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Abstract
Little is known about genetic influences on the volume of subcortical brain structures in adult
humans, particularly whether there is regional specificity of genetic effects. Understanding
patterns of genetic covariation among volumes of subcortical structures may provide insight into
the development of individual differences that have consequences for cognitive and emotional
behavior and neuropsychiatric disease liability. We measured the volume of 19 subcortical
structures (including brain and ventricular regions) in 404 twins (110 monozygotic and 92
dizygotic pairs) from the Vietnam Era Twin Study of Aging and calculated the degree of genetic
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correlation among these volumes. We then examined the patterns of genetic correlation through
hierarchical cluster analysis and by principal components analysis. We found that a model with
four genetic factors best fit the data: a Basal Ganglia/Thalamus factor; a Ventricular factor; a
Limbic factor; and a Nucleus Accumbens factor. Homologous regions from each hemisphere
loaded on the same factors. The observed patterns of genetic correlation suggest the influence of
multiple genetic influences. There is a genetic organization among structures which distinguishes
between brain and cerebrospinal fluid spaces and between different subcortical regions. Further
study is needed to understand this genetic patterning and whether it reflects influences on early
development, functionally dependent patterns of growth or pruning, or regionally specific losses
due to genes involved in aging, stress response, or disease.

Keywords
behavioral genetics; hippocampus; amygdala; striatum; pallidum; caudate; putamen; thalamus;
ventricles

INTRODUCTION
Subcortical structures in the human brain, all of which play an important functional role in
both basic and higher-order cognitive and emotional behaviors, vary considerably in size
between individuals, even when overall differences in head size are taken into account
[Lupien et al., 2007]. These individual differences in volumes appear to be moderately
correlated with individual differences in cognitive and emotional performance within
healthy samples, although findings have been mixed [Amat et al., 2008].

In an effort to understand the etiology of brain organization and its functional consequences,
examination of the volumetric covariance between brain structures is expected to help to
identify subsystems that may be functionally or developmentally linked. Little is known,
however, about the genetic and environmental factors that influence that covariance. Studies
that have examined the inter-relationship between the size of different structures within the
healthy human brain have examined both cortical and subcortical structures and generally
found distinct patterns of inter-regional correlation [Colibazzi et al., 2007; Kennedy et al.,
1998; Lerch et al., 2006; Mechelli et al., 2005; Pennington et al., 2000; Tien et al., 1996;
Wright et al., 1999]. Some of the correlations have mirrored patterns of functional
association, and others have been interpreted as consistent with developmental similarities.
The exact patterns have varied across studies, perhaps due to differences in the number and
selection of brain regions, the measure of brain structure used (e.g., volume, thickness, or
gray matter density), the sample composition (e.g., pediatric vs. adult and pathological vs.
healthy), the method used to explore patterning (e.g., qualitative examination of correlations
vs. factor analysis vs. structural equation modeling), or a low variable-to-subject ratio in
many studies. None of these studies directly addressed the contribution of genetic or
environmental factors to the observed covariation patterns.

Brain volume of individual cortical and subcortical structures is under substantial genetic
control [Schmitt et al., 2007a; Wallace et al., 2006]. In adult samples, this high heritability
does not appear to be reduced when differences in head size are taken into account. Thus,
individual differences in the volume of most brain structures within equivalently sized heads
are largely determined by genes. What is not yet clear is whether the same genes play a role
in determining size for all structures or whether there are multiple underlying genetic factors
at work. Furthermore, it is not known to what degree the covariance patterns observed at the
phenotypic level are paralleled by similar patterns of genetic influences. Studies of gene
expression patterns in animals and humans have observed distinct regional differences in the
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genes that are active, suggesting that there may be genes that influence the development,
size, and function of some brain regions but not others [Abrahams et al., 2007; Hovatta et
al., 2007; Sun et al., 2006]. Twin studies are ideally suited to examine the genetic patterning
of brain structure size because they allow one to calculate the genetic correlation (i.e., the
degree of genetic overlap) between multiple in vivo measures. The genetic correlation is the
genetic covariance between two variables divided by the square root of the product of their
genetic variances [Neale and Cardon, 1992]. Patterns of genetic correlation do not
necessarily mirror the patterns seen at the phenotypic level (see Kremen et al. [2010] for an
example of a dissociation between phenotypic and genetic factors in a behavioral measure).

Inter-regional brain structure patterns have been examined in four genetically informative
samples, and two of these were entirely pediatric. Pennington et al. [2000] performed a
phenotypic factor analysis of 13 measures (seven cortical regions, three subcortical regions,
cerebellum, brain stem, and total white matter) across their entire sample (N = 132, heavily
weighted with reading-disabled individuals) and identified a primarily cortical factor and a
primarily subcortical one. They found that scores on these two factors were more highly
correlated among monozygotic (MZ) than dizygotic (DZ) twins, suggesting high heritability.
Patterns of genetic correlation were not examined because phenotypic factor analysis cannot
separate genetic and environmental influences underlying correlations between measures.
Schmitt et al. [2007b, 2008] based their analyses on a large pediatric twin sample (N = 326,
308, respectively). In Schmitt et al. [2007b], six regions (cerebrum, cerebellum, lateral
ventricles, corpus callosum, thalamus, and basal ganglia) were selected, and genetic
correlations among the volumes of these regions were examined. They found that a single
genetic factor explained most of the covariance in volume among these regions. After
accounting for total brain volume, however, a genetic factor that included thalamus and
basal ganglia was found, as well as a factor influencing the size of the cerebrum and corpus
callosum. Schmitt et al. [2008] applied principal components analysis (PCA) to the genetic
correlations between thickness in 54 different cortical regions. These correlations were
estimated using data from 600 pediatric twins and singletons. A single cortical factor
explained most of the genetic variance between cortical regions, but when mean cortical
thickness was accounted for, a six factor solution was observed, with thickness in multiple
regions of the frontal and parietal cortex loading on the first factor. Baare et al. [2001]
examined the genetic and environmental correlation among several global brain measures,
including intracranial volume, total brain volume, gray and white matter volume, and lateral
ventricle size in a sample of 54 adult MZ twins, 58 DZ twins, and 34 full siblings of the
twins. They found high genetic correlations between whole brain, gray and white matter
volumes, and intracranial volume, but not between intracranial volume and lateral ventricle
size. Posthuma et al. [2000] also reported a moderate genetic correlation between cerebellar
volume and intracranial space in the same sample. Genetic correlations between gray and
white matter volumes and between these and cerebellar volume were also fairly high [Baare
et al., 2001; Posthuma et al., 2003]. The one adult twin study to examine patterns of genetic
correlation between regionally parcellated brain structures [Wright et al., 2002] found a
frontal–parietal factor similar to that seen in the Schmitt et al. [2008] pediatric study, but
these preliminary results may not be reliable given that genetic correlations of 92 brain
regions were examined in a sample of only 10 MZ and 10 DZ pairs. Thus, very little is
known about the pattern of genetic correlations between specific brain regions in healthy
adults.

