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Abstract 

Mosaic loss of chromosome Y (LOY) in circulating white blood cells is the most common form of 

clonal mosaicism, yet our knowledge of the causes and consequences of this is limited. Using a 

newly developed approach, we estimate that 20% of the UK Biobank male population (N=205,011) 

has detectable LOY. We identify 156 autosomal genetic determinants of LOY, which we replicate in 

757,114 men of European and Japanese ancestry. These loci highlight genes involved in cell-cycle 

regulation, cancer susceptibility, somatic drivers of tumour growth and cancer therapy targets. We 

demonstrate that genetic susceptibility to LOY is associated with non-haematological health 

outcomes in both men and women, supporting the hypothesis that clonal haematopoiesis is a 

biomarker of genome instability in other tissues. Single-cell RNA sequencing identifies dysregulated 

autosomal gene expression in leukocytes with LOY, providing insights into why clonal expansion of 

these cells may occur. Collectively, these data highlight the utility of studying clonal mosaicism to 

uncover fundamental mechanisms underlying cancer and other ageing-related diseases. 
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Introduction 

Each day the human body produces billions of highly specialised blood cells, generated from a self-

renewing pool of 50,000-200,000 haematopoietic stem cells (HSCs)
1
. As these cells age and divide, 

mutation and mitotic errors create genetic diversity within the HSC pool and their progenitors. If a 

genetic alteration confers a selective growth advantage to one cell over the others, clonal expansion 

may occur. This process propels the lineage to a disproportionately high frequency, creating a 

genetically distinct sub-population of cells. In the literature this is commonly referred to as clonal 

haematopoiesis, or more broadly (not restricting to considering leukocytes), clonal mosaicism
2
  or 

aberrant clonal expansion
3
.  

Population-based studies assessing the magnitude and effect of clonal mosaicism have been largely 

limited by the challenges of accurately detecting the expected low cell-fraction mosaic events in 

leukocytes using genotype-array or sequence read data
4
. Recent advances in statistical methodology 

have improved sensitivity, with approaches now able to catalogue mosaic events at higher 

resolution across the genome
5,6

. Detection of large structural mosaic events can vary considerably in 

size – from 50kb to entire chromosomes in length – and are typically present in only a small fraction 

of circulating leukocytes (<5%). It is well established that loss of the sex chromosomes – particularly 

the Y chromosome (LOY) in men – is by far the most frequently observed somatic change in 

leukocytes
7–9

. It remains unclear if and why absence of a Y chromosome provides a selective growth 

advantage in these cells – we hypothesise this could be due to (amongst other unknown 

mechanisms) the loss of a putative Y-linked cell-growth suppressor gene, loss of a Y-linked 

transcription factor influencing expression of cell-growth related autosomal genes or the reduced 

energy cost of cellular divisions. However, it is also possible an age-related increase of LOY could 

occur without direct functional involvement of the Y chromosome. 

Our understanding of why some individuals, but not others, exhibit clonal mosaicism in blood is also 

limited. Previous studies have demonstrated robust associations with age, sex (clonal mosaicism is 

more frequent in males), smoking and inherited germline genetic predisposition
2,4,10–15

. Recent 

epidemiological studies have challenged the view that LOY in the hematopoietic system is a 

phenotypically neutral event, with epidemiological associations observed with various forms of 

cancer
13,16–20

, autoimmune conditions
21,22

, age-related macular degeneration
23

, cardiovascular 

disease
24, Alzheimer’s disease25

, type 2 diabetes
15

, obesity
15

, and all-cause mortality
15,16

. The extent 

to which such observations represent a causal association, reverse causality or confounding is 

unclear. Furthermore, if these do represent causal effects, the mechanisms underlying such effects 

are unknown.  

Key questions are whether loss of a Y chromosome from circulating leukocytes has a direct 

functional effect (for example, impairs immune function) and whether LOY in leukocytes is a 

barometer of broader genomic instability in leukocytes and other cell types. Understanding the 

mechanisms that drive clonal mosaicism and identifying genes which promote proliferative 

advantage to cells may help answer these questions and provide important insights into mechanisms 

of diseases of ageing. To this end we sought to identify novel susceptibility loci for LOY, an attractive 

form of clonal mosaicism to study given its relative ease of detection and high prevalence in the 

male population. Previous genome-wide association studies (GWAS) for LOY identified 19 common 

susceptibility loci and highlighted its relevance as a biomarker of cell cycle efficiency and DNA 
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damage response (DDR) in leukocytes
13,14

.  Here, we adapt a recently described computational 

approach
6
 to detect LOY in over 200,000 men from the UK Biobank study. We identify 137 novel loci 

which we use, along with the known 19 loci
14

, to demonstrate a shared genetic architecture 

between LOY, non-haematological cancer susceptibility and reproductive ageing in women. These 

data, in aggregate, support the hypothesis that LOY in leukocytes is a biomarker of genomic 

instability in other cell types with functional consequences across diverse biological systems. 

Results 

Previous studies assessing LOY have used a quantitative measure derived from the average intensity 

log-R ratio (termed mLRR-Y) of all array-genotyped Y chromosome single-nucleotide polymorphisms 

(SNPs). Here, we adapted a recently developed long-range phasing approach for mosaic event 

detection
6
 to estimate a dichotomous classification, which uses allele-specific genotyping intensities 

in the pseudo-autosomal region (we term this PAR-LOY, see Methods). This was applied to 205,011 

men from UKBB (aged 40-70) in whom we identified 41,791 (20%) with detectable LOY. Men 

classified as LOY had an mLRR-Y score (derived using variants outside of the PAR) 0.9 standard 

deviations lower on average (95% CI 0-88-0.9) than non-LOY males (mean mLRR-Y -0.046 vs 0.009), 

reflecting the expected lower level of intensity due to reduced Y chromosome genetic material. 

Consistent with previous observations of clonal mosaicism, current smokers were at a higher risk of 

LOY (odds ratio (OR) 1.62 [95% CI 1.57-1.66]) and there was a strong association with age; the 

prevalence increased from 2.5% at age 40 to 43.6% at age 70 (Figure 1).  

The genetic architecture of mosaic Y chromosome loss 

We estimated a heritability of 31.7% (95CI 29.9 to 33.6%) for LOY, distributed across all individual 

chromosomes in proportion to their relative sizes (Figure S1). To identify individual genetic variants 

underlying this heritability we performed a GWAS for LOY, identifying 18,146 variants with genome-

wide significant associations (P<5x10
-8

). We resolved these into 156 statistically independent signals 

(Table S1), which included all 19 loci previously reported
14

. Effect sizes for these 156 associations 

ranged from OR 1.03-2.02, with LOY risk allele frequencies between 0.25% and 99.8% (Figure 2). An 

analysis excluding men with any past or current cancer diagnosis demonstrated no change in beta 

estimates across the 156 loci (Figure S2) and a drop in mean χ2 
proportionate to the

 
drop in sample 

size. Despite the strong correlation between smoking behaviour and LOY, we found no evidence for 

a modifying effect of smoking across the 156 loci combined (Pinteraction > 0.05).  

We directly compared the power of our PAR-LOY calls to the previously used mLRR-Y derived 

measures by performing an mLRR-Y based GWAS in the same current study samples (Table S1). 

