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Abstract−Bubble point pressure is a critical pressure-volume-temperature (PVT) property of reservoir fluid, which

plays an important role in almost all tasks involved in reservoir and production engineering. We developed two so-

phisticated models to estimate bubble point pressure from gas specific gravity, oil gravity, solution gas oil ratio, and

reservoir temperature. Neural network and adaptive neuro-fuzzy inference system are powerful tools for extracting

the underlying dependency of a set of input/output data. However, the mentioned tools are in danger of sticking in local

minima. The present study went further by optimizing fuzzy logic and neural network models using the genetic algorithm

in charge of eliminating the risk of being exposed to local minima. This strategy is capable of significantly improving

the accuracy of both neural network and fuzzy logic models. The proposed methodology was successfully applied to

a dataset of 153 PVT data points. Results showed that the genetic algorithm can serve the neural network and neuro-

fuzzy models from local minima trapping, which might occur through back-propagation algorithm.

Keywords: Genetic Algorithm, Optimized Neural Network, Optimized Fuzzy Logic, Local Minima, Bubble Point Pres-

sure of Crude Oils

INTRODUCTION

Bubble point pressure (Pb) is one of the most crucial pressure-

volume-temperature (PVT) properties of reservoir fluid, which is

widely used in petroleum engineering. Applications of this param-

eter include a variety of problems ranging from reservoir charac-

terization and reserve estimation through surface production and

facility design. The accuracy of above calculations is dominated by

exactness of Pb measurement. Therefore, use of high accuracy data

is inevitable. Precise values of PVT properties are obtained from

laboratory experiments, such as constant mass expansion and dif-

ferential vaporization tests on reservoir fluid samples at reservoir

temperature [1]. However, these methods are very time-consuming

and expensive. Many researchers attempt to find rapid and accu-

rate ways to predict this parameter, and many of their empirical cor-

relations confirm this hypothesis [2-10].

Intelligent systems are quick, accurate, and cheap methods for

extracting the underlying dependency of a set of input/output data.

Hitherto, researchers have used intelligent systems in their petro-

leum related problems [11-15]. Several researchers tried neural net-

work models for estimation of bubble point pressure [16-22]. Others

have proposed correlations for estimation of bubble point pressure

from other PVT data [2-10]. Although these correlations result in

satisfying results, further studies showed that neural networks and

fuzzy logic models could produce more accurate results compared

with correlations [12,16-18]. Nonetheless, these intelligent models

still have some flaws. Neural network models with back-propaga-

tion algorithm are in danger of sticking in local minima, i.e., the

optimal formulation between input/output data might not be ob-

tained through the back-propagation learning process [23]. This might

occur for neuro-fuzzy systems due to the use of a back-propaga-

tion neural network for optimization of fuzzy logic. Genetic algo-

rithms can extract the global minimum of a fitness function through

a stochastic search process. The genetic algorithm is slower than the

back-propagation algorithm. However, in petroleum related prob-

lems computing time is not as important as accuracy. It is preferred to

spend some minutes more in order to achieve more accurate results

instead. Therefore, in this study the genetic algorithm is used to ex-

tract the coefficients of embedded formulation of neural network

and fuzzy logic models. Results showed that use of genetic algo-

rithm eliminates the risk of sticking in local minima and improves

the accuracy of final predictions. The propounded strategy was suc-

cessfully applied to worldwide field data from open-literature sources.

BACKGROUND THEORIES

1. Fuzzy Logic

The basic idea of fuzzy logic (FL), or fuzzy set theory, was first

presented by Zadeh [24]. Contrasting crisp logic (CL), in which a

value may or may not belong to one class, fuzzy sets allow partial

memberships. FL is appropriate for solving problems associated

with uncertainty. Statistical methods try to abate and disregard this

error, whereas fuzzy logic derives useful information from this error

and uses it as a powerful parameter for increasing the accuracy of

the predictions [11].

A fuzzy inference system (FIS) is the method of formulating from

a given input to an output using fuzzy logic [25]. There are different

types of FIS, but in this study the Takagi-Sugeno fuzzy inference
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system (TS-FIS) was employed to predict the bubble point pressure

from PVT data. In Takagi and Sugeno [26], output membership

functions might be either constant or linear, which are mined by

fuzzy clustering processes.

