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Genetic Predisposition to Dyslipidemia and Type 2
Diabetes Risk in Two Prospective Cohorts
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Dyslipidemia has been associated with type 2 diabetes, but it
remains unclear whether dyslipidemia plays a causal role in type
2 diabetes. We aimed to examine the association between the
genetic predisposition to dyslipdemia and type 2 diabetes risk.
The current study included 2,447 patients with type 2 diabetes
and 3,052 control participants of European ancestry from the
Nurses’ Health Study and the Health Professionals Follow-up
Study. Genetic predisposition to dyslipidemia was estimated by
three genotype scores of lipids (LDL cholesterol, HDL choles-
terol, and triglycerides) on the basis of the established loci for
blood lipids. Linear relation analysis indicated that the HDL cho-
lesterol and triglyceride genotype scores, but not the LDL cho-
lesterol genotype score, were linearly related to elevated type 2
diabetes risk. Each point of the HDL cholesterol and triglyceride
genotype scores was associated with a 3% (odds ratio [OR] 1.03
[95% CI 1.01–1.04]) and a 2% (1.02 [1.00–1.04]) increased risk of
developing type 2 diabetes, respectively. The ORs were 1.39
(1.17–1.65) and 1.19 (1.01–1.41) for type 2 diabetes by comparing
extreme quartiles of the HDL cholesterol genotype score and tri-
glyceride genotype score, respectively. In conclusion, genetic pre-
disposition to low HDL cholesterol or high triglycerides is related
to elevated type 2 diabetes risk. Diabetes 61:745–752, 2012

D
yslipidemia has been associated with type 2
diabetes (1), and the most common patterns of
dyslipidemia in diabetic patients are reduced
HDL cholesterol and elevated triglyceride lev-

els. Prospective studies also have shown that low HDL
cholesterol and high triglyceride levels, but not LDL cho-
lesterol levels, are independent risk factors for type 2 dia-
betes (2–7), and the values of HDL cholesterol and/or
triglycerides have been used in the risk-scoring systems for
predicting incident diabetes (4,6,7). However, it remains
unclear whether low HDL cholesterol/high triglyceride lev-
els play a causal role in the development of type 2 diabetes.

Information on the associations of genetic predisposition
to dyslipidemia with risk of type 2 diabetes might help
clarify the causality. A recent study reported that a geno-
type score for triglyceride levels was not associated with
type 2 diabetes risk (8). However, the less extensive in-
clusion of the susceptibility loci (nine loci) might limit the

causal inference. Moreover, the study did not address
other patterns of dyslipidemia (high LDL cholesterol and
low HDL cholesterol levels).

Recently, a meta-analysis of 46 lipid genome-wide asso-
ciation studies comprising.100,000 individuals of European
ancestry has established more comprehensive genetic
profiles for various blood lipids, including LDL cholesterol,
HDL cholesterol, and triglycerides (9). In the current study,
we calculated three genotype scores on the basis of 31, 41,
and 25 well-established single nucleotide polymorphisms
(SNPs) for LDL cholesterol, HDL cholesterol, and triglyc-
erides, respectively, as proxies of genetic predisposition to
dyslipidemia. We examined the effects of these dyslipidemia
genotype scores on type 2 diabetes risk in women and men
of European ancestry from two prospective cohorts: the
Nurses’ Health Study (NHS) and Health Professionals
Follow-up Study (HPFS).

RESEARCH DESIGH AND METHODS

The NHS is a prospective cohort study of 121,700 female
registered nurses who were aged 30–55 years at study in-
ception in 1976 when all of them completed a mailed
questionnaire on their medical history and lifestyle (10). A
total of 32,826 women provided blood samples between
1989 and 1990. The HPFS is a prospective cohort study of
51,529 U.S. male health professionals who were aged
40–75 years at study inception in 1986 (11). Between 1993
and 1999, 18,159 men provided blood samples. In both
cohorts, information about health and disease has been
collected biennially by self-administered questionnaires ev-
ery 2 years since inception. The study was approved by the
human research committee at the Brigham and Women’s
Hospital (Boston, MA), and all participants provided written
informed consent.