Across the 156 loci we observed an average ~2.5x increase in χ2
 association statistic, exemplified by 

the strongest associated variant (rs17758695-BCL2) increasing in significance from PmLRRy=7.5x10
-65

 

to PPAR-LOY=4.1x10
-147

. Only 61 of the 156 loci would have reached genome-wide significance in an 

mLRR-Y based analysis. Across the genome the lambda GC (ratio of expected to observed median 

test statistic) increased from 1.15 to 1.20 (mean χ2 
from 1.28 to 1.47), with no evidence of signal 

inflation due to population structure (LD score regression intercept 1.01). Simulation analyses 

demonstrated that the power of PAR-LOY over mLRR-Y depends on both the sample size and ratio of 

PAR1 / non-PAR SNPs (Methods and Figure S3). 
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To confirm the validity of our identified signals we sought replication in three independent datasets. 

Firstly, we used data generated using 653,019 male research participants from the personal genetics 

company 23andMe, Inc. (Table S1). These samples differed from the discovery samples both in 

terms of DNA source (saliva rather than peripheral blood) and LOY measurement type (quantitative 

mLRR-Y rather than dichotomous PAR-LOY calls). Despite this heterogeneity, all but one of the 154 

loci (2 failed QC) had directionally concordant effects (binomial sign test P=1.4x10
-44

), with 126 

exhibiting nominally significant association (P<0.05) and 88 at a more conservative threshold 

(P<0.05/156). Secondly, we sought further confirmation from the Icelandic deCODE study (N=8,715) 

where LOY was estimated using sequence reads from whole genome sequencing (DNA extracted 

from blood), rather than array data. These data demonstrated an overall directional consistency of 

94% across the associated loci (140/149 variants tested, binomial sign test P=2.3x10
-31

) and 74 

nominal associations (Table S1). Third, we replicated our loci in a set of 95,380 Japanese ancestry 

men from the BBJ project, with LOY estimated using mLRR-Y in whole blood. Of the 100/156 variants 

which passed QC and were polymorphic in East Asians, 92 had a consistent direction of effect 

(binomial P=3.2x10
-19

). Of these, 29 reached genome-wide significance in these data alone and 73 

had at least nominal association (Table S1). 

Finally, a negative control analysis using mLRR-Y estimated in 245,349 UKBB women (Table S1) –
reflecting experimental noise in intensity variation – did not produce any significant associations 

after Bonferroni correction across the 156 loci (Pmax=4.3x10
-3

). In aggregate, these data strongly 

suggest that our discovery analysis identifies genetic determinants of LOY that are robust to 

ancestry, measurement technique and DNA source. 

Implicated genes, cell types and biological pathways 

We used various approaches to move from genomic association to identifying potentially causal 

variants, functional genes, cell types and biological pathways associated with LOY (see Methods). 

First, we performed Bayesian fine-mapping (see Methods) to quantify the probability that any single 

variant at a locus was causal for LOY by disentangling the effects of linkage disequilibrium (LD) 

(Figure 3, Table S2-S3). Fine-mapping identified at least one variant with reasonable confidence 

(posterior probability [PP] > 10%) in 80% (101/126) of regions, including at least one very high 

confidence variant (PP > 75%) in 25% (31/126) of regions (Figure 3A). These variants were enriched 

in exons of protein coding genes, their promoters, their transcribed but untranslated regions, and in 

hematopoietic regulatory regions marked by accessible chromatin (Figure 3B, Table S4). 

Using both fine-mapped variants and genome-wide polygenic signal (see Methods), we found that 

hematopoietic stem and progenitor cells (HSPCs) were the most strongly enriched cell-types for LOY 

associated variants (Figure 3C, Figure S4, Table S5, Table S6). Amongst the fine-mapped variants, we 

further subdivided this enrichment into 3 distinct temporal modes indicative of increasing regulatory 

capacity across haematopoiesis (Figure 3D). These observations suggest that many of our identified 

variants exert their effects directly in hematopoietic stem cells, rather than further differentiated 

white blood cell types. This is in stark contrast to variants associated with the production of terminal 

blood cell types, which are enriched at terminal blood progenitors and depleted in HSPCs
26

. 

We next used two approaches (see methods) to map associated genetic variants to genes via 

expression effects (eQTLs) in whole blood, implicating a total of 110 unique transcripts (Table S8-

S10). This included the HLA-A gene, where our lead variant in this region (6:29835518_T_A) tagged 
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the HLA-A*02:01 allele (Table S11). We also identified genes harbouring a non-synonymous variant 

either fine-mapped (PP > 10%) or in high LD (r
2
 > 0.8) with an index variant, highlighting 22 genes 

(Table S8).  

Biological pathway analysis using two approaches (see methods) identified a number of associated 

pathways, the majority of which converged on aspects of cell cycle regulation and DNA damage 

response (Table S12 and S13). 

Overlap between LOY associated variants and cancer susceptibility loci 

While detectable clonal mosaicism is clearly associated with future risk of haematological cancers
6
, 

its relationship with other cancers is less clear. Using data curated by the Open Targets platform and 

gene set enrichment analysis (see Methods), we found that LOY-associated variants were 

preferentially found near genes involved in cancer susceptibility (P=9.9x10
-7

), somatic drivers of 

tumour growth (P=7x10
-4

) and targets of approved or in trial cancer therapies (P=0.05). In total, 18 of 

the 156 mosaic leukocyte LOY associated variants were correlated (r
2
>0.1) with known susceptibility 

variants for one or more type of non-haematological cancer (Table S14), including breast, prostate, 

testicular, kidney, melanoma and brain. Notable examples include a loss-of-function variant in 

CHEK2 (rs186430430 r
2
~1 with frameshift variant 1100delC) which confers a ~2.3 fold high risk of 

breast cancer
27

, and an intronic signal (rs56345976) in the telomerase reverse transcriptase (TERT) 

gene which is in modest LD (r
2
~0.12) with variants associated with longer telomeres and with 

increased risks of breast, ovarian, prostate cancers and glioblastoma, but also seen to be protective 

in other cancers
28

.  

 

To systematically assess the relationship between LOY susceptibility and cancer risk, we tested a 

genetic risk score (using a summary statistic Mendelian Randomization style framework, see 

methods) comprised of our 156 variants on two male-specific cancers (Figure 4, Table S15). 

Genetically-predicted LOY was associated with both increased risk of prostate cancer (OR=1.68 95% 

CI 1.33-2.11, P=1.9x10
-5

) and testicular germ cell tumour (OR 2.97 (1.45-6.07) P=0.003). Additional 

publicly available GWAS data for cancers in both sexes showed (Figure 4, Table S15) directionally 

consistent associations for glioma (OR 2.36 (1.34-4.17) P=0.004), renal cell carcinoma (OR 2.00 (1.24-

3.21) P=0.005), lung cancer (OR 1.28 (0.98-1.68), P=0.07), colorectal cancer (OR 1.18 (0.93-1.50), 

P=0.16) and chronic lymphocytic leukaemia (OR 1.27 (0.75-2.16) P=0.37). 