2. Back-propagation Neural Network

An artificial neural network (ANN) is a powerful intelligent tool

for handling non-linear problems. One of the most conventional

methods of training for ANN to learn how to carry out a particular

task is back-propagation (BP). It’s a recommended learning method,

i.e., it needs a set of training data that has the corresponding output

for any given input. In this method, the network calculates the devia-

tion of predicted output and corresponding wanted output from the

training data set. Then the error is propagated backward through the

network and the weights are adjusted during a number of itera-

tions, named epochs. The training stops when the calculated output

values best approximate the desired values [27].

3. Neuro-fuzzy System

So far, the key roles of neural network (NN) and fuzzy logic (FL)

have been described. FL is associated with explicit knowledge, while

NN deals with implicit knowledge. Neuro-fuzzy modeling is a tech-

nique for describing the behavior of a system by means of fuzzy

inference rules within a neural network construction. Adaptive neuro-

fuzzy inference system (ANFIS) uses a given input/output data set,

and constructs an FIS whose membership functions’ parameters

are tuned by the back-propagation algorithm [25]. Thus, the fuzzy

inference system could train and learn from the modeling data.

4. Evolutionary Computing

Evolutionary computing uses some known mechanism of evolu-

tion as main elements in algorithmic design for computing. There are

various suggested algorithms, but they are all based upon simulating

the evolution of individual structure via processes of parent selection,

mutation, crossover and reproduction. The most popular one is the

genetic algorithm (GA) [28]. GA is a well-organized global optimi-

zation method for solving discontinuous and non-linear problems.

Genetic algorithm (GA) starts with discovering the parameters

of a given estimator as chromosomes (binary or floating-point). This

is tracked by populating a variety of possible solutions. Each chro-

mosome is assessed by a fitness function. The better parent solu-

tions are reproduced and the next generation of solutions (children)

are created by applying the genetic operators (crossover and muta-

tion). The children solutions are evaluated and the whole cycle repeats

until the best solution is achieved.

STATISTICS OF DATASETS

To construct the planned model, 153 data points, taken from sev-

eral papers [29-32] were employed. These PVT data include the

proportion of solution-gas-ratio over gas specific gravity (Rs/GG),

temperature (T), stock-tank oil gravity (API), and bubble point pres-

sure (Pb). Statistics of these parameters are mentioned in Table 1.

Although some papers have utilized Rs and GG as separate parame-

ters for their modeling, many others proposed Rs/GG is a more ap-

propriate choice for feeding models meant to predict bubble point

pressure [2-10]. All these PVT data are in field unit system due to

its prevalence in the petroleum industry. However, conversions from

field units to SI units are stated in A.1. There is a logical correlation

between Pb and other mentioned parameters. The correlation coeffi-

cient between Pb and other PVT parameters could qualitatively illus-

trate the supremacy of dependency between these properties (Fig. 1).

According to Fig. 1, Rs/GG and API of crude oil show a strong direct

relationship with bubble point pressure, while the direct relation-

ship between temperature and bubble point pressure is weak.

CASE STUDY

1. Neural Network Model and Genetic Optimized Neural Net-

work

A three-layered neural network with back-propagation algorithm

was used for construction of an intelligent model which is meant

Table 1. Statistics, including minimum (Min), maximum (Max), mean, and standard deviation (STD) for each Dataset used in this
study

Datasets Min Max Mean STD

Temperature oF 90 266 177.8911 51.5028

Oil gravity oAPI 19.3 45.42 27.8855 5.2691

Rs/GG (Scf/STB) 158.5726 1280.1 591.8624 309.2044

Bubble point pressure (Psi) 915 4256 2428 934.4976

Fig. 1. Cross-plots showing the relationship between bubble point
pressure and PVT data. As this figure shows there is a strong
direct relationship between bubble point pressure and Rs/
GG and oil gravity, while the direct relationship between
temperature and bubble point pressure is weak.
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to estimate bubble point pressure from PVT data. A neural network

with back-propagation algorithm can effectively estimate bubble

point pressure if TANSIG and PURELIN transfer functions are used

for hidden layer and output layer, respectively [11,12]. Consequently,

in this study TANSIG and PURELIN transfer functions were used

for hidden layer and output layer, correspondingly. The network

was trained using Bayesian regularization training function (trainBR).

