the optimization task with
the possibility of tracing the origin of favorable catalyst
components (e.g., ligand substituents, catalyst scaffolds or side
groups) during the evolutionary experiments and pinpoint their
influence on different aspects of a catalyst’s performance (e.g.,
activity, selectivity).

From a technical perspective, NaviCatGA is versatile, flexible
and thus applicable to a variety of catalytic problems. Thanks to
its hierarchical structure, it is compatible with diverse structural
representations (e.g., SMILES, 3D structures), genetic operations
and fitness functions. Additional functionalities, including ML-
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based acceleration,[44–50] can also be conveniently deployed for
the fitness evaluation. While NaviCatGA, as presented here, is a
core component of inverse design efforts in catalysis, it also
constitutes a powerful stand-alone program for general
optimization problems.

In order to further streamline the inverse design workflow, it
is desirable to automate the elucidation of the fitness function
as well as of other eventual quantum chemical tasks. Within this
context, NaviCatGA is integrated into the broader the NaviCat
platform (https://github.com/lcmd-epfl/NaviCat), collecting an
ensemble of tools for computational catalysis. This set of utility
tools, which include, for instance, automated construction of
volcano plots (https://github.com/lcmd-epfl/volcanic), can be
used independently and/or in combination with each other.
Overall, these efforts represent a complementary addition to
alternative programs such as those addressing automated
mechanistic studies[25,51–54] and structure generation.[26,27,55]
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