Participants for the current study were selected among
those with a blood sample using a nested case-control
study design (12,13). Diabetes cases were defined as self-
reported diabetes confirmed by a validated supplementary
questionnaire (14,15). For cases before 1998, we used the
National Diabetes Data Group criteria to define diabetes
(16), which included one of the following: one or more
classic symptoms (excessive thirst, polyuria, weight loss,
hunger, pruritus, or coma) plus a fasting plasma glucose
level of $7.8 mmol/L (140 mg/dL), a random plasma glu-
cose level of $11.1 mmol/L (200 mg/dL), or a plasma glu-
cose level 2 h after an oral glucose tolerance test of $11.1
mmol/L (200 mg/dL); at least two elevated plasma glucose
levels (as described previously) on different occasions in
the absence of symptoms; or treatment with hypoglycemia
medication (insulin or oral hypoglycemic agent). We used
the American Diabetes Association diagnostic criteria for
diabetes diagnosis from 1998 onward (17). These criteria
were the same as those proposed by the National Diabetes
Data Group, except for the elevated fasting plasma glu-
cose criterion, for which the cut point was changed from
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7.8 mmol/L (140 mg/dL) to 7.0 mmol/L (126 mg/dL). Only
case subjects with diagnosed diabetes after the cohort
baseline were included. Control subjects were defined as
those free of diabetes at the time of the diagnosis of case
and remained unaffected through follow-up (2006). After
applying a quality-control filter in the NHS and HPFS T2D
GWA scans (13), duplicate samples, samples with mis-
identified sex, related samples (siblings or possible first
cousins), samples with evidence of contamination, samples
with highly variable intensity data, and samples with miss-
ing call rates $2% were excluded. Population structure was
investigated by principal component analysis (18). In this
analysis, participants clustered with the HapMap CEU
samples were genetically inferred to have European ances-
try. Finally, a total of 3,088 (1,334 case and 1,754 control
subjects) women and 2,411 (1,113 case and 1,298 control
subjects) men of genetically inferred European ancestry
were included in the current analysis.
Assessment of plasma lipids and covariates. Plasma
lipid levels were measured in 718 women and 753 men
with type 2 diabetes (after the onset of diabetes). LDL
cholesterol concentration was measured by a homogenous
direct method from Genzyme (Cambridge, MA), with coef-
ficients of variation of,3.1%. Concentrations of triglycerides
and HDL cholesterol were measured simultaneously on the
Hitachi 911 analyzer using reagents and calibrators from
Roche Diagnostics (Indianapolis, IN), with coefficients of
variation of ,1.8%.

Information about anthropometric data, lifestyle fac-
tors, menopausal status and postmenopausal hormone
therapy (women only), and medication use was derived
from the baseline questionnaires (10,11). BMI was cal-
culated as weight in kilograms divided by the square of
height in meters. For men, physical activity was ex-
pressed as metabolic equivalents per week by using the
reported time spent on various activities, weighting each
activity by its intensity level. For women, physical activity
was expressed as hours per week because metabolic
equivalent task hours were not measured at baseline in
the NHS. The validity of the self-reported body weight
and physical activity data have been described previously
(19–21).
Genotyping. SNPs genotyping and imputation have been
described in detail elsewhere (the NHS and HPFS T2D
GWA scans) (13). In brief, samples were genotyped and