We have collected high-resolution magnetic resonance images on a large sample of middle-
aged male twins from the Vietnam Era Twin Study of Aging (VETSA). Using automated
segmentation and probabilistic atlas-based parcellation procedures, we measured the volume
of 19 subcortical regions (seven bilateral brain structures, two bilateral ventricular measures
and third ventricle volume). We examined the degree to which the same or different genetic
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factors influence the volume of these structures by conducting a factor analysis of the
genetic correlations between subcortical volumes. Prior studies either selected brain regions
of convenience (i.e., regions included in the analysis were simply those that had already
been measured), utilized very small samples, or had small subject-to-variable ratios. We
elected to begin with an analysis of genetic correlations among subcortical measures
because the number of variables in the analysis is appropriate compared to the number of
twins in our sample, yet represents the size of nearly all the structures beneath the cortical
mantle. In addition, based on preliminary results, measures of cortical size appeared
relatively genetically independent from subcortical measures and thus will be examined in a
separate analysis.

We aimed to test whether one or more factors would best characterize the pattern of genetic
correlations. Although previous analyses of the pattern of phenotypic correlations in brain
size generally suggested the existence of more than a single factor, such results are
uninformative about whether more than one genetic factor might underlie such patterns. Our
hypothesis, however, was that more than a single genetic factor was likely to emerge,
indicating the actions of multiple genetic influences. As shown in Table I, there are many
potential patterns of genetic correlation among subcortical structures that may be observed
and each has different implications for the nature of genetic patterning in the human brain.
Given the lack of well-powered, genetically informative studies of regional volumes in
adults, the present study aimed to use the twin method to explore the nature and pattern of
genetic correlations among subcortical volumes as measured by magnetic resonance
imaging.

METHODS
Participants

The overall goals and design of the VETSA project have been described previously [Kremen
et al., 2006]. VETSA participants were selected from a group of individuals that had
participated in a previous study [Tsuang et al., 2001] drawn from the Vietnam Era Twin
(VET) Registry [Goldberg et al., 2002], a sample of male–male twin pairs born between
1939 and 1957 who had both served in the United States military between 1965 and 1975.
The VET Registry and the VETSA sample are not VA or patient samples, and the large
majority of individuals were not exposed to combat. At the time of data analysis, there were
474 individual VETSA participants with analyzable MRI data. Of those, 404 were paired
(i.e., 202 twin pairs): 110 MZ and 92 DZ pairs. Twin zygosity was initially classified
according to questionnaire and blood group information. These classifications are being
updated on the basis of 25 microsatellite markers. To date, 56% of the MRI study
participants have DNA-determined zygosity. Consistent with the overall VETSA project,
95% of the questionnaire-based classifications were in agreement with the DNA-based
classifications; when differences occurred, we used the DNA-based classifications. To
examine whether this minor proportion of misclassification would be likely to influence the
observed genetic associations, we compared estimates of heritability made using DNA-
based versus questionnaire-based zygosity determinations for three representative variables
from the overall VETSA sample and the MRI subsample. In the overall sample, 374 sets of
twins had been classified by both methods; in the MRI subsample, 114 twins had both
determinations. Heritability estimates were nearly identical using the two methods (digits
forward: DNA-based = 0.49 vs. questionnaire-based = 0.46; negative emotionality: 0.50 vs.
0.47; total brain volume: 0.89 vs. 0.90).

Potential participants in the VETSA MRI study were screened for standard MR exclusions.
Only 6% of VETSA participants who were invited to undergo MRI declined to participate;
59% of those who agreed were included. The remaining participants were not included for
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reasons such as possible metal in the body (7%), claustrophobia (3%), testing being
conducted in the twins’ hometown (5%), scanner problems (8%), cotwin being excluded
(9%), and other reasons (3%).

Mean age of the MRI participants was 55.8 (2.6) years (range: 51–59), mean years of
education was 13.9 (SD = 2.1), and 85.2% were right-handed. Most participants were
employed full time (74.9%), 4.2% were employed part-time, and 11.2% were retired. There
were 88.3% non-Hispanic white, 5.3% African-American, 3.4% Hispanic, and 3.0% “other”
participants. Self-reported overall health status was as follows: excellent (14.8%); very good
(36.5%); good (37.4%); fair (10.4%); and poor (0.9%). These demographic characteristics
did not differ from the entire VETSA sample and are comparable to U.S. census data for
similarly aged men [Centers for Disease Control and Prevention, 2003; National Center for
Disease Statistics, 2003]. There were no significant demographic differences between MZ
and DZ twins.