 

Genetic predisposition to LOY is associated with health outcomes in women 

Mosaic LOY in blood cells has been associated with a broad range of diseases, which if causal is likely 

explained by one (or both) of two mechanisms: either LOY in leukocytes has a direct physiological 

effect, for example through impaired immune function, and/or it acts as a barometer and readily 

detectable manifestation of genomic instability occurring in parallel in other tissues. Ideally, this 

question would be addressed by assessing clonal mosaicism in large population studies where DNA 

was extracted from a broad range of cell and tissue types. In the absence of such a study, we 

hypothesised that testing the relevance of our identified LOY associated variants in women would 

help inform this – any association between the two could not be explained by a direct effect of LOY, 

given that females are XX. 
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To assess this we tested a polygenic risk score comprised of our 156 lead variants for association 

with three female-specific cancers – breast, endometrial and ovarian (Figure 4, Table S15). We 

observed a significant association with breast cancer (OR 1.25 (1.04-1.49) P=0.016) and directionally 

consistent results in the smaller endometrial (OR 1.18 (0.94-1.48), P=0.14) and ovarian (OR 1.02 

(0.81-1.30), P=0.86) studies. 

We next tested the same score on a female-specific non-cancer trait also underpinned by genome 

instability – age at natural menopause. Previous human and animal studies have shown menopause 

age is substantially biologically determined by the ability of oocytes to detect, repair and respond to 

DNA damage
29,30

. We found that genetically increased risk of LOY was associated with later age at 

menopause (P=0.003, Table S16), with the CHEK2 locus individually reaching genome-wide 

significance (P=7.9x10
-22

). A repeated genetic risk score analysis excluding CHEK2 retained 

significance (P=0.017). 

Given this observation that genetic susceptibility to LOY in leukocytes is impacting broader biological 

systems in these women, it is reasonable to speculate that actual LOY in leukocytes in men similarly 

represents a biomarker of genome instability in other cell and tissue types. 

 

Exploring the impact of LOY at the level of a single cell 

 

To help understand if and why LOY may provide a growth advantage to a cell, and the potential 

mechanisms linking LOY to disease, we performed single cell transcriptomic analyses (scRNAseq) 

using the 10X Genomics Chromium Single Cell 3’ platform. This was performed on peripheral blood 

mononuclear cells (PBMCs) collected from 19 male donors (aged 64-89), unselected for any measure 

of clonal mosaicism. After standard quality control steps (see methods), we sequenced and profiled 

gene expression across 86,160 single cells. Under normal conditions, blood cells express a set of 

genes located in the male specific region of the Y chromosome (MSY). The LOY status of individual 

cells could therefore be determined by the absence of expression from these genes, which we 

identified in 13,418 of the cells (15.6% across all cells, ranging from 7-61% within individuals). 

 

We next tested whether any of the genes highlighted in by our LOY GWAS were differentially 

expressed between cells with and without the Y chromosome (Figure 5). This analysis highlighted 

TCL1A (mapped LOY locus rs2887399, 162bp away), where the LOY risk increasing allele is associated 

with higher TCL1A expression in blood (Table S10). The single cell data showed that, among the 

major types of leukocytes, the TCL1A gene was expressed only in B-lymphocytes (Figure 5) and LOY 

was detected in 11.3% of these cells, ranging from 2% to 56% within individuals. B-lymphocytes 

without the Y chromosome (cell N=277) had 75% higher normalized TCL1A expression compared to 

those with a Y chromosome (N=2,459, Wilcoxon test in Seurat: fold change=1.75, P<0.0001). We also 

performed an in-house resampling test to evaluate this difference and validated a substantial 

upregulation of TCL1A in LOY cells (resampling test: fold change=1.68, P<0.0001) (Figure 5). An 

analysis within each individual demonstrated single cells with LOY had consistently higher TCL1A 

expression, ruling out any bias by TCL1A genotype (Figure S5).  

 

To evaluate the magnitude of the 75% overexpression of the TCL1A gene in LOY B-lymphocytes, we 

compared the expression changes of other genes proximal to our identified GWAS loci. Of the genes 

we prioritized at each of our GWAS loci (“consensus genes”, Table S8), 71 were expressed in >5% of 
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the B-lymphocytes and included in the comparison, but only TCL1A demonstrated significant fold 

change (Figure 5).  

 

TCL1A (encoding T cell leukemia/lymphoma 1A), functions as a co-activator of the cell survival kinase 

AKT and is often over expressed in T cell and B cell hematological malignancies
31

. These data provide 

a possible explanation for the growth advantage conferred to cells missing a Y chromosome. The 

independent effect of TCL1A genotype also suggests a possible bidirectional involvement for TCL1A. 

Ultimately further experimental work will be required to fully elucidate the aetiological implications 

of altered TCL1A expression in these cells. 

 

Discussion 

This study provides several advances in our understanding of the likely underlying biology and 

probable consequences of mosaic Y chromosome loss in circulating leukocytes. Our newly enhanced 

ability to detect LOY and expanded sample size led to an 8-fold increase in the number of associated 

genetic determinants, which we use to make several important observations. 

The origin of LOY at the level of a single cell is perhaps most readily explained by chromosome mis-

segregation events during mitosis. Consistent with this, many of the identified loci harbour nearby 

genes involved in key mitotic processes (Figure 6), notably central components of condensin which 

affects mitotic chromosome structure (NCAPG2, SMC2)
32

, and the assembly, structure and function 

of the kinetochore (CENPN, CENPU, PMF1, ZWILCH)  and spindle (SPDL1), which together form the 

main machinery of chromosome congression and segregation
33,34

.  MAD2L1 (alongside MAD1L1 and 

MAD2L1BP) and ZWILCH are core components of the mitotic spindle assembly checkpoint
35

, which 

ensures that chromatids are bi-orientated at the metaphase plate and under bipolar tension before 

disinhibiting the anaphase-promoting complex (of which ANAPC5 is a component) to allow 

progression from metaphase.  Many genes governing wider cell cycle progression, including cyclins 

(CCND2, CCND3), regulators of cyclin (CDKN1B, CDKN1C, CDK5RAP1) and major checkpoint kinases 

(ATM) are also identified here, emphasising the importance of processes across the cell cycle in 

determining LOY. A remainder of the genes that we identify encode proteins involved in sensing and 

responding to DNA damage (SETD2, DDB2, PARP1, ATM, TP53, CHEK2) and apoptotic processes 

(PMAIP1, SPOP, LTBR, SGMS1, TP53INP1, DAP).  Of note, FANCL – the nearest gene to one of our 

lead variants - is vital to DNA interstrand crosslink repair and mutations in this gene have been linked 

to a rare autosomal form of Fanconi Anaemia, characterised by cytogenetic instability and 

chromosome breakage
36

.  The Bcl-2 family, a conserved set of proteins that regulate caspase-

mediated apoptosis by controlling mitochondrial release of Cytochrome-C, are also particularly well-

represented (BCL2, BAX, BCL2L1, BCL2L11)
37

.  These themes are consistent with the hypothesis that, 

secondary to the initial mis-segregation event, clonal expansion of LOY cells requires an environment 

permissive to proliferation of aneuploid cells, in which normal processes to detect and terminate 

these cells are avoided. 