analyzed using the Affymetrix Genome-Wide Human 6.0
array (Santa Clara, CA) and the Birdseed calling algo-
rithm. All samples used in the current study achieved
a call rate of .98%. Individual SNPs were excluded if
they were monomorphic, had a missing call rate of $2%,
had more than one discordance in the multiple geno-
typed samples (one HapMap control sample was geno-
typed 12 times), or had a Hardy-Weinberg equilibrium
P value of ,1 3 1024 or a minor allele frequency of ,0.02.
We used MACH (http://www.sph.umich.edu/csg/abecasis/
mach) to impute SNPs on chromosomes 1–22, with Na-
tional Center for Biotechnology Information build 36 of
phase II HapMap CEU data (release 22) as the reference
panel.
Genotype score calculation. To estimate the genetic
predisposition to dyslipidemia, three lipid (LDL choles-
terol, HDL cholesterol, and triglycerides) genotype scores
were calculated on the basis of the well-established SNPs
in 95 loci for blood lipids reported by a recent meta-analysis
of genome-wide association studies (9). Only SNPs with
genotyped data or high imputation quality scores (MACH
r2 $ 0.8) were included. To minimize the influence of
pleotropic effects, the SNPs or their correlated SNPs (r2 $
0.80), which have been reported to be associated with type
2 diabetes risk or fasting glucose at a genome-wide sig-
nificance level, including the SNPs in GCKR (22), FADS1
(22), IRS1 (23), and KLF14 (24) loci, were excluded,
leaving 31, 41, and 25 SNPs for LDL cholesterol, HDL
cholesterol, and triglycerides, respectively, in the current
analysis (Supplementary Table 1). We assumed that each
SNP in the panel acts independently in an additive manner,
and the genotype scores were calculated by using a
weighted method. Each SNP was weighted by its relative
effect size (b-coefficient) obtained from the reported meta-
analysis data (9). The genotype scores were calculated by
multiplying each b-coefficient by the number of corre-
sponding risk alleles and then summing the products. Be-
cause this produced an LDL cholesterol genotype score
out of 115.88 (twice the sum of the b-coefficients), an HDL
cholesterol genotype score out of 59.46 (twice the sum of
the b-coefficients), and a triglyceride genotype score out
of 247.36 (twice the sum of the b-coefficients), the values
were divided by 115.88, 59.46, and 247.36 and multiplied by
62, 82, and 50 (the total number of the risk alleles), re-
spectively, to make the genotype scores easier to interpret.

TABLE 1
Characteristics of the participants at baseline

Women

P

Men

PCase subjects Control subjects Case subjects Control subjects

n 1,334 1,754 1,113 1,298
Age (years) 43.4 (6.7) 43.2 (6.7) 0.44 55.5 (8.5) 55.5 (8.4) 0.83
BMI (kg/m2) 27.3 (4.9) 23.9 (3.0) ,0.001 27.8 (4.0) 25.0 (2.7) ,0.001
Current smokers (%) 30.1 20.9 ,0.001 12.0 7.6 ,0.001
Alcohol intake (g/day) 4.5 (9.3) 6.6 (10.0) ,0.001 11.2 (16.2) 12.1 (15.3) 0.19
Physical activity (h/week) 3.7 (2.8) 4.1 (2.9) ,0.001 — — —

Physical activity (MET h/week) — — — 14.6 (19.0) 21.1 (25.2) ,0.001
Postmenopausal (%) 34.6 30.6 0.02 — — —

Postmenopausal hormone use (%) 30.7 28.9 0.52 — — —

LDL cholesterol genotype score 30.5 (3.7) 30.4 (3.7) 0.21 30.6 (3.7) 30.5 (3.6) 0.85
HDL cholesterol genotype score 37.5 (3.8) 37.1 (3.8) 0.002 37.5 (3.6) 37.3 (3.7) 0.21
Triglyceride genotype score 24.2 (2.9) 24.0 (2.9) 0.05 24.2 (2.9) 24.1 (3.0) 0.37

Data are means (SD) or percent, unless otherwise indicated.
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In sensitivity analysis, four SNPs in ANGPTL3, PPP1R3B,
TRIB1, and APOA1–C3–A4–A5 loci for LDL cholesterol;
five SNPs in APOB, MLXIPL, TRIB, APOA1–C3–A4–A5,
and LRP1 loci for HDL cholesterol; and four SNPs in
GALNT2, ZNF664, LIPC, and PLTP loci for triglycerides
were further excluded from the calculation of the respective

genotype scores, because these SNPs had the largest
effects on other two blood lipid traits (9).
Statistical analysis. x2 Tests and t tests were used for
comparison of proportions and means between case
patients and control participants. General linear regression
models were applied to test the association between the

FIG. 1. Lipid genotype scores and plasma lipids in diabetic women and men. A: LDL cholesterol (LDL-C). B: HDL cholesterol (HDL-C). C: Tri-
glycerides. The histograms represent the percentage of participants, and the means 6 SE of LDL cholesterol, HDL cholesterol, and triglycerides
are plotted, with the trend lines across the respective genotype score, adjusted for age and BMI.
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plasma lipid levels and the respective genotypes scores in
673 women and 633 men with type 2 diabetes who were
not taking lipid-lowering drugs. We used logistic regres-
sion to estimate odd ratios (ORs) for type 2 diabetes risk,
adjusting for age and BMI. To examine the accumulative
effects of the genotype scores, we compared the type 2
diabetes risk across the quartiles of the genotype scores. In
multivariate analysis, we further adjusted for smoking
(never, past, or current), alcohol intake (0, 0.1–4.9, 5.0–9.9,
10.0–14.9, or $15.0 g/day), menopausal status (pre- or
postmenopausal [never, past, or current hormone use],
women only), and physical activity (quintiles). Results in
women and men were pooled by using inverse variance
weights under a fixed model because there was no het-
erogeneity. Liner relation analysis between the genotype
scores (as continuous variables) and risk of type 2 di-
abetes was performed by using a restricted cubic spline
regression model (25). All reported P values are nominal
and two sided. Statistical analyses were performed in SAS
version 9.1 (SAS Institute, Cary, NC).