To achieve the optimal number of neurons in the hidden layer of

neural network models, several neural network models with differ-

ent number of neurons in their hidden layer were constructed and

the performance of the models was evaluated at each stage. Inves-

tigations showed that the optimal model is achieved if the number

of neurons in the hidden layer is specified as five neurons. After

training of the network, associated weights and biases reveal the

dependency of input data and bubble point pressure. By applying

the test data in the trained neural network, it is possible to estimate

bubble point pressure for unseen data. A justification based on Asoo-

deh and Bagheripour [19] proves the high probability of the neural

network to be trapped in local minima. In general, modification of

weights and biases follows the equation,

(1)

where, w (t+1) and w (t) refer to weights and biases of (t+1)th and

tth iterations, respectively. α
t
 and g

t
 are learning rate and gradient in

tth iteration, correspondingly. Judgment based on Eq. (1) confirms

that in local minima (where g
t
=0) no modification occurs for weights

and biases. In other words, the neural network sticks in local minima.

Although proper/adequate adjustment of the network parameters

can prevent this, it’s a big challenge how to determine appropriate

adjustment for networks.

At the next stage of this study, a genetic algorithm was employed

for extracting the weights and biases of the neural network. In fact,

the genetic algorithm was used instead of back-propagation algo-

rithm and Bayesian regulation training function for finding the rela-

tionship between input/output data. For this purpose, the same struc-

ture as above three-layered back-propagation neural network was

introduced to the genetic algorithm. This network is composed of

five hidden neurons and one output neuron, which produces twenty

weights along with six biases that should be determined by genetic

algorithm. A mean square error (MSE) function for training data

was used as the fitness function of the genetic algorithm, while an

MSE function for test data was used as nonlinear constraint func-

tion to prevent over-fitting of the neural network.

Having run the genetic algorithm with pattern search hybrid func-

tion (Fig. 2), optimal connection weights and biases were obtained.

Regulations, done before run of genetic algorithm, are provided in

Table 2. By dint of applying the weights to data points, it is possible

to estimate final Pb. A comparison between neural network with

back-propagation algorithm and genetic optimized neural network

(GONN) illustrates that GONN performed more satisfyingly com-

pared with back-propagation neural network. Fig. 3 compares these

two methods. As is seen, the correlation coefficient of GONN method

for prediction of bubble point is equal to 0.9945, which is much

w t +1( ) = w t( ) − α
t
g
t

Fig. 2. Cross-plot showing the mean and best value of fitness func-
tion for optimization of neural network during 1000 gen-
erations. Final best fitness value is equal to 0.00189 which
refers to mean square error of prediction by GONN model.

Table 2. Regulations done before run of genetic algorithm for optimizing neural network

Parameter/Setting Type/Value Parameter/Setting Type/Value

Population type Double vector Mutation function Gaussian

Population size 50 Chromosomes Crossover function Scattered

Initial range [0 1] Hybrid function Pattern search

Scaling function Rank Generations 1000

Selection function Roulette Stall generations 500

Elite preservation 2 Fitness tolerance 1.0 E -6

Crossover fraction 0.6 Time limit Infinity

Fig. 3. Cross-plots showing the correlation coefficient between meas-
ured and predicted values. This figure illustrates GONN pro-
vides more reliable results compared with non-optimized
traditional neural network (NN).
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more than the correlation coefficient of the back-propagation neu-

ral network (0.9788). Mean square error (MSE) is another evidence

for comparing performance of GONN and back-propagation NN

models. Lower value of MSE for GONN (i.e., 72.73) relative to

MSE of back-propagation NN (i.e., 155.89) proves superiority of

GONN. A comparison between the GONN predicted bubble point

pressure and measured value is shown in Fig. 4. This figure dem-

onstrates that the predicted values are in good agreement with reality,

i.e., the GONN method is an efficient way for producing high ac-

curacy results.