All participants gave informed consent to participate in the research, and the study was
approved by the Institutional Review Boards of the University of California, San Diego,
Boston University, and the Massachusetts General Hospital.

Image Acquisition
Images were acquired on Siemens 1.5 Tesla scanners (241 at University of California, San
Diego; 233 at Massachusetts General Hospital). Sagittal T1-weighted MPRAGE sequences
were employed with a TI = 1,000 ms, TE = 3.31 ms, TR = 2,730 ms, flip angle = 7°, slice
thickness = 1.33 mm, voxel size 1.3 ×1.0 × 1.3 mm3. Raw DICOM MRI scans (including
two T1-weighted volumes per case) were downloaded to the MGH site. These data were
reviewed for quality, registered, and averaged to improve signal-to-noise ratio. Of the 493
scans available at the time of these analyses, quality control measures excluded 0.6% (three
cases) due to scanner artifact and 3% (16 cases) due to inadequate image-processing results
(e.g., poor contrast caused removal of nonbrain to fail). The resultant 474 available cases
included 202 twin pairs (404 individuals) that were used in the present study.

Image Processing
Using volumetric segmentation methods based on the publicly available FreeSurfer software
package [Fischl et al., 2002, 2004a,b], volumetric measures were created for hippocampus,
amygdala, caudate, putamen, nucleus accumbens, thalamus, and ventricles (see Fig. 1). The
automated, fully 3D whole-brain segmentation procedure [Fischl et al., 2002, 2004a,b] uses
a probabilistic atlas and applies a Bayesian classification rule to assign a neuroanatomical
label to each voxel. The atlas consists of a manually derived training set created by the
Center for Morphometric Analysis (http://www.cma.mgh.harvard.edu/) from 20 unrelated,
randomly selected VETSA participants. Automated volumetric measurements based on this
atlas were within the 99% confidence interval with respect to the “gold standard” manual
measurements made at the Center for Morphometric Analysis. This process required only
qualitative review to ensure no technical failure of the application.

Data Analysis
Descriptive statistics for each region of interest (ROI) were calculated in SAS (Version
9.1.2). Pearson correlations were used to assess the phenotypic association between a single
ROI and all other ROIs and to calculate crosstwin, crosstrait correlations for MZ and DZ
pairs separately (results of these analyses are available upon request).
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Genetic Modeling
Data were passed from the statistical programming environment R [Ihaka and Gentleman,
1996; R Development Core Team, 2005] to Mx [Neale et al., 2003], a matrix-based
structural equation modeling package to estimate the genetic, shared environmental and
unique environmental influences shared between subcortical ROIs.

The degree of relatedness between members of MZ and DZ twin pairs is used to estimate the
contribution of genetic and environmental effects to the phenotypic variation of subcortical
volume for each ROI. Phenotypic similarities between MZ twins arise from the sharing of
all their additive genetic information and all shared environmental influences. Similarities
between DZ twins result from sharing on average 50% of their additive genetic information
in addition to shared environmental influences. Influences from unique environmental
effects diminish the similarity between members of a twin pair, regardless of their zygosity.
Models using twin data thus utilize MZ and DZ twin pair variances and covariance to
estimate the proportion of total phenotypic variance due to additive genetic, shared
environmental and unique environmental influences. Additive genetic variance (A) refers to
the additive genetic effects of alleles at every contributing locus. Shared environmental
variance (C) is the variance that is due to effects shared by a twin pair. Unique
environmental variance (E) is the variance due to effects not shared by a twin pair and also
includes measurement error.

Univariate variance components analysis—Univariate ACE, AE, and CE models
were fitted for each ROI to test the significance of additive genetic and shared
environmental effects. Optimization of these data used maximum likelihood (ML)
[Edwards, 1984] by calculating twice the negative log-likelihood of the raw data for each
twin pair and summing across all pairs. The use of ML in measuring model fit allows for
hypothesis testing between an original model (ACE) and its nested models (AE, CE, and E
only). The difference between an original model and its respective submodels follows a χ2

distribution with degrees of freedom equal to the difference in model parameters (df = 1).

Multivariate analysis—Data on two or more variables collected from the same pairs of
twins provide additional statistics with which it is possible to estimate the amount of genetic
and environmental influences that are shared in common between ROIs. The three primary
sources of information are the within-twin crossvariable covariance (the phenotypic
covariance), and the MZ and DZ crosstwin, crossvariable covariances. For example, an
increased crosstwin, cross-ROI correlation in MZ pairs compared to DZ pairs suggests that
the covariance between two ROIs may be due to genetic factors. A standard approach for
estimating shared genetic and environmental effects utilizes a Cholesky decomposition,
which is a triangular decomposition of the expected variance–covariance matrix between
ROIs. The first variable in a Cholesky decomposition is the result of a latent factor that
explains the variance in the initial variable and all subsequent variables. A second latent
factor explains the variance in the second variable and all subsequent variables. The
common genetic effects between ROIs utilized an expected variance/covariance matrix
parameterized to have 19 ROIs loading on the first genetic factor (A1), 18 ROIs on the
second factor (A2), 17 on the third (A3), and so forth, until only one ROI was loaded on the
19th factor (A19) (see Fig. 2). This parameterization was also specified for the latent C and
E factors. An advantage of the Cholesky decomposition is that it places few expectations on
the structure of the latent factors. Further, it produces separate genetic and environmental
variance/covariance matrices that are positive semidefinite, consistent with the idea that
variation is caused by factors that operate in a linear additive fashion.
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The genetic covariances between the ROIs were used to calculate genetic correlations to
indicate the degree to which genetic effects are shared between the two ROIs. The genetic
correlation between two ROIs is defined as