RESULTS

Characteristics of study participants. Table 1 shows
the baseline characteristics of participants of two nested
case-control studies from the NHS (women) and HPFS
(men). The patients were incident cases diagnosed during
the follow-up through 2006 in these cohorts. Patients with
type 2 diabetes had a significantly higher BMI, engaged in
less physical activity, and were more likely to smoke and
have a family history of diabetes than control subjects,
among both women and men. In addition, among women,
diabetic patients consumed less alcohol and were more
likely to be postmenopausal than control subjects. In ad-
dition, the genotype scores were not associated with age,
BMI, or lifestyle factors including smoking, alcohol intake,
and physical activity (all P . 0.05).
Lipid genotype scores and plasma lipid levels. Figure 1
presents the relationship between the three lipid genotype
scores and the respective plasma lipid levels among dia-
betic women and men. The three genotype scores were all

normally distributed among women and men. As expected,
higher genotype scores were associated with higher plasma
LDL cholesterol and triglyceride levels but lower HDL cho-
lesterol levels, respectively, among both women and men
(all P , 0.0001).
LDL cholesterol genotype score and type 2 diabetes.
In women, the OR for type 2 diabetes was 1.01 (95% CI 0.98–
1.03) with each point (corresponding to one unfavorable
allele) of the LDL cholesterol genotype score, after adjust-
ment for age and BMI (Table 2). In men, the corresponding
OR for type 2 diabetes was 1.00 (0.98–1.03). Pooled results
between women and men showed that the LDL cholesterol
genotype score was not associated with type 2 diabetes
(P for trend = 0.24). Linear relation analysis also indicated
that there was no significant linear relationship between the
LDL cholesterol genotype score and risk of type 2 diabetes
(Fig. 2A). In sensitivity analysis, we excluded four SNPs
(ANGPTL rs3850634, PPP1R3B rs2126259, TRIB1 rs2954022,
and APOA1–C3–A4–A5 rs964184) that had the largest ef-
fects on HDL cholesterol or triglyceride levels from the
calculation of the LDL cholesterol genotype score, and we
observed similar results (pooled OR 1.00 [0.99–1.02] with
each point of the genotype score; P = 0.51).
HDL cholesterol genotype score and type 2 diabetes.
As shown in Table 3, the HDL cholesterol genotype score
was significantly associated with an increased type 2 dia-
betes risk in women (OR 1.03 [95% CI 1.01–1.05] with each
point of the genotype score). We observed a similar result
in men (1.02 [0.99–1.04]), and the pooled OR for type 2
diabetes between women and men was 1.02 (1.01–1.04)
with each point of the HDL cholesterol genotype score,
adjusted for age and BMI. The ORs for type 2 diabetes
increased across the quartiles of the HDL cholesterol ge-
notype score (P for trend = 0.002). Compared with those in
the lowest quartile of the HDL cholesterol genotype score,
participants in the highest quartile had an OR of 1.37 (1.16–
1.61). Multivariate adjustment did not change the associa-
tions. In addition, there was a linear relationship between
the HDL cholesterol genotype score and increased risk of
type 2 diabetes (Fig. 2B). In sensitivity analysis, we excluded
five SNPs (APOB rs1042034, MLXIPL rs17145738, TRIB1

TABLE 2
Association between the LDL cholesterol genotype score and risk for type 2 diabetes

Continuous

Quartile

P for trend1 2 3 4

Women
n (case/control subjects) 302/436 348/437 314/436 354/437
Median (range) 26.1 (16.6–27.9) 29.2 (28.0–30.5) 31.6 (30.6–32.9) 34.6 (33.0–43.2)
OR (95% CI)
Age and BMI adjusted 1.01 (0.98–1.03) 1.00 1.20 (0.95–1.49) 1.05 (0.84–1.32) 1.13 (0.91–1.42) 0.46
Multivariate adjusted* 1.01 (0.98–1.03) 1.00 1.17 (0.93–1.47) 1.08 (0.86–1.36) 1.15 (0.92–1.45) 0.33