A link between LOY and cancer susceptibility seems plausible conceptually, given the nature of the 

genes identified. Here, we find substantial overlap of LOY associated variants across known cancer 

susceptibility loci, somatic drivers of tumour growth and genes targeted by licensed or in-trial cancer 

therapeutics. A notable example is the target of PARP inhibitors PARP1, where the lead SNP is highly 

correlated with a missense variant (V762A), the minor allele for which (the alanine substitution) is 
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protective for LOY and has experimentally been shown to reduce PARP-1 catalytic activity by 30-

40%
38

. More broadly, we found evidence for a systematic relationship between genetic susceptibility 

for LOY and risk of breast, prostate, testicular and renal cell carcinomas (Figure 4).  

Based on our observations, we propose that LOY is determined by a “common soil” of shared 

mechanisms that predispose to genome instability and cancer. This is perhaps most readily apparent 

with the observation that genetic susceptibility to LOY is associated with cancer susceptibility in 

women and age at natural menopause. Although in aggregate we found that LOY associated variants 

tended to delay menopause age, there was substantial heterogeneity in dose-response. This was 

exemplified by individually significant associations for LOY risk increasing alleles with both earlier 

(mapped genes MON1A, NR6A1, FBXL20) and later menopause (PMF1, JMJD1C, USP35/GAB2, 

APOLD1/CDKN1B, PHF11/RCBTB1, HEATR3, TP53 and CHEK2). We hypothesised that the direction of 

effect a LOY associated risk allele has on menopause may shed light on its mechanism of effect. 

Genetic determinants of LOY must broadly act either by promoting chromosomal instability or 

facilitating the clonal expansion of aneuploid cells, both of which are potentially cancer causing 

mechanisms. An allele that promotes clonal mosaicism through predisposition to chromosome mis-

segregation or repair/generation of DNA damage would likely be associated with an earlier 

menopause due to acquired DNA damage in oocytes and their subsequent elimination. This principle 

is most evident in mice and humans with BRCA1/2 loss of function, where diminished double strand 

break repair in oocytes triggers apoptosis and depletion of the ovarian reserve
30,39,40

. In contrast, any 

process that impairs DNA damage sensing or programmed cell death may also promote clonal 

mosaicism (via greater tolerance of damaged cells) but lead to a later menopause. The clearest 

example of this is CHEK2, which in mice is essential for culling oocytes bearing unrepaired DNA 

double-strand breaks
41

. Reduced activity of this gene would therefore lead to the survival of 

defective oocytes (hence later menopause), supported for the first time in humans by our 

observation that CHEK2 loss of function is associated with later age at menopause in women and 

increased LOY in men. The overall trend for LOY associated loci to be associated with delayed 

menopause suggests that many genetic determinants may act to inhibit apoptosis and the 

elimination of defective leukocytes. Further experimental work in animal and cellular models should 

aim to investigate more thoroughly the mechanisms linking each of our putatively highlighted genes 

to clonal mosaicism and broader outcomes. 

We also note overlap between our identified LOY associated loci and other complex traits and 

diseases. For example, seven of our current LOY signals are correlated with previously reported
42

 

susceptibility loci for Type 2 diabetes (TP53INP1, SUGP1, KCNQ1, CCND2, EIF2S2, PTH1R and 

BCL2L11). At six of these overlapping loci, the LOY risk-increasing allele also increases the risk of 

Type 2 diabetes. CCND2 encodes Cyclin D2, the major D-type cyclin expressed in pancreatic β-cells 

and is essential for adult β-cell growth
43

. TP53INP1 is a p53-inducible gene, whose product regulates 

p53-dependent apoptosis. Additionally, the LOY-associated genes encoding cyclins and cyclin-

dependent kinases, CCND3, CDKN1B and CDKN1C, are also implicated in pancreatic β-cell growth 

and maturation. We hypothesise that the previously reported association between clonal mosaicism 

in blood and T2D
15,44

 may reflect a common susceptibility to cell cycle dysregulation and genome 

instability, which lead to both increased clonal mosaicism and reduced pancreatic β -cell mass. 

Future studies should aim to more systematically assess the relationships and potential mechanisms 

linking LOY-associated variants and these broader health outcomes. 
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Finally, the “common soil” hypothesis discussed above does not preclude the possibility that LOY in 

leukocytes also has a direct role in disease, for example through impaired immune function
45

. A 

growing awareness of the physiological importance of chromosome Y outside of reproductive 

development challenges the view of this chromosome as a “genetic wasteland”46
. The male-specific 

region (MSY) encodes 45 distinct proteins, with roles in fundamental processes such as chromatin 

modification (KDM5D, UTY), gene transcription (ZFY) and translation (DDX3Y, EIF1AY and RPS4Y1). 

Indeed, our observation in single-cell RNA sequencing data that leukocytes with LOY have 

dysregulated autosomal gene expression supports the notion of a direct physiological effect.  

We hope that future experimental studies may build on these observations, yielding further insights 

into mechanisms that may have broad relevance to a range of cancers and other ageing-related 

diseases. 
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Tables and Figures 

Figure 1 | Prevalence of mosaic Y chromosome loss by age in UK Biobank study participants 
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Figure 2 | Distribution of allele frequency and effect size for the 156 identified LOY loci 
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Figure 3 | Results from fine-mapping analyses. Panel a shows the posterior expected number of 

causal variants (top) as well as the best fine-mapped variant (bottom) in each region. Genomic 

enrichments for variants stratified by posterior probability are shown in panel b. Fine-mapped 

variants were enriched for accessible chromatin in hematopoiesis, as well as in exons, promoters, 

and UTRs of protein coding genes, but not for introns. Panel c shows g-chromVAR cell-type 

enrichments across the hematopoietic tree for LOY. HSCs, MPPs, and CMPs meet Bonferroni 

threshold (α = 0.05 / 18). Developmental patterns of accessible chromatin for variants with posterior 

probability > 10% are shown in panel d, revealing that 14 variants are fully restricted to acting within 

HSPCs, 14 variants can also have regulatory effects in myeloid and lymphocyte progenitors, and 17 

variants are capable of acting across the majority of hematopoiesis. K-means clustering (k = 4 

determined by the gap statistic) was used to identify patterns of accessibility, and cell types were 

hierarchically clustered. HSC, hematopoietic stem cell; MPP, multi-potent progenitor; CMP, common 

myeloid progenitor; HSPC, hematopoietic stem and progenitor cell; M/L, myeloid and lymphoid; PP, 

posterior probability; AC, accessible chromatin; UTR, untranslated region; PChiC, promoter capture 