where Axy is the genetic covariance between structures x and y and Ax and Ay represent the
heritability of x and y. The multivariate model produced a 19 × 19 genetic correlation
matrix. The Cholesky decomposition uses many factors as there are variables entered to
estimate the genetic covariance matrix. It is saturated in that, subject to the matrix as a
whole being non-negative definite, there is one free parameter for each genetic variance and
covariance. However, a model with fewer factors may explain the data as well as the
Cholesky. As is usual with factor analysis, we specified genetic factor models with one or
more latent common genetic factors, plus a residual genetic component specific to each
observed variable. The same factor approach may be applied to the additive genetic, shared
environment and specific environment components. Factor submodels with a constrained
number of genetic and environmental factors were tested against the Cholesky to determine
the minimum number of factors which adequately explained the genetic relationships
between ROIs in the presence of shared and unique environmental effects. Genetic and
environmental factors were identified as the number of factors with eigenvalues greater than
1 when estimated from their specific correlation matrices. One hundred and seventy models
of testing the number of genetic and environmental factors were assessed. Model complexity
ranged from zero genetic, zero shared environmental, and one unique environmental factor
to four genetic, five shared environmental, and seven unique environmental factors.
Reduced models were assessed if they produced no significant differences in fit compared to
the Cholesky. Cluster analysis and PCA were then separately applied to the genetic
correlation matrix to determine the strength of genetic relationships and to identify the
genetic relatedness between the subcortical regions.

Cluster analysis—The correlation matrix was visualized as a heatmap using the heatmap.
2 function within the gplots package in R [Ihaka and Gentleman, 1996; R Development Core
Team, 2005]. This program also performs a hierarchical cluster analysis by treating the
correlations as Euclidean distances in an agglomerative fashion and displays the genetic
relationships between regions as a dendrogram in which the distance from one structure to
another along the path of the dendrogram is related to the similarity of their patterns of
genetic correlation. The ordering and proximity of the regions in the dendrogram and
heatmap is thus not specified by the user, but is a reflection of the strength of their genetic
relationship.

Principal components analysis—PCA was conducted on the genetic correlation matrix
to reduce the dimensionality of the matrix and identify factors that account for a large
amount of the total genetic variance within the measured ROIs. The genetic correlation is a
standardization of the genetic covariance, which is easier for the interpretation of factor
structure. Additionally, the factors resulting from an analysis of a correlation matrix allows
for comparison of factor structures between studies [Jolliffe, 2002]. Factors identified in
PCA describe the predominant genetic relationships between the subcortical regions, and
factor loadings quantify the correlations between a latent genetic factor and an ROI. PCA
was conducted in SAS using a promax (oblique) rotation to efficiently account for the high
intercorrelation between ROIs. Performing PCA in SAS provides additional efficiency in the
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identification of the ROIs that constitute a given factor and provides estimates of the amount
of the genetic variance accounted for by each factor. The genetic variance attributable by a
given factor is calculated as the sum of the squared factor loadings divided by the number of
variables. PCA was also conducted on the phenotypic correlation matrix.

RESULTS
The means (SDs) for the volume of the 19 subcortical regions are presented in Table II.
After correcting for multiple comparisons, there were no significant differences between
zygosity group for either the means or variances in any region (data available upon request).
Heritability estimates for these subcortical regions have been previously published [Kremen
et al., 2009]. All structures were significantly and highly heritable (ranging from 0.37 for the
right inferior lateral ventricle to 0.85 for the left putamen). The focus of this article is to
examine whether these strong genetic influences reflect common genetic factors across the
subcortical regions.

The genetic correlations are presented in Table III and range from −0.004 to 0.996. A visual
heatmap representation of the genetic correlations and results of a hierarchical clustering
analysis (represented as a dendrogram) are shown in Figure 3. The figure illustrates the high
degree of genetic correlation between left and right homologous regions and the segregation
between brain tissue and ventricular measures. Among the brain tissue measures, the cluster
analysis reveals a division between basal ganglia/ diencephalic and limbic structures.

Models with four genetic factors did not significantly differ in fit from the Cholesky (Table
IV) and had the lowest values of Akaike Information Criterion suggesting a superior balance
between goodness-of-fit and parsimony [Akaike, 1987]. Further, there was a significant
improvement in fit between the model with three genetic factors and the model with four
genetic factors (change in −2 log likelihood [Δ−2LL] = 87.81, change in degrees of freedom
[Δdf] = 19, P < 0.001). Thus, we concluded that the four-factor structure provided the best
representation of the data.

Consistent with the model-fitting results, the rotated factors of the PCA of the full genetic
correlation matrix identified a model with four genetic factors that each had eigenvalues
greater than one. These four factors together explained 81% of the total genetic variance.
Table V presents the results of this four-factor solution. Bilateral volumes of the putamen,
pallidum, caudate, and thalamus loaded heavily on the first genetic factor, which we
therefore labeled as the Basal Ganglia/Thalamic factor. This factor explained 43% of the
variance. The second factor consisted of all the ventricular measures and explained 23% of
the variance. The third factor, which we termed the Limbic factor, explained 9% of the
variance and had the highest loadings for bilateral hippocampus and amygdala. The fourth
factor consisted only of bilateral accumbens volume and explained 6% of the variance. The
Basal Ganglia/Thalamic factor and the Limbic factor were correlated with each other (r =
0.54), but there were no other large correlations between factors (rs < 0.17).