Men
n (case/control subjects) 275/323 247/323 292/323 292/323
Median (range) 26.2 (19.1–27.9) 29.2 (28.0–30.4) 31.7 (30.5–33.0) 34.6 (33.1–43.6)
OR (95% CI)
Age and BMI adjusted 1.00 (0.98–1.03) 1.00 0.92 (0.72–1.19) 1.03 (0.81–1.32) 1.10 (0.86–1.40) 0.35
Multivariate adjusted* 1.01 (0.98–1.03) 1.00 0.92 (0.71–1.18) 1.02 (0.80–1.31) 1.09 (0.85–1.40) 0.36

Pooled OR (95% CI)†
Age and BMI adjusted 1.01 (0.99–1.02) 1.00 1.07 (0.90–1.26) 1.04 (0.88–1.23) 1.12 (0.95–1.32) 0.24
Multivariate adjusted* 1.01 (0.99–1.02) 1.00 1.05 (0.88–1.24) 1.05 (0.89–1.25) 1.13 (0.95–1.33) 0.18

*Adjusted for age, BMI, smoking, alcohol intake, physical activity, and menopausal status (women only). †Results were pooled between
women and men using inverse variance weights under a fixed model, because there was no heterogeneity between women and men (all P for
heterogeneity .0.13).
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rs10808546, APOA1–C3–A4–A5 rs964184, and LRP1
rs11613352) that had the largest effects on LDL cholesterol
or triglyceride levels from the calculation of the HDL cho-
lesterol genotype score, and we observed similar results
(pooled OR 1.02 [1.01–1.04] with each point of the genotype
score; P = 0.01).
Triglyceride genotype score and type 2 diabetes. The
ORs for type 2 diabetes were both 1.02 (95% CI 0.99–1.05)
with each point of the triglyceride genotype score in
women and men, and the pooled OR was 1.02 (1.00–1.04),
after adjustment for age and BMI (Table 4). The ORs for
type 2 diabetes increased across the quartiles of the tri-
glyceride genotype score (P = 0.007 for trend). Participants
in the highest quartile of the triglyceride genotype score
had an OR of 1.19 (1.00–1.40) compared with those in the
lowest quartile. Multivariate adjustment did not change
the associations. Linear relation analysis also indicated that
the triglyceride genotype score showed a linear relationship
with increasing type 2 diabetes risk (Fig. 2C). In sensitivity
analysis, we excluded four SNPs (GALNT2 rs1321257,
ZNF664 rs12310367, LIPC rs261342, and PLTP rs4810479)
that had the largest effects on LDL or HDL cholesterol
levels from the calculation of the triglyceride genotype
score, and we observed similar results (pooled OR 1.03
[1.01–1.05] with each point of the genotype score;
P = 0.015).

DISCUSSION

In two well-established prospective, nested case-control
studies of U.S. women and men, we found that the genetic
predisposition to dyslipidemia of low HDL cholesterol or
high triglyceride levels significantly increases type 2 di-
abetes risk. In consideration of the fact that the individual
SNPs may have quite moderate effects on type 2 diabetes
risk, we examined the collective contribution of the mul-
tiple genetic variants by computing three lipid genotype
scores, which emphasized the overall genetic susceptibility
to dyslipidemia of high LDL cholesterol, low HDL choles-
terol, or high triglycerides. As greater genetic variation
was explained by multiple variants, the genetic predis-
position might be estimated more accurately by using this
approach. Each additional risk allele in the genotype
scores of HDL cholesterol or triglycerides only was asso-
ciated with an ~2–3% increased risk for type 2 diabetes. By
accumulation, participants with an HDL cholesterol ge-
notype score in the highest quartile had an ~40% greater
risk of developing type 2 diabetes than those in the lowest
quartile.