Hi-C; eQTL, expression quantitative trait locus; corr, ATAC/chromatin-RNA correlations 
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Figure 4 | Association between a genetic risk score of the 156 LOY-associated variants and cancer. 
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Figure 5 | Single-cell RNA sequencing results. Panel a shows clustering and identification of cell 

types using a tSNE plot generated from a pooled dataset including 86160 PBMC’s isolated from 
peripheral blood samples collected from 19 male donors. The TCL1A gene was expressed in the B-

lymphocytes as indicated by blue color in panel b. Analysis of LOY status in the B-lymphocytes 

identified 277 cells with LOY, plotted in red color in panel c. Panel d display the result from a 

resampling test performed to compare the expression of TCL1A in LOY B-lymphocytes with its 

expression in non-LOY B-lymphocytes. The grey and red curves in panel d represent the resampled 

distribution of TCL1A expression in non-LOY and LOY cells, respectively. The resampling test 

established an increased expression of TCL1A in B-lymphocytes with LOY (fold change=1.68, 

p<0.0001). Panel e display fold changes in gene expression between LOY and non-LOY B-

lymphocytes for 71 selected genes from the list of genes mapping to the 156 index variants. Genes 

expressed in >5% of the investigated B-lymphocytes were included. The blue line at fold change 1 in 

panel e represents no differential expression and the red line shows the level of 50% overexpression 

in LOY cells. 
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Figure 6 | Many LOY-associated genes converge on mechanistic and regulatory aspects of the cell 1 

cycle. All genes shown have been prioritized as potentially functional genes at our reported GWAS 2 

loci; gene symbols may be shown more than once. Coloured indicators next to each gene symbol 3 

specify the type of evidence on which it has been prioritized at its respective locus: blue, nearest 4 

protein-coding gene; green, eQTL; red, contains a highly correlated non-synonymous variant. Red 5 

boxes indicate each of the three known cell cycle checkpoints. Red inhibition connectors denote that 6 

a target is inhibited by degradation, green by binding. Green arrows indicate a signaling cascade and 7 

its effector or final physiological effect. Bidirectional dashed green arrows indicate the formation of 8 
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a complex between the products of the two connected genes. Excepting p53, proteins contained 9 

within green boxes have not been implicated in this GWAS, but are important interactors of 10 

implicated genes. CENPA-NAC, CENPA nucleosome-associated complex; APC/C, anaphase-promoting 11 

complex/cyclosome; MC, mitotic checkpoint; CDK, cyclin-dependent kinase. 12 

  13 
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Methods 15 

Phenotype preparation in UK Biobank 16 

We adapted a recently developed statistical approach
6
 for detecting autosomal mosaic events to 17 

identify male individuals with LOY based on allele-specific genotyping intensities in the 18 

pseudoautosomal region (PAR) of the sex chromosomes. In contrast to previous work that has 19 

quantified Y chromosome loss based on median genotyping intensity over the non-pseudoautosomal 20 

region of the Y chromosome (mLRR-Y)
12–15

, our approach leverages the diploid nature of the PAR to 21 

ascertain mosaic Y loss based on differences between maternal (X PAR) vs. paternal (Y PAR) allelic 22 

intensities at heterozygous sites: mosaic Y loss causes Y PAR intensities to decrease relative to X PAR 23 

intensities. This intuition can be harnessed even in population cohorts in which absolute phase 24 

information (i.e., information about maternal vs. paternal inheritance of alleles) is unavailable: we 25 

can overcome this obstacle by performing statistical phasing and subsequently identifying evidence 26 

of an imbalance in allelic intensities between the two statistically phased haplotypes (accounting for 27 

the possibility of phase switch errors)
5,6

. In general, the signal produced by phased allelic imbalances 28 

is typically much cleaner than estimates of total genotyping intensities (e.g., mLRR-Y), as the latter 29 

can vary substantially across the genome due to technical artefacts
47

. 30 

We applied this approach to blood DNA genotyping intensity data from the full UK Biobank cohort (a 31 

study described extensively elsewhere
48

, analyzing 1,239 genotyped variants on PAR1 that passed 32 

QC (out of 1,301 total PAR1 variants). (We ignored the much-shorter PAR2, which only contained 56 33 

genotyped variants, of which 37 passed QC.) To maximize phasing accuracy, we phased the full 34 

cohort including both males and females using Eagle2
49

, after which we restricted our attention to 35 

males. We called mosaic chromosomal alterations (mCAs) in PAR1 using a slightly modified version 36 

of the pipeline we described previously
6
. Specifically, in our hidden Markov model, we increased the 37 

probability of starting in a mosaic state to 0.2: we observed in a preliminary analysis that Y loss 38 

events were much more common than autosomal events, so we updated this prior accordingly in 39 

our final analysis to slightly improve the model (and verified that the number of Y loss calls did not 40 

drastically change, so no further update was necessary). We also post-processed our PAR1 mCA calls 41 

to identify likely mosaic Y loss events based on two criteria: (i) mCA spans the full PAR1 region; and 42 

(ii) observed mean log2 R ratio (LRR) is more consistent with a mosaic loss event than a CNN-LOH or 43 

gain (after taking into account the s.e.m. of LRR and an empirical prior on mCA copy numbers
6
. This 44 

procedure produced 44,709 mCA calls in PAR1 (at an estimated false discovery rate of 0.05) among 45 

220,924 males passing sample QC, of which 43,306 were classified as likely LOY. These calls 46 

contained an average of 321 heterozygous variants on PAR1 passing QC that were usually phased 47 

perfectly (no switch errors detected by the hidden Markov model in 72% of calls). 48 

We estimated FDR of PAR-LOY calls using the same phase randomization procedure (similar to 49 

permutation testing) that we previously employed
6
. Specifically, we computed test statistics from 50 

PAR-LOY on a batch of control data sets in which we had randomized phase assignments at 51 

heterozygous variants (but otherwise kept the data unchanged). The test statistics produced by this 52 

procedure gave us an approximate null distribution which we then used to estimate FDR. 53 

Recalled age at natural menopause (ANM) was available in 106,237 women with genetic data. We 54 

included women with ANM who were 40–60 years of age in our analyses, excluding those with 55 
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menopause induced by hysterectomy, bilateral ovariectomy, radiation or chemotherapy and those 56 

using hormone replacement therapy (HRT) before menopause. 57 

Power comparison of PAR-LOY vs mLRR-Y 58 

The efficacy of the PAR-LOY approach relative to mLRR-Y depends primarily on two factors: (i) the 59 

relative number of genotyping probes in PAR1 vs. Y-nonPAR, and (ii) the size of the cohort (which 60 

determines phasing accuracy in PAR1). In UK Biobank, both (i) and (ii) are heavily in favour of PAR-61 

LOY, as the UK Biobank genotyping array contained nearly twice as many PAR1 vs. Y-nonPAR variants 62 

(1301 vs. 691 variants) and the cohort size is extremely large (~500K individuals). For comparison, 63 

the BioBank Japan genotyping contained only one-fifth as many PAR1 vs. Y-nonPAR variants (an 64 

order of magnitude lower relative coverage of PAR1). 65 

To quantify the effects of factors (i) and (ii) on PAR-LOY, we subsampled the UKBB data set to 66 

simulate the effects of reduced PAR1 content and reduced phasing accuracy (due to smaller sample 67 

size). Specifically, we applied PAR-LOY to 20 = 4x5 data sets in which we subsampled (i) the number 68 

of PAR1 variants included in analysis (down-sampling 1x, 2x, 4x, 8x) and (ii) the number of samples 69 

included in analysis (down-sampling 1x, 3.5x, 10x, 35x, 100x). In each scenario, we compared the 70 

quality of PAR-LOY calls to mLRR-Y by comparing association strength at the top three Y loss GWAS 71 

hits (rs17758695 (BCL2), rs2887399 (TCL1A), rs59633341 (TSC22D2)). We computed relative 72 

association strength by taking the mean chi-square association test statistic across the three variants 73 

for PAR-LOY and dividing by the corresponding quantity for mLRR-Y. 74 

We observed (Figure S3) that indeed the PAR-LOY approach benefited considerably from high PAR1 75 

genotyping coverage in UK Biobank as well as highly accurate phasing (with diminishing returns 76 

beyond a cohort size of ~100K samples, presumably due to phasing accuracy becoming near-perfect 77 

across PAR1). For large cohorts with >100K samples, our results indicate that the PAR-LOY approach 78 

becomes advantageous when a genotyping array contains at least ~1/3 as many PAR1 variants as Y-79 

nonPAR variants. 80 

Genetic association testing in UK Biobank 81 

We used genetic data from the “v3” release of UK biobank48
, containing the full set of HRC and 82 