Because the fourth factor contained only left and right measures for a single structure, we
conducted a second PCA that constrained the number of factors to three. In this solution, the
accumbens loaded on the Limbic factor and the three factors together accounted for 75% of
the total genetic variance. As mentioned earlier, however, the four-factor model was
preferred based on genetic modeling. There was no discernible structure to the pattern of
shared and unique environmental correlations between the volumes of the subcortical
structures (data available upon request).

A four-factor model also fits the phenotypic correlation matrix. The factor loadings for the
phenotypic data are presented in Table VI, and the patterns are similar to those observed for
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the genetic analysis. A distinct separation between brain and ventricles is similarly observed
for the phenotypic measures, and loadings for the four factors are similar to those seen in the
genetic analysis.

DISCUSSION
This study was the first large-scale investigation of the degree and pattern of genetic
relationships among multiple subcortical brain volumes in adults. We found strong genetic
correlations among volumes of subcortical brain tissue and among volumes of subcortical
cerebral spinal fluid-filled spaces, but weaker genetic relationships between these two
categories. Volumes of homologous regions of brain and ventricles in each hemisphere were
highly genetically correlated. PCA further suggested that genetic variance in subcortical
brain volumes could be partitioned into a Basal Ganglia/Thalamic factor, a Limbic factor,
and a Nucleus Accumbens factor. The pattern of phenotypic covariance was very similar to
the pattern of genetic covariance and there was little structure to the environmental
covariance patterns, suggesting that the observed phenotypic covariance structure is largely
genetically determined.

The results suggest that multiple genetic influences determine subcortical volumes for
different structures. Our findings therefore argue against a model of brain development or
deterioration in which a single set of genes determines the size of all subcortical structures
(see Table I, Patterns 1 and 4). The fact that neighboring brain volumes loaded positively on
the factors (consistent with Table I, Pattern 5a) also suggests that genetic influences on
volume growth or shrinkage do not result in a zero-sum process in which the size of one
structure is limited by the size of another nearby (see Table I, Pattern 5b). Within the
measures of subcortical brain tissue, we found some evidence for different genetic
influences on basal ganglia and thalamic volumes compared to limbic structures such as
hippocampus and amygdala and compared to the nucleus accumbens. This finding is largely
consistent with those of previous large-scale studies of pediatric twins [Schmitt et al., 2007b,
2008], in which evidence for multiple factors was observed in one analysis that included
both cortical and subcortical volumes and another that included only cortical thickness
measures. However, that study did not measure the different basal ganglia structures
separately. An interesting difference between the findings is that Schmitt et al. only
observed multiple factors after covarying for intracranial volume or mean cortical thickness,
whereas our finding of multiple factors was observed without correction for intracranial
volume. Possibly, genetic correlations in children are more influenced by factors affecting
global brain size because their gray matter structures are still growing. In general, it is
difficult to compare directly the findings from these studies to the present one because the
samples differ dramatically in age and the brain measures included are different.

Despite the physical distance separating left and right hemisphere subcortical structures, we
observed high genetic correlations between the volumes of homologous regions. These high
genetic correlations are consistent with both prior investigations in a pediatric twin sample
[Schmitt et al., 2007b, 2008] and with results of phenotypic covariation analyses [Mechelli
et al., 2005; Salvador et al., 2005; Tien et al., 1996], including our own based on the present
data. The strong interhemispheric genetic correlations we observed suggest that the shared
genes could be active early in development when the hemispheric fate of neurons is
determined. The findings are also consistent with the idea that shared genetic influences
serve to grow or shrink subcortical structures over the lifespan in a manner that is not
lateralized.

We also found evidence for different genetic influences on subcortical brain tissue compared
to subcortical CSF spaces (consistent with Table I, Pattern 3). This argues against the notion
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that ventricular volume is directly yoked, via shared genetic mechanisms, to the volume of
surrounding gray matter structures (which would have led to opposite loadings on a common
factor, i.e., negative genetic correlations; see Table I, Pattern 2). Because we did not
measure subcortical white matter volume by region, however, we are unable to say whether
the genes influencing ventricular volume may be the same as those influencing the integrity
or volume of white matter surrounding the ventricles.

Among the gray matter structures, we found some evidence for distinct genetic influences
on nucleus accumbens versus basal ganglia/thalamic regions versus limbic structures,
although the latter two factors did show some genetic overlap. The patterns of genetic
correlation among volumes of subcortical brain tissue that we observed parallel the results of
two previous studies of phenotypic correlations among the volume of brain regions that both
found basal ganglia and limbic/medial temporal lobe factors [Colibazzi et al., 2007; Tien et
al., 1996], and we found similar results in our own phenotypic analysis. Furthermore, both
limbic and basal ganglia/thalamic clusters were observed in a multivariate investigation of
functional activity during rest in 90 brain regions as measured by functional magnetic
resonance imaging [Salvador et al., 2005]. This genetic covariation bears some consistency
with the strong anatomic connections between the structures that comprise each factor, and
the regions seem to have somewhat dissociable roles to play in cognitive and emotional
behavior. Thus, at least some of the genes that are differentially involved in determining
volumes within each cluster may be those whose expression is related to the unique
functional specialization of the neurons in these regions, especially ones that have to do with
activity-dependent growth or survival of neurons (see Table I, Pattern 5a). Still, the
functional division between the factors is not at all complete, and indeed, there are many
ways in which regions in our Limbic factor communicate and functionally interact with
those in our Basal Ganglia/Thalamic factor and with the nucleus accumbens. Consistent with
this, we found a correlation of 0.54 between these two factors, suggesting a certain amount
of commonality in genetic influences. The thalamus in particular is functionally important in
motor, cognitive, and emotional behavior and is directly or indirectly interconnected with all
the other subcortical structures. Perhaps consistent with this, thalamus volume loaded
moderately on both the Basal Ganglia/Thalamic factor and the Limbic factor. It should also
be noted that the borders of the nucleus accumbens are difficult to validly identify on T1-
weighted MRI images, and this measure is thus referred to as the “accumbens area” in the
output of Freesurfer. Still, the heritability of this measurement (L = 0.63, R = 0.51) was
similar to that of most other subcortical structures, suggesting that it was reliably measured
in our sample (since measurement error contributes to unique environmental variance and
thus decreases the apparent heritability of measures).

