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Myeloproliferative neoplasms (MPNs) are blood cancers characterized by excessive 
production of mature myeloid cells that result from the acquisition of somatic driver 
mutations in hematopoietic stem cells (HSCs)1. While substantial progress has been 
made to define the causal somatic mutation profile for MPNs2, epidemiologic studies 
indicate a significant heritable component for the disease that is among the highest known 
for all cancers3. However, only a limited set of genetic risk loci have been identified, and 
the underlying biological mechanisms leading to MPN acquisition remain unexplained. 
Here, to define the inherited risk profile, we conducted the largest genome-wide 
association study of MPNs to date (978,913 individuals with 3,224 cases) and identified 
14 genome-wide significant loci, as well as a polygenic signature that increases the odds 
for disease acquisition by nearly 3-fold between the top and median deciles. Interestingly, 
we find a shared genetic architecture between MPN risk and several hematopoietic traits 
spanning distinct lineages, as well as an association between increased MPN risk and 
longer leukocyte telomere length, collectively implicating HSC function and self-renewal. 
Strikingly, we find a significant enrichment for risk variants mapping to accessible 
chromatin in HSCs compared with other hematopoietic populations. Finally, gene 
mapping identifies modulators of HSC biology and targeted variant-to-function analyses 
suggest likely roles for CHEK2 and GFI1B in altering HSC function to confer disease risk. 
Overall, we demonstrate the power of human genetic studies to illuminate a previously 
unappreciated mechanism for MPN risk through modulation of HSC function. 
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Main Text: 
We initially sought to characterize the germline genetic architecture that confers risk for 
MPNs, and therefore conducted a genome-wide association study (GWAS) meta-analysis 
using three population-based cohorts (UK Biobank (UKBB), 23andMe, and FinnGen). The 
combined sample size comprised 2,627 MPN cases and 755,476 controls, more than 
doubling the number of cases from prior studies (Supplementary Table 1, Extended 
Data Fig. 1). We tested 7,329,649 well-represented variants passing central and study-
specific quality control measures. Linkage disequilibrium score regression (LDSC)4 
showed negligible inflation in test statistics due to population structure, with an intercept 
of 1.005 and genomic control factor of 1.0255. We estimate the narrow-sense heritability 
for MPN risk to be 0.0717 (s.e. = 0.0306) on the liability scale, suggesting that ~7% of 
variance in MPN risk can be attributed to common genetic variation (MAF > 1%), 
assuming a disease prevalence of 0.0328%, as reported in population studies5,6. 
 
Analysis of GWAS signals using GCTA7 revealed 12 linkage disequilibrium (LD)-
independent loci at genome-wide significance (p < 5 x 10-8) and an additional 16 loci with 
suggestive associations (p < 1 x 10-6) (Fig. 1a, Supplementary Table 2). Previous 
studies have shown that carriers of the somatic JAK2 V617F mutation are strong proxies 
for MPN cases and can replicate MPN risk associations8. Therefore, we assessed 
genotypes at 27 of 28 lead variants (p < 1 x 10-6) among 597 JAK2 V617F carriers and 
220,213 controls in the Million Veteran Program. A near perfect replication for direction of 
effects was observed (26 of 27 (96%) variants, p = 2.09 x 10-7) and 14 variants were 
significant at the 5% level (p = 6.58 x 10-12). We then combined data from MVP with the 
discovery GWAS to reach a total of 3,224 cases and 975,689 controls. This combined 
analysis revealed 14 independent risk associations exceeding genome-wide significance, 
five of which are novel (Table 1, Supplementary Note). Of the 10 previously reported 
loci for MPN risk8,9, all but 1 remained genome-wide significant in our analysis, with the 
only exception being the 22q12.1 locus (p = 9.16 x 10-7). We estimate that the 14 genome-
wide significant lead variants explain 18.1% of the ~5-fold familial relative risk for MPN 
acquisition3. 
 