1000G imputed variants. In addition to the quality control metrics performed centrally by UK 83 

Biobank, we defined a subset of “white European” ancestry samples using a K-means clustering 84 

approach applied to the first four principle components calculated from genome-wide SNP 85 

genotypes.  Individuals clustered into this group who self-identified by questionnaire as being of an 86 

ancestry other than white European were excluded. After application of QC criteria, a maximum of 87 

205,011 male participants were available for analysis with genotype and phenotype data. 88 

Association testing was performed using a linear mixed models implemented in BOLT-LMM
50

 to 89 

account for cryptic population structure and relatedness. Only autosomal genetic variants which 90 

were common (MAF>1%), passed QC in all 106 batches and were present on both genotyping arrays 91 

were included in the genetic relationship matrix (GRM). Genotyping chip, age at baseline and 10 92 

genetically derived principal components were included as covariates. 93 

We defined statistically independent signals (described as lead or index variants) using 1Mb 94 

distanced-based clumping across all imputed variants with P<5x10
-8

, an imputation quality score > 95 
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0.5 and MAF > 0.1%. Genome-wide significant lead variants that shared any correlation with each 96 

other due to long range linkage disequilibrium (r
2
>0.05) were excluded from further consideration. 97 

These loci were additionally augmented using approximate conditional analyses implemented in 98 

GCTA
51

. Here, secondary signals were only considered if they were uncorrelated (r
2
<0.05) with a 99 

previously identified index variant and genome-wide significant pre and post conditional analysis. 100 

The total trait variance of all genotyped SNPs was calculated genome-wide and per-chromosome 101 

using restricted estimate maximum likelihood (REML) implemented in BOLT-LMM
50

. The 102 

corresponding observed-scale estimate was transformed to the liability-scale
52

. 103 

Replication 104 

Replication was performed in three independent studies using two separate techniques. 105 

Firstly, we used data generated from the customer base of 23andMe Inc, a consumer genetics 106 

company. Genotyping array quality control, imputation and downstream association testing for this 107 

study has been described extensively elsewhere
53

. All individuals provided informed consent and 108 

answered surveys online according to 23andMe’s human subjects protocol, which was reviewed and 109 

approved by Ethical & Independent Review Services, a private institutional review board 110 

(http://www.eandireview.com). DNA extraction and genotyping were performed on saliva samples 111 

by National Genetics Institute (NGI), a CLIA licensed clinical laboratory and a subsidiary of Laboratory 112 

Corporation of America Mosaic LOY was estimated by calculating the mean log-R ratio (normalised 113 

signal intensity) across 274 SNPs on the male-specific region of the Y chromosome that are shared 114 

and perform well across genotyping platforms, using the protocol described previously
14

. Imputation 115 

was performed using a combination of the May 2015 release of the 1000 Genomes Phase 3 116 

haplotypes
54

 with the UK10K imputation reference panel
55

. Genetic association testing was 117 

performed using linear regression in 653,019 male research participants of European ancestry, using 118 

age, genetically derived principal components and genotyping platform as covariates. Results were 119 

adjusted for a genomic control inflation factor of 1.129.  120 

Secondly, we analyzed whole-blood genome sequences of 8,715 Icelandic males
56

 (age range 41-105 121 

years, mean 63 years), that had been whole-genome sequenced by Illumina method to a mean 122 

depth of 37x. As an estimate of chromosome Y copy-number we used the average read depth over 123 

chromosome Y, using exclusively X-degenerate regions. This was computed by samtools from bam 124 

files aligned to hg38 and normalized by genome-wide sequencing coverage for the subject. A total of 125 

12 outlier individuals (copy-number greater than 1.25) were excluded. Association analysis was 126 

performed using a linear mixed model implemented in BOLT-LMM
50

 (to account for population 127 

structure instead of genetic principal components) after inverse normal transformation and 128 

adjustment for age at blood draw. Effect sizes for log2(chrY copy-number) were estimated using 129 

robust linear regression (rlm from R package MASS). 130 

Third, we used a sample of 95,380 Japanese ancestry men from the BBJ project, a study which has 131 

been described extensively elsewhere
57

. The study was approved by the ethical committees in the 132 

Institute of Medical Science, the University of Tokyo and RIKEN Center for Integrative Medical 133 

Science.  Mosaic LOY in blood was estimated using the quantitative mLRR-Y measure, using a similar 134 

protocol as previous studies
14

. Association testing was performed using a linear mixed model 135 

implemented in BOLT-LMM
50

, including age, smoking, disease status (35 case/control definitions) 136 

http://www.eandireview.com/
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and chip array as a covariate. Replication test statistics were assessed in a sensitivity model without 137 

smoking and disease status covariates to ensure consistency between models. 138 

Genomic feature enrichment 139 

We used a previously modified version of GoShifter
26,58

 to calculate the enrichment of fine-mapped 140 

(PP ≥ 0.10) and not fine-mapped (PP < 0.10) variants with genomic annotations by locally shifting the 141 

annotations and computing overlaps to approximate the null distribution. Z-scores and odds ratios 142 

were calculated from 1000 permutations, and typical two-tailed p-values are calculated from the z-143 

score statistic. All annotations were obtained as described previously
26

.  144 

In order to identify which tissue types were most relevant to genes involved in LOY, we applied LD 145 

score regression
59

 to specifically expressed genes (“LDSC-SEG”)60
 and g-chromVAR to hematopoietic 146 

accessible chromatin
26

. For LDSC-SEG, cell-type specific analyses using GTEx and Epigenome 147 

Roadmap annotations were performed using the data available on the LDSC-SEG resource page 148 

(https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses). For g-chromVAR, hematopoietic 149 

specific analyses were performed using ATAC-seq count matrices as previously processed 150 

(https://github.com/caleblareau/singlecell_bloodtraits). g-chromVAR estimates were averaged 151 

across 10 different random background peak sets. We note that, similar to the derivation of cell-type 152 

specific features or SEGs in LDSC, g-chromVAR z-scores represent relative enrichment for specific 153 

cell-types compared to other input cell-types, which allows for discrimination between closely 154 

related cell types in the hematopoietic lineage. 155 

Gene expression integration 156 

We used two approaches to map associated genetic variants to genes via expression effects (eQTLs) 157 

in whole blood. Firstly, Summary Mendelian Randomization (SMR) uses summary-level gene 158 

expression data to map potentially functional genes to trait-associated SNPs
61

. We ran this approach 159 

using a meta-analysis of whole blood eQTL data from 31,684 individuals
62

. Only transcripts with no 160 

evidence of pleiotropic effects, as assessed by the HEIDI metric were considered
61