In addition to functional explanations, the observed pattern of genetic factors could also be
due to genetic distinctions between the regions in neurotransmitter receptor densities, how
and when the structures develop within individuals, how and when the structures evolved in
humans, or regionally specific sensitivity to trophic or regressive agents or pathologies. The
present study was not designed to disentangle these possibilities, but future studies of
candidate genes that might influence the size of subcortical brain structures should focus on
genes whose effects might be regionally specific in the patterns found here.

To date, some specific genes have been examined in relationship to the volume of
subcortical structures. Polymorphisms of the gene coding for brain-derived neurotrophic
factor (BDNF) seem to be related to size of the hippocampus [Bueller et al., 2006; Frodl et
al., 2007; Pezawas et al., 2004] and to the magnitude of age-related change in amygdala
volumes [Sublette et al., 2008], but the relationship of this gene to basal ganglia, thalamic,
and nucleus acumbens volumes has been less studied [Agartz et al., 2006], although BDNF
is found in these regions [Murer et al., 2001]. Apolipoprotein E (APO-E) polymorphisms
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have also been examined in relation to size of hippocampus and amygdala, and the evidence
is mixed [Jak et al., 2007], suggesting that if APO-E influences subcortical gray matter
volumes, it may not do so in a way that parallels the genetic factors we observed. More
research is needed to help determine which specific genes or sets thereof underlie the
patterns of genetic covariation that we observed.

Because the present sample included only men, further studies will be needed to examine
whether the pattern of genetic correlations is similar in women. We also elected to focus our
analysis on subcortical structures, and so we were not able to examine possible genetic
correlations between cortical and subcortical volumes. Although cortical–subcortical
anatomic connectivity and functional dependence is well established, a thorough
examination of the genetic relationships between cortical and subcortical size is made
difficult due to several factors such as the large number of regions involved in such an
analysis (leading to a low subject-to-variable ratio even in our large-scale study).

In the largest twin MRI sample to date, we have shown that different genetic influences
determine the size of distinct subcortical networks. Observed patterns of covariance at the
phenotypic level appear to be primarily due to similar patterns of genetic covariance. This
argues against idea that observed correlations between the size of structures have to do
primarily with shared environmental factors, such as insults or toxins that might
differentially influence growth or shrinkage of particular subcortical regions. Shared genes
influence the volume of homologous brain regions in each hemisphere, and distinct genetic
influences determine brain volume compared to cerebrospinal fluid spaces. Genetic
influences do not appear to act in an ex vacuo manner for ventricular volumes nor is there
evidence for a zero-sum or push–pull effect on neighboring gray matter structures. The
rotated genetic and phenotypic factor structure was consistent with recognized subcortical
functional systems. Of course, factor loadings can be rotated in an infinite number of ways,
without changing how much of the variation and covariation in the data that they explain.
Still, the rotated pattern we observed makes sense given what we know about the anatomical
and functional connectivity between these regions. Thus, the precision of genetic association
studies aimed at finding genes related to the development and function of subcortical
structures may be enhanced through the utilization of brain structure phenotypes based on
the genetic factors observed in the present study.
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Figure 1.
Representative parcellation of subcortical regions using Freesurfer software.
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Figure 2.
An example of the Cholesky parameterization used to determine genetic covariance of the
19 subcortical regions of interest.
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Figure 3.
Heatmap representing magnitude of genetic correlations between subcortical regions of
interest and dendrogram representing results of a hierarchical cluster analysis. Warmer
colors represent more positive genetic correlations.
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TABLE I

Interpretation of possible genetic factor structure patterns

Factor structure Consistent explanatory models

1. Ventricles load positively on same
factor(s) as brain structures

Genes determine size of cranium and hence all subcortical structures and spaces

2. Ventricles load negatively on same
factor(s) as brain structures

Genes determine size of gray matter structures; ventricular volumes determined through ex vacuo
effects of these genes

3. Ventricles load on different factor(s)
from brain structures

Different genetic influences determine gray matter versus ventricular volume

4. Single brain factor* One set of genes determines the size of all subcortical structures, perhaps genes involved in
global growth promotion

5. Multiple brain factors*

 5a. All structures load positively on the
factors

Different genetic influences act on different subcortical structures due to distinct:

• phylogenic patterns

• early developmental trajectories

• functional connectivity (including anatomical connectivity and/or neurotransmitter
systems)

• ongoing cell repair or cell death mechanisms (e.g., nerve growth factor)

• sensitivity to effects of stress, age, or pathology

 5b. Some structures load negatively on
factors

As above, but with additional evidence that genes act in a zero-sum manner for neighboring
structures (e.g., greater growth of the hippocampus means less growth of the amygdala)

*
Each of these possibilities could occur with any of the ventricular patterns above.
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TABLE II