Consistent with the previously reported additive effects
of multiple genetic variants on plasma lipid levels (9), we
confirmed that the genotype scores summarizing the num-
ber of LDL cholesterol– or triglyceride-raising alleles or
HDL cholesterol–lowering alleles were associated with
higher LDL cholesterol and triglyceride levels and lower
HDL cholesterol levels, respectively, in diabetic men and
women. Our data indicated that the genotype scores for
low HDL cholesterol or high triglycerides were associated
with elevated type 2 diabetes risk, whereas the LDL cho-
lesterol genotype score was not related to diabetes risk.
These findings are largely in line with previous observa-
tions from the prospective studies showing that low HDL
cholesterol and high triglyceride levels, but not high LDL
cholesterol levels, significantly predicted the risk of type 2
diabetes (2–7). Because genetic variants are randomly
assigned and generally uncorrelated with environmental

FIG. 2. Spline plot of lipid genotype scores and risk for type 2 diabetes.
A: LDL cholesterol (LDL-C) genotype score. B: HDL cholesterol (HDL-C)
genotype score. C: Triglyceride genotype score. Data are ORs (solid
lines) and 95% CIs (dashed lines), adjusted for age, sex, and BMI, for
pooled data from women and men.

Q. QI AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 61, MARCH 2012 749



factors, the observed genetic associations should be
unaffected by confounding factors and also free of the
inverse effect of type 2 diabetes. Thus, our results sup-
port potentially causal roles of HDL cholesterol and
triglycerides in type 2 diabetes. However, we could not
exclude the possibility that the genotype scores might
be related to other unknown variables in the causal
pathway. Our data are different from a previous study
that did not find the significant association between
a triglyceride genotype score and type 2 diabetes risk
(8). Of note, the previous study included fewer loci
(which only accounted for 3–5% of the variation in cir-
culation triglycerides [8]) than our study. The current
triglyceride genotype score included more loci, which
jointly explained ~10% of the variation of plasma tri-
glycerides (9).

There are several lines of evidence supporting the prob-
ably causal relationship between low HDL cholesterol/high
triglyceride levels and type 2 diabetes risk. Recent data
indicated that HDL may influence b-cell function by its abil-
ities of cholesterol efflux, antioxidation, anti-inflammation,
and antiapoptosis (26), and accumulation of triglycerides
ectopically in other tissues than adipose may impair in-
sulin signaling as well as insulin secretion (27). Findings
from previous prospective studies in large populations
from different ethnical groups have shown that plasma
HDL cholesterol and triglyceride levels are independent
predictors of future type 2 diabetes (2–7). For instance,
a previous study comprising .14,000 participants found
that the risk of new-onset diabetes decreased by 28% and
increased by 12% per mmol/L increase in baseline HDL
cholesterol and triglyceride levels, respectively (5). The

TABLE 3
Association between the HDL cholesterol genotype score and risk for type 2 diabetes

Continuous

Quartile

P for trend1 2 3 4

Women
n (case/control subjects) 287/434 321/439 304/436 405/435
Median (range) 32.9 (25.1–34.5) 35.9 (34.6–37.1) 38.3 (37.2–39.5) 41.5 (39.6–56.3)
OR (95% CI)
Age and BMI adjusted 1.03 (1.01–1.05) 1.00 1.17 (0.93–1.47) 1.16 (0.92–1.46) 1.40 (1.12–1.75) 0.004
Multivariate adjusted* 1.03 (1.01–1.05) 1.00 1.18 (0.93–1.48) 1.16 (0.92–1.47) 1.39 (1.11–1.75) 0.006

Men
n (case/control subjects) 232/324 319/323 264/320 291/324
Median (range) 33.1 (24.4–34.7) 36.1 (34.7–37.4) 38.5 (37.5–39.8) 41.5 (39.9–51.9)
OR (95% CI)
Age and BMI adjusted 1.02 (0.99–1.04) 1.00 1.40 (1.09–1.79) 1.11 (0.86–1.43) 1.32 (1.03–1.70) 0.14
Multivariate adjusted* 1.02 (1.00–1.05) 1.00 1.42 (1.10–1.82) 1.12 (0.87–1.46) 1.39 (1.07–1.79) 0.07

Pooled OR (95% CI)†
Age and BMI adjusted 1.02 (1.01–1.04) 1.00 1.27 (1.07–1.50) 1.14 (0.96–1.35) 1.37 (1.16–1.61) 0.002
Multivariate adjusted* 1.03 (1.01–1.04) 1.00 1.28 (1.08–1.52) 1.15 (0.96–1.35) 1.39 (1.17–1.65) 0.001

*Adjusted for age, BMI, smoking, alcohol intake, physical activity, and menopausal status (women only). †Results were pooled between
women and men using inverse variance weights under a fixed model, because there was no heterogeneity between women and men (all P for
heterogeneity .0.30).