. Secondly, we 161 

used the recently described Transcriptome-wide Association Study (TWAS) approach
63

 to infer gene 162 

expression association using three whole blood datasets (Young Finns Study, Netherlands Twin 163 

Registry cohorts and GTEx v6). All data used is available here: http://gusevlab.org/projects/fusion/. 164 

For all analyses significance thresholds were set to adjust for the number of tested performed.   165 

Gene set enrichment analysis 166 

Pathway analysis was performed using two distinct approaches – STRING
64

 and MAGENTA
65

. For 167 

STRING, only the gene closest to one of the 156 lead index variants (max distance 500kb) was 168 

included in the analysis. In contrast, MAGENTA performs enrichment analysis using the full genome-169 

wide summary statistic data. In this gene set enrichment analysis (GSEA) approach, each gene in the 170 

genome is mapped to a single index SNP with the lowest P-value within a 300kb window. This P-171 

value, representing a gene score, is then corrected for confounding factors such as gene size, SNP 172 

density and LD-related properties in a regression model. Each mapped gene is then ranked by its 173 

adjusted gene score. At a given significance threshold (here the 95
th

 percentile of all gene scores), 174 

the observed number of gene scores in a given pathway, with a ranked score above the specified 175 

https://github.com/bulik/ldsc/wiki/Cell-type-specific-analyses
https://github.com/caleblareau/singlecell_bloodtraits
http://gusevlab.org/projects/fusion/
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threshold percentile, is calculated. This observed statistic is then compared to 1,000,000 randomly 176 

permuted pathways of identical size. This generates an empirical GSEA P-value for each pathway. 177 

We used the Open Targets Platform (https://www.targetvalidation.org/) to define gene sets 178 

comprising genes involved in cancer susceptibility (N=249), somatic drivers of tumour growth 179 

(N=394), targets of approved or in trial cancer therapies (N=458), “affected pathways” (N=216 with 180 

score = 1) and finally an overall aggregated score for involvement in cancer (N=934 with score = 1). 181 

The various data sources, and approach applied by Open Targets to score and prioritise target genes 182 

within each of these categories is described in full at https://docs.targetvalidation.org/getting-183 

started/scoring). We arbitrarily defined gene set membership based on an assigned score > 0.8 184 

unless otherwise specified. These pathways were tested for enrichment in downstream analyses 185 

using MAGENTA.    186 

Fine-mapping 187 

Regions for fine-mapping were defined by extended 0.5 Mb in both directions from each sentinel 188 

and merging when regions overlapped, resulting in 126 total regions. All variants in these regions 189 

with MAF > 0.005 and INFO > 0.6 were fine-mapped. Dosage LD was estimated from the UKB 190 

genotype probability files (.bgen) using 167,020 unrelated white British male individuals 191 

(http://www.nealelab.is/uk-biobank/). Fine-mapping was them performed using v1.3 of the 192 

FINEMAP software
66

 with default settings allowing for up to 5 causal variants in each region. The 193 

UCSC genome browser was used to view individual variants along with hosted features
67

. 194 

Integration with cancer data and modelling LOY as a causal exposure 195 

The NHGRI-EBI GWAS Catalogue database was accessed and downloaded on June 25, 2018. The 196 

downloaded file was curated to only include studies in which cancer is the associated disease and 197 

further filtered to remove variants with association p-values greater than 5 × 10−8
. Due to a potential 198 

lag between the time a new GWAS is published and included in the NHGRI-EBI GWAS Catalogue, a 199 

supplementary literature search of PubMed was performed to identify additional reports of cancer 200 

susceptibility studies that were not included in the GWAS Catalogue. The literature search was 201 

completed on July 18, 2018. LDlink
68

 was used to identify published cancer GWAS-associated genetic 202 

variants which are in linkage disequilibrium (LD) (r
2≥0.1 based on the 1000 Genomes Project 203 

European Population data) with one of the 154 LOY lead SNPs. Associations with haematological 204 

malignancies were excluded and additional associations were identified by manual searches. 205 

The relationship between LOY-associated variants and cancer was assessed using a series of two-206 

sample summary statistic based Mendelian randomisation-style analyses. Linear regressions of the 207 

cancer log odds ratios (logOR) for each available SNP on the LOY beta coefficients were carried out, 208 

weighted by the inverse of the variance of the cancer logORs. This is equivalent to an inverse-209 

variance weighted meta-analysis of the variant-specific causal estimates
69

. Because of evidence of 210 

over-dispersion (i.e. heterogeneity in the variant-specific causal estimates), the residual standard 211 

error was estimated, making this equivalent to a random-effects meta-analysis. We repeated the 212 

analyses using the Weighted Median method, which is robust to up to half of the genetic variants 213 

not being valid instrumental variables
70

. Unbalanced horizontal pleiotropy was tested based on the 214 

significance of the intercept term in MR-Egger regression
71

. The analyses were carried out separately 215 

for each type of cancer. 216 

https://www.targetvalidation.org/
https://docs.targetvalidation.org/getting-started/scoring
https://docs.targetvalidation.org/getting-started/scoring
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Summary statistics for the association between the genetic variants and risk of prostate cancer were 217 

obtained from the PRACTICAL/ELLIPSE consortium, based on GWAS analyses of 67,158 prostate 218 

cancer cases and 48,350 controls
72

. Testicular cancer summary statistics were obtained from two 219 

GWAS studies conducted at the Institute of Cancer Research comprising 4,192 testicular cancer 220 

cases and 12,368 controls
73,74

. The renal cancer analysis used summary statistics from the Kidney 221 

Cancer GWAS Meta-Analysis Project of 10,784 cases of renal cell carcinoma and 20,406 controls
75

. 222 

Colorectal cancer summary statistics were from eight UK-based GWAS studies, totalling 22,372 223 

colorectal cancer cases and 44,271 controls
76,77

. The summary statistics for overall lung cancer were 224 

from GWAS analyses of 29,266 lung cancer cases and 56,450 controls conducted by the International 225 

Lung Cancer Consortium
78

.  The glioma summary statistics were from GWAS studies of 12,488 cases 226 

and 18,169 controls
79,80

. The breast cancer analysis was based on summary statistics from GWAS 227 

analyses of 105,974 breast cancer cases and 122,977 controls conducted by the Breast Cancer 228 

Association Consortium (BCAC)
81

, including summary statistics from analyses restricted to cases with 229 

estrogen receptor positive or estrogen receptor negative breast cancer
82

. Summary statistics for the 230 

ovarian cancer analysis were from GWAS studies of 25,509 ovarian cancer cases and 48,941 controls 231 

conducted by the Ovarian Cancer Association Consortium (OCAC)
83

. The endometrial cancer results 232 

were from GWAS studies of 12,906 endometrial cancer cases and 108,979 controls from the 233 

Endometrial Cancer Association Consortium (ECAC)
84

. In addition, analyses for breast and ovarian 234 

cancer risk specifically in carriers of a BRCA1 or a BRCA2 mutation were carried out using results 235 

from GWAS studies conducted by the CIMBA consortium
82,83

. Although our focus was on the 236 

association between LOY and risk of non-haematologial cancers, we also included an analysis using 237 

summary statistics from GWAS studies of 4,478 chronic lymphocytic leukaemia (CLL) cases and 238 