2. Adaptive Neuro-fuzzy Inference System & Adaptive Genetic-

fuzzy Inference System

To construct an adaptive neuro-fuzzy inference system, a Tak-

agi-Sugeno fuzzy inference system (FIS) was developed and then

a hybrid optimization method, which combines least squares esti-

mations with back-propagation, was used to adjust the membership

functions’ parameters. Previous studies [33] showed that Takagi-

Sugeno [26] is more efficient than other types of FIS such as Mam-

dani [34,35] and Laesen [36] FISs. Subtractive clustering is an ef-

fective approach to estimate the number of fuzzy clusters and centers

in Takagi-Sugeno fuzzy inference system [37]. Clustering radius,

varying between the range of [0 1], is a critical design parameter

which has an important role in construction of a fuzzy inference

system [15]. Specifying a smaller cluster radius will usually yield

more and smaller clusters in the data (resulting in more rules). A

large cluster radius yields a few large clusters in data [38]. Details

of subtractive clustering can be found in Chiu [38], Chen and Wang

[39], and Jarrah and Halawani [37].

To extract the optimal number of clusters, a set of clustering radii,

ranging from 0 to 1, was introduced to ANFIS. At the same time,

the performance of the model for test data at each stage was evalu-

ated. The model with the lowest error was chosen as optimal FIS

(Table3). Accordingly, specification of 1 for clustering radius yielded

the optimal ANFIS, which is meant to predict bubble point pres-

sure. Each input was bunched into two Gaussian clusters (Fig. 5).

Output membership functions were linear equations expressed as:

(2)

Coefficients corresponding to the inputs (β1, β2, and β3) and con-

stant coefficient (β4) for output MFs are listed in Table 4. The gener-

ated ‘if-then’ rules are as below:

Rule 1: If (T is low) and (API is Low) and (Rs/GG is low) Then

(Pb is low)

Rule 2: If (T is high) and (API is high) and (Rs/GG is high) Then

(Pb is high).

As seen in Table 3, the adaptive neuro-fuzzy inference system

OMF
i

 = β
1i

T + β
2i

API + β
3i

Rs

GG
--------

 + β
4i

Fig. 4. A comparison between GONN predicted bubble point pres-
sure and measured values. This figure proves there is a good
agreement between predicted values and reality.

Table 3. Variation of correlation coefficient (R), mean square error
(MSE), and number of rules for ANFIS model versus clus-
tering radius. By specification of clustering radius of 1, the
optimal model is achieved. As this table shows specifica-
tion of same number of rules (5 rules or 2 rules) provides
different values of MSE and R. This shows that ANFIS
model has been stuck in local minima in these regions

Clustering radius No. of rules R  MSE

0.1 62 0.95620 0.0081

0.2 20 0.80281 0.0587

0.3 11 0.94570 0.0104

0.4 07 0.99000 0.0016

0.5 05 0.98952 0.0020

0.6 05 0.98970 0.0018

0.7 05 0.98930 0.0020

0.8 03 0.99150 0.0015

0.9 02 0.99230 0.0014

1.0 02 0.99360 0.0011

Fig. 5. ANFIS generated Gaussian membership functions for input
data. ANFIS model provides two rules for handling quan-
titative formulation between PVT data and bubble point
pressure.
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(ANFIS) yielded different results for the same number of rules. It is

expected that for the same number of rules the same values of mem-

bership functions’ parameters, and consequently the same R and

MSE, are achieved. These results show the ANFIS model has wedged

in local minima. To avoid this feature of ANFIS, the constructed

Sugeno type fuzzy inference system is optimized by virtue of genetic

algorithm in the next step. The same above TS-FIS is employed to

be optimized by means of genetic algorithm. A TS-FIS with two

rules and three inputs provides 12 parameters of input membership

functions along with eight parameters of output membership func-

tions for optimization. These parameters are typically mined in com-

panion of back-propagation algorithms and subtractive clustering.

However, the back-propagation algorithm is usually encountered

with local minima trapping. To erase this flaw, a genetic algorithm

is used and optimal values of mentioned parameters are derived.

For this purpose, an MSE function for training data was used as

fitness function, while MSE function for test data was employed as

nonlinear constraint function to prevent over-fitting on training sets.