TABLE 4
Association between the triglyceride genotype score and risk for type 2 diabetes

Continuous

Quartile

P for trend1 2 3 4

Women
n (case/control subjects) 308/436 302/437 337/436 371/437
Median (range)
OR (95% CI) 20.7 (13.2–22.1) 23.1 (22.2–24.0) 24.8 (24.1–25.8) 27.3 (25.9–35.3)
Age and BMI adjusted 1.02 (0.99–1.05) 1.00 1.01 (0.81–1.27) 1.09 (0.87–1.36) 1.22 (0.97–1.52) 0.06
Multivariate adjusted* 1.02 (0.99–1.05) 1.00 1.00 (0.79–1.26) 1.07 (0.85–1.34) 1.20 (0.96–1.50) 0.09

Men
n (case/control subjects) 264/323 239/322 331/324 274/322
Median (range) 20.9 (13.1–22.2) 23.1 (22.3–23.9) 24.9 (24.0–26.1) 27.6 (26.2–35.5)
OR (95% CI)
Age and BMI adjusted 1.02 (0.99–1.05) 1.00 0.92 (0.71–1.18) 1.30 (1.02–1.65) 1.15 (0.90–1.48) 0.05
Multivariate adjusted* 1.03 (1.00–1.06) 1.00 0.92 (0.71–1.19) 1.28 (1.01–1.64) 1.18 (0.92–1.52) 0.04

Pooled OR (95% CI)†
Age and BMI adjusted 1.02 (1.00–1.04) 1.00 0.97 (0.82–1.15) 1.18 (1.00–1.39) 1.19 (1.00–1.40) 0.007
Multivariate adjusted* 1.02 (1.00–1.04) 1.00 0.96 (0.81–1.14) 1.17 (0.99–1.38) 1.19 (1.01–1.41) 0.008

*Adjusted for age, BMI, smoking, alcohol intake, physical activity, and menopausal status (women only). †Results were pooled between
women and men using inverse variance weights under a fixed model, because there was no heterogeneity between women and men (all P for
heterogeneity .0.30).
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observed associations between the genetic predisposition
to low HDL cholesterol or high triglycerides and elevated
type 2 diabetes risk in the current study provide further
evidence for the true association, because they are unlikely
to be the results of confounding factors. Moreover, impor-
tantly, data from some clinical trials have shown that
bezafibrate, a drug used to treat dyslipidemia by raising HDL
and lowering triglycerides, could improve insulin resistance
(28) and lower the hazard for incident diabetes (29,30).
Taken together, these findings support that contention that
dyslipidemia of low HDL cholesterol/high triglycerides plays
a causal role in the development of type 2 diabetes, which
suggests the potential importance of therapeutic implica-
tions of dyslipidemia, either pharmacologically or through
lifestyle intervention, in preventing type 2 diabetes.

The major strengths of our study include the prospective
study design, high-quality genotype data, and minimal pop-
ulation stratification (13). We acknowledge that plasma
lipids were not measured in control participants. Although
our lipid genotype scores captured the combined infor-
mation from most of the established genetic variants for
blood lipids, these variants only explained ~10% variation
of each lipid trait (9). This may explain the observed
moderate effect of the lipid genotype scores on type 2 di-
abetes risk. There were several overlapped SNPs included
in these three lipid genotype score, because these SNPs
have been associated with more than one lipid trait (9).
However, in our sensitivity analyses, when the SNPs that
had the largest effects on other two lipid traits were ex-
cluded from the calculation of the genotype score, we
observed similar results. In addition, our study is restricted
to white subjects, and whether the genotype scores of HDL
cholesterol and triglycerides are significantly associated
with type 2 diabetes in other ethnic groups remains to be
investigated.

In conclusion, we found that the genetic predisposition
to low HDL cholesterol or high triglycerides, estimated by
the lipid genotype scores, were associated with an in-
creased risk of type 2 diabetes among women and men
from two prospective cohorts. Our findings support a po-
tentially causal relationship between low HDL cholesterol
or high triglyceride levels and type 2 diabetes.
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