13,213 controls
85

. There was some overlap in the control subjects used by the breast, ovarian, 239 

endometrial and colorectal cancer studies, between the control subjects used in the prostate, 240 

colorectal and testicular cancer studies, and between the control subjects used in the endometrial 241 

cancer, glioma and CLL studies. All the cancer analyses were based on summary statistics from 242 

studies restricted to participants with European ancestry. 243 

In addition to the analyses by cancer type, we also used summary statistics from a pan-cancer meta-244 

analysis study of breast, prostate, ovarian, and endometrial cancer to look for a more general 245 

association between LOY and cancer risk. The pan-cancer summary statistics were derived using a 246 

three step procedure. First, the tetrachoric correlation of binary transformed Z-scores was used to 247 

estimate the correlation between individual-cancer summary statistics that is attributable to control 248 

sample overlap
86

. Second, individual-cancer summary statistic standard errors were decoupled to 249 

account for the estimated correlation (resulting from shared controls amongst the meta-analysed 250 

cancer strata)
87

 and third, the METASOFT software
88

 was used to perform fixed effect inverse-251 

variance weighted meta-analyses for the combination of four cancers. 252 

Sample preparation for single cell gene expression study 253 

Blood samples from 19 elderly men (median age=80, range=64-89) admitted to the Geriatrics 254 

Department at Uppsala University Hospital (Uppsala, Sweden) were collected in BD Vacutainer CPT 255 

cell separation tubes containing sodium citrate and stored on ice. The PBMC fraction was isolated 256 

from the whole blood samples by density gradient centrifugation following manufacturer 257 

instructions (Becton, Dickinson and Company, Franklin Lakes). PBMCs were collected and suspended 258 

in cold 1X PBS solution with 0.04% BSA. Cell concentrations were measured using an EVE cell counter 259 
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(NanoEnTek, Seoul) and diluted to a concentration of 10
6
 cells/ml. All the prepared samples had a 260 

cell viability above 90%. The local research ethics committee approved the study and all participants 261 

provided their informed consent. 262 

Single cell workflow 263 

We performed single cell RNA sequencing (scRNAseq) using the 10X Chromium Single Cell 3’ gene 264 

expression solution (10X Genomics, Inc.) at the SNP&SEQ Technology Platform at Uppsala University 265 

(Sweden). This scRNAseq technology is based on gel beads loaded with barcoded oligos mixed with 266 

single cells and enzymes, before captured in droplets (GEMs). The transcripts present in individual 267 

cells are barcoded with UMI’s (unique molecular identifiers) and used to prepare standard 268 

sequencing libraries. All transcripts from single cells get barcoded with the same index sequence 269 

allowing for the transcripts from thousands of single cells to be pooled together in a single 270 

sequencing run and allowing transcriptional profiling of individual cells. The barcoding and library 271 

construction were performed for the 19 PBMC samples using the Chromium Single Cell 3’ Reagent 272 

kit (cat# 120236/37/62) according to the manufacturer protocol (CG00052 Single Cell 3’ Reagent Kit 273 

v2 User Guide). The entire procedure, from blood sampling to construction of GEM’s was 274 

accomplished within 5 hours. The generated single cell libraries were sequenced using a NovaSeq 275 

6000 instrument (Illumina, Inc., San Diego) at the SNP&SEQ Technology Platform and generated a 276 

median of 64900 reads per cell (range=35213-111643).   277 

Single-cell bioinformatics pipeline 278 

Sequenced reads were mapped to the human reference (GRCh37/hg19) using the software 279 

Cellranger v 2.0.2 (10X Genomics, Inc.). Cellranger produces a count-matrix for each experiment 280 

containing the UMI barcodes using sequence information from the 3´ end of each transcript in every 281 

single cell. We used the R library Seurat (v2.3.1) for further processing and implemented the 282 

standard Seurat workflow7. Specifically, QC-steps were performed  including removal of apoptotic 283 

cells (i.e. cells with more than 5% mitochondrial RNA) as well as removing cells with low sequencing 284 

coverage and/or a low number of expressed genes (demanding at least 350 genes expressed and 285 

800 UMIs). Following QC-steps, normalization of the gene expression within each single cell was 286 

performed using the function “NormalizeData” and the built in LogNormalize normalization method.  287 

After this the most variable genes was identified using the function FindVariableGenes with the 288 

parameters x.low.cutoff = 0.2, x.high.cutoff = 4, y.cutoff = 0.5. All expression values was following 289 

this scaled using the “ScaleData” function and principal components were calculated based on the 290 

top variable genes and the number of significant principal components was determined using an 291 

elbow plot. Clustering of the dataset was performed using the function “FindClusters” and cell types 292 

for each cluster were determined using canonical marker genes. Refined clustering was achieved by 293 

reclustering within the identified cell types using the above pipeline on subsets of the data. The tSNE 294 

plots were produced using the generated principal components as input. 295 

Determination of LOY in single cells 296 

The LOY status for each sequenced cell was determined under the assumption that cells with LOY 297 

would not express genes located in the male specific part of chromosome Y (MSY). Hence, non-LOY 298 

blood cells are normally expressing a series of genes located in the MSY (e.g EIF1AY, RPS4Y1, KDM5D 299 

and ZFY). We took advantage of this information and thus scored LOY in cells without transcripts 300 
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from the MSY using ensembl (v93) to identify all MSY gene measured in the data.  Cells with high 301 

content of mitochondrial RNA (more than 5%) as well as cells with less than 800 UMIs or less than 302 

350 genes expressed was removed from the analysis. 303 

Single-cell statistical analyses 304 

To compare differences in autosomal gene expression between LOY cells and non-LOY cells we first 305 

performed WilcoxDETest’s, implemented in the R library Seurat (v2.3.1). We also developed an in-306 

house random sampling algorithm to compare the gene expression in LOY cells with non-LOY cells 307 

within specific cell types. First, we established the observed gene expression in LOY cells in the cell 308 

type under investigation, by calculating the mean normalized expression values in all subjects, within 309 

all LOY cells of the tested cell type. Next, we randomly selected from all subjects, a number of cells 310 

from the non-LOY cells of the examined cell type, and calculated the mean normalized expression in 311 

the resampled cells. To avoid biases caused by inter-individual variation, we programmed the 312 

sampling algorithm to sample an equal number of non-LOY cells as observed LOY cells within each 313 

subject. For example, from subjects with 100 LOY cells of a specific cell type, the same number of 314 

non-LOY cells from the same cell type was sampled from the set of non-LOY cells. The resampling of 315 

non-LOY cells from all subjects was repeated 50.000 times and for each iteration, the mean 316 

normalized expression of the investigated gene in the resampled cells was calculated. The resampled 317 

data represents a weighted expression level of the examined gene in non-LOY cells within specific 318 

cell types and thus, the resampled distribution represents the normalized expression of the 319 

investigated gene in non-LOY cells. The range of variation of gene expression in LOY cells was 320 

estimated in a similar fashion, by resampling of a subset of the LOY cells within each subject. Exact p-321 

values were calculated by comparing the observed mean expression in LOY cells to the resampled 322 

distribution of non-LOY cells. All statistical analyses were performed using R v. 3.4.4. 323 