After running the genetic algorithm (Fig. 6), optimal parameters

of input and output membership functions were obtained. The genetic

algorithm was regulated according to the information of Table 5 be-

fore having run. By applying these parameters to data points, it is

possible to estimate final Pb. Fig. 7 shows the input Gaussian mem-

bership functions. Parameters associated with output membership

functions are listed in Table6. A comparison between adaptive neuro-

fuzzy inference system (ANFIS) and adaptive genetic-fuzzy infer-

ence system (AGFIS) shows that AGFIS performed more satisfac-

torily compared with ANFIS. Fig. 8 compares these two methods.

As seen, the correlation coefficient of AGFIS method for predic-

tion of bubble point is equal to 0.9903 which is much more than

the correlation coefficient of ANFIS (0.9873). Mean square error

(MSE) of AGFIS model is equal to 94.33, which is lower than MSE

of ANFIS (112.76). This criterion provides another evidence for

superiority of AGFIS model compared with ANFIS. A comparison

between AGFIS predicted bubble point pressure and measured value

Table 4. Parameters associated with output linear membership
functions (MFs) of ANFIS model

Out=β1 (T)+β2 (API)+β3 (Rs/GG)+β4

Adaptive Neuro-Fuzzy Inference System (ANFIS)

MF β1 β2 β3 β4

Low cluster 0.46100 1.765 −1.2480 −0.5789

High cluster 0.07557 −0.3981 −0.8638 1.693

Fig. 6. Cross-plot showing the mean and best value of fitness func-
tion for optimization of fuzzy logic during 1000 generations.
Final best fitness value is equal to 0.000789 which refers to
mean square error of prediction by AGFIS model.

Fig. 7. AGFIS generated Gaussian membership functions for input
data. This figure shows that both mean and spread of mem-
bership functions are optimized by means of genetic algo-
rithm.

Table 5. Regulations done before run of genetic algorithm for optimizing fuzzy model

Parameter/Setting Type/Value Parameter/Setting Type/Value

Population type Double vector Mutation function Gaussian

Population size 20 Chromosomes Crossover function Scattered

Initial range [0 1] Hybrid function Pattern search

Scaling function Rank Generations 1000

Selection function Roulette Stall generations 500

Elite preservation 4 Fitness tolerance 1.0 E -6

Crossover fraction 0.8 Time limit Infinity
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is shown in Fig. 9. This figure shows that the predicted values are

in good agreement with reality. Fig. 10 provides an opportunity to

compare constructed models in this study using correlation coeffi-

cient and mean square error. This figure proves that the genetic algo-

rithm is capable of enhancing the accuracy of neural networks and

fuzzy model compared with traditional methods such as back-propa-

gation algorithm and subtractive clustering.

CONCLUSIONS

Bubble point pressure is a critical property of oil samples which

plays an important role in reservoir evaluation and production cal-

culations. In this study, two improved strategies, including genetic

optimized neural network (GONN) and adaptive genetic-fuzzy in-

ference system (AGFIS), were introduced for the estimation of bub-

ble point pressure. Back-propagation learning algorithm, which is

embedded in adaptive neuro-fuzzy inference systems and neural

network itself, is highly at risk of sticking in local minima. Since

the genetic algorithm provides stochastic search ability for finding the

global minimum of a fitness function, by using the genetic algorithm

for training of neural networks and optimization of fuzzy logic model

the risk of being stuck in local minima was eliminated. To make a

judgment based on correlation coefficient and MSE, it was shown

that GONN performed more effectively compared with AGFIS. In

addition, the optimized methods performed more satisfactorily com-

pared with non-optimized methods. It indicated that the genetic algo-

rithm is a potent tool for curve fitting and optimization purpose. It

is possible to utilize the robustness and search capability of genetic

algorithm to optimize any formulation between input/output data

space. Eventually, implementation of the proposed strategies pro-

vides an accurate, quick and cost-effective way of estimating bub-

ble point pressure from PVT data.
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APPENDIX 1. CONVERSIONS FORM BRITISH

FIELD UNITS TO SI UNITS

Conversions Quantity

oC=1.8 (oF)+32 Temperature

λ=141.5/(oAPI+131.5) Density

Pascal=6.895×103×Psi Pressure

(v/v)=0.1782×(Scf/STB) Solution gas-oil ratio

over specific gas gravity