Descriptive statistics for the subcortical regions of interest

ROI Mean SD Minimum Maximum

Accumbens – L 599.38 87.27 370 901

Accumbens – R 541.59 110.9 273 963

Amygdala – L 1,915.28 206.92 1,248 2,555

Amygdala – R 2,054.86 216.74 1,458 2,894

Caudate – L 3,498.72 435.28 2,483 5,032

Caudate – R 3,731.34 474.3 2,518 5,232

Hippocampus – L 3,991.75 390.98 2,794 5,359

Hippocampus – R 4,225.29 431.4 2,846 5,771

Inferior lateral ventricle – L 636.34 244.68 139 1,967

Inferior lateral ventricle – R 686.32 240.84 217 2,085

Lateral ventricle – L 12,371.9 5,983.27 3,253 38,722

Lateral ventricle – R 11,822.8 5,828.1 3,847 37,339

Third ventricle 1,341.96 418.72 677 3,957

Pallidum – L 1,658.83 210.67 1,115 2,372

Pallidum – R 1,568.63 198.87 1,078 2,507

Putamen – L 4,927.1 560.93 3,171 6,735

Putamen – R 5,003.05 540.02 3,409 6,708

Thalamus – L 6,275.08 680.63 4,506 8,535

Thalamus – R 6,492.97 669.9 4,431 9,006

Hum Brain Mapp. Author manuscript; available in PMC 2012 July 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eyler et al. Page 20

TA
B

LE
 II

I

G
en

et
ic

 c
or

re
la

tio
ns

 b
et

w
ee

n 
su

bc
or

tic
al

 r
eg

io
ns

 o
f 

in
te

re
st

L
at

. v
en

tr
ic

le
In

f.
 la

t.
 v

en
tr

ic
le

T
hi

rd
 v

en
tr

ic
le

T
ha

la
m

us
C

au
da

te
P

ut
am

en
P

al
lid

um
H

ip
po

ca
m

pu
s

A
m

yg
da

la
A

cc
um

be
ns

L
R

L
R

L
R

L
R

L
R

L
R

L
R

L
R

L
R

L
at

. v
en

tr
ic

le
 –

 L
1.

00
0

L
at

 v
en

tr
ic

le
 –

 R
0.

97
1

1.
00

0

In
f.

 la
t. 

ve
nt

ri
cl

e
– 

L
0.

73
9

0.
71

0
1.

00
0

In
f.

 la
t. 

ve
nt

ri
cl

e
– 

R
0.

81
0

0.
74

8
0.

92
7

1.
00

0

T
hi

rd
 v

en
tr

ic
le

0.
69

2
0.

67
6

0.
55

5
0.

71
2

1.
00

0

T
ha

la
m

us
 –

 L
−

0.
00

4
−

0.
01

2
0.

04
8

0.
04

5
0.

14
5

1.
00

0

T
ha

la
m

us
 –

 R
−

0.
01

7
−

0.
01

1
0.

09
3

0.
08

4
0.

10
4

0.
97

5
1.

00
0

C
au

da
te

 –
 L

0.
28

9
0.

29
2

0.
39

4
0.

36
0

0.
35

4
0.

52
1

0.
49

8
1.

00
0

C
au

da
te

 –
 R

0.
28

6
0.

29
0

0.
39

5
0.

37
7

0.
36

7
0.

49
2

0.
47

4
0.

99
6

1.
00

0

Pu
ta

m
en

 –
 L

−
0.

09
1

−
0.

09
1

0.
07

5
0.

06
0

0.
10

1
0.

52
0

0.
47

6
0.

61
1

0.
60

3
1.

00
0

Pu
ta

m
en

 –
 R

−
0.

04
5

−
0.

06
2

0.
08

4
0.

09
4

0.
08

9
0.

57
7

0.
52

7
0.

55
8

0.
54

9
0.

98
1

1.
00

0

Pa
lli

du
m

 –
 L

−
0.

06
3

−
0.

09
0

0.
04

4
0.

02
2

−
0.

05
2

0.
77

0
0.

73
8

0.
69

1
0.

66
1

0.
72

1
0.

73
3

1.
00

0

Pa
lli

du
m

 –
 R

0.
12

9
0.

10
8

0.
12

4
0.

07
4

0.
16

4
0.

71
2

0.
66

5
0.

62
5

0.
58

0
0.

67
0

0.
64

6
0.

86
3

1.
00

0

H
ip

po
ca

m
pu

s 
– 

L
−

0.
16

4
−

0.
19

6
0.

02
7

0.
06

1
0.

09
6

0.
52

9
0.

54
0

0.
37

6
0.

37
3

0.
44

9
0.

40
6

0.
49

3
0.

49
7

1.
00

0

H
ip

po
ca

m
pu

s 
– 

R
−

0.
15

7
−

0.
21

6
−

0.
00

2
0.

06
0

0.
08

7
0.

50
6

0.
51

2
0.

36
4

0.
36

1
0.

37
4

0.
33

8
0.

47
9

0.
46

4
0.

98
4

1.
00

0

A
m

yg
da

la
 –

 L
−

0.
13

9
−

0.
08

0
0.

01
1

−
0.

05
3

0.
02

9
0.

58
2

0.
54

7
0.

51
1

0.
49

9
0.

42
5

0.
37

9
0.

57
2

0.
50

4
0.

79
5

0.
76

5
1.

00
0

A
m

yg
da

la
 –

 R
−

0.
08

8
−

0.
04

0
0.

05
5

0.
01

4
0.

11
8

0.
62

1
0.

57
5

0.
58

4
0.

57
7

0.
45

5
0.

41
1

0.
62

3
0.

54
9

0.
78

0
0.

75
3

0.
98

7
1.

00
0

A
cc

um
be

ns
 –

 L
0.

04
0

0.
06

1
0.

01
3

0.
05

4
0.

06
5

0.
41

9
0.

47
0

0.
52

2
0.

52
1

0.
48

2
0.

43
5

0.
54

3
0.

56
0

0.
62

9
0.

56
4

0.
43

0
0.

44
6

1.
00

0

A
cc

um
be

ns
 –

 R
0.

04
2

0.
15

6
0.

08
6

0.
10

1
0.

11
7

0.
12

4
0.

23
3

0.
30

0
0.

28
7

0.
36

7
0.

30
3

0.
19

1
0.

21
0

0.
38

2
0.

32
1

0.
32

5
0.

25
9

0.
49

2
1.

00
0

N
ot

e:
 I

nf
. =

 in
fe

ri
or

; L
at

. =
 la

te
ra

l; 
L

 =
 le

ft
; R

 =
 r

ig
ht

.

Hum Brain Mapp. Author manuscript; available in PMC 2012 July 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eyler et al. Page 21

TA
B

LE
 IV

M
od

el
 f

itt
in

g 
su

m
m

ar
y 

of
 f

ou
r-

fa
ct

or
 m

od
el

s

N
um

be
r 

of
 f

ac
to

rs

−2
L

L
A

IC
B

IC
Δ

−2
L

L
P

A
C

E

C
ho

le
sk

y
16

,5
27

.5
−

30
6.

5
−

15
,3

12
.8

4
4

6
16

,8
02

.5
−

52
5.

5
−

15
,8

67
.1

27
5.

0
0.

11

4
4

7
16

,7
67

.6
−

52
2.

5
−

15
,8

31
.4

24
0.

1
0.

28

4
5

6
16

,7
77

.2
−

51
2.

8
−

15
,8

26
.6

24
9.

7
0.

15

4
5

7
16

,7
41

.8
−

51
0.

2
−

15
,7

91
.0

21
4.

3
0.

39

N
ot

e:
 A

 =
 a

dd
iti

ve
 g

en
et

ic
; C

 =
 c

om
m

on
 e

nv
ir

on
m

en
ta

l; 
E

 =
 u

ni
qu

e 
en

vi
ro

nm
en

ta
l; 

−
2L

L
 =

 m
od

el
 f

it 
as

 m
ea

su
re

d 
by

 −
2 

lo
g 

lik
el

ih
oo

d;
 A

IC
 =

 A
ik

ak
e’

s 
In

fo
rm

at
io

n 
C

ri
te

ri
on

, B
IC

 =
 B

ay
es

ia
n 

in
fo

rm
at

io
n

cr
ite

ri
on

; Δ
−

2L
L

 =
 C

ha
ng

e 
in

 th
e 

–2
 lo

g 
lik

el
ih

oo
d 

co
m

pa
re

d 
to

 th
e 

fu
ll 

C
ho

le
sk

y.

Hum Brain Mapp. Author manuscript; available in PMC 2012 July 24.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Eyler et al. Page 22

TABLE V

Four-factor solution with promax rotation from PCA of genetic correlations among subcortical volumes

Subcortical region Basal Ganglia/Thalamic factor Ventricular factor Limbic factor Accumbens factor

Putamen – R 0.952 −0.134 −0.211 0.225

Putamen – L 0.911 −0.154 −0.168 0.327

Pallidum – L 0.911 −0.123 0.096 −0.084

Pallidum – R 0.806 0.040 0.115 −0.061

Thalamus – L 0.686 0.006 0.347 −0.364

Caudate – L 0.681 0.332 0.079 0.152

Caudate – R 0.652 0.341 0.082 0.169

Thalamus – R 0.621 0.015 0.367 −0.282

Inferior lateral ventricle – L −0.008 0.941 −0.123 −0.048

Inferior lateral ventricle – R −0.024 0.927 0.031 0.030

Lateral ventricle – R −0.029 0.918 −0.118 0.023

Lateral ventricle – L 0.034 0.873 0.001 −0.010

Third ventricle −0.032 0.806 0.116 0.013

Hippocampus – R −0.099 −0.040 0.958 0.177

Hippocampus – L −0.051 −0.047 0.933 0.237

Amygdala – L 0.075 −0.031 0.871 0.050

Amygdala – R 0.154 0.031 0.832 −0.007

Accumbens – R 0.013 0.039 0.205 0.786

Accumbens – L 0.316 −0.016 0.329 0.478

Note: Factor loadings greater than ± 0.40 are indicated in bold.
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TABLE VI

Four-factor solution with promax rotation from PCA of phenotypic correlations among subcortical volumes

Subcortical region Basal Ganglia/Thalamic factor Ventricular factor Limbic factor Accumbens factor

Putamen – R 0.840 −0.118 −0.108 0.150

Putamen – L 0.869 −0.100 −0.111 0.102

Pallidum – L 0.909 −0.042 −0.030 −0.153

Pallidum – R 0.758 0.039 0.040 −0.016

Thalamus – L 0.721 −0.041 0.284 −0.244

Caudate – L 0.566 0.344 0.067 0.251

Caudate – R 0.559 0.311 0.035 0.301

Thalamus – R 0.699 −0.045 0.274 −0.215

Inferior lateral ventricle – L −0.042 0.804 0.023 −0.052

Inferior lateral ventricle – R −0.070 0.806 0.061 −0.145

Lateral ventricle – R 0.047 0.857 −0.104 0.006

Lateral ventricle – L 0.053 0.875 −0.135 0.013

Third ventricle −0.078 0.769 0.155 0.009

Hippocampus – R −0.046 0.065 0.914 −0.007

Hippocampus – L 0.050 0.058 0.841 −0.013

Amygdala – L 0.095 −0.106 0.648 0.174

Amygdala – R 0.067 −0.046 0.679 0.210

Accumbens – R −0.167 0.006 0.080 0.807

Accumbens – L 0.114 −0.190 0.093 0.676

Note: Factor loadings greater than ± 0.40 are indicated in bold.
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