To further test the robustness of our findings and their ability to predict MPN risk, we 
trained a polygenic risk score (PRS) using effect sizes of 92 risk variants obtained from a 
subset meta-analysis (23andMe and FinnGen), and tested this PRS in the out-of-sample 
UKBB cohort (Supplementary Table 3). Individuals in the UKBB with MPN had a median 
PRS percentile of 66 compared to 50 for those without MPN (Fig. 1b, Extended Data 
Fig. 2), and the PRS explained a greater proportion of risk variance than that explained 
by sex and age combined (Fig. 1c). The ~40,000 individuals above the 90th PRS 
percentile had a 4.39-fold (95% CI: [3.25, 5.92]) higher odds of MPN compared to those 
in the lowest decile (Fig. 1d), and 2.78 higher odds compared to those with average 
genetic risk (5th PRS decile). Altogether, these results indicate that the identified MPN risk 
associations capture a substantial proportion of total inherited MPN risk and can stratify 
individual risk.  
 
We next sought to use these genetic associations to gain insights into the mechanisms 
underlying genetic predisposition to MPNs. Motivated by prior studies showing improved 
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functional enrichments through the inclusion of sub-genome-wide significant 
associations10, we included all 28 suggestive loci in downstream functional analyses. We 
performed Bayesian fine-mapping on these loci to define credible sets of variants that 
were 95% probable to contain the underlying causal variant at each signal 
(Supplementary Table 4)11. Of the 28 credible sets, 6 (21.4%) contained 5 or fewer 
variants, and in 17 regions (60.7%), the top fine-mapped variant had a PP ≥ 0.25 
(Extended Data Fig. 3), enabling refined prediction of causal variants in the majority of 
regions.  
 
Given that MPNs arise in the hematopoietic compartment, to gain insights into relevant 
cell states, we examined genetic correlations between MPN risk variants and associations 
for 19 blood cell traits in 408,241 European ancestry individuals from the UKBB12. 
Strikingly, MPN variants demonstrated significant positive genetic correlations with 
variants for six diverse blood cell counts – red blood cells, platelets, total white blood cells, 
monocytes, neutrophils, and eosinophils – all of which derive from multi-potential 
hematopoietic stem and progenitor cells (HSPCs) (Fig. 2a-b). We have previously shown 
that variants that are pleiotropically associated with distinct blood lineages preferentially 
fall in accessible chromatin of upstream hematopoietic stem and progenitor populations13. 
Here, a significantly higher proportion of well fine-mapped MPN risk variants (PP > 0.10) 
demonstrated pleiotropic blood trait associations compared to more weakly fine-mapped 
variants (PP < 0.10) (Fig. 2c, 20.8% vs. 0.8%, Fisher’s exact test p = 2.20 x 10-9), 
supporting the concept that MPN risk variants act in early hematopoietic progenitors. 
 
To gain additional in vivo insights into biological connections, we examined the 
relationship between MPN risk and leukocyte telomere length. Telomere length is 
associated with HSC self-renewal potential14, there is a strong correlation between 
telomere length of leukocytes and earlier hematopoietic progenitors15, and individuals 
with telomerase loss-of-function associated-diseases have fewer HSCs16,17. Motivated by 
the robust associations for MPN risk at the telomerase reverse transcriptase (TERT) 
locus, we assessed overlap between genetic associations for MPN risk and leukocyte 
telomere length in 37,684 individuals18. At the TERT locus, we observed that the lead 
variant for increased telomere length, rs2736100 (p = 4.38 x 10-19), was the second most 
highly associated variant for increased MPN risk (p = 9.60 x 10-41) (Extended Data Fig. 
4). The top MPN risk variant at this locus, rs7705526, was not genotyped in the telomere 
length study, but exhibited strong LD with rs2736100 (r2 = 0.49), suggesting a common 
signal. Independently, rs7705526 has been found to be associated with clonal 
hematopoiesis with mosaic chromosomal alterations19. In addition, variants in the TERT 
locus common to both MPN and telomere length GWASs demonstrated positively 
correlated effect sizes (Fig. 2d). We then globally tested whether increased telomere 
length may be causally linked to MPN risk and therefore performed a two-sample 
Mendelian randomization20 using clumped associations from the telomere length GWAS 
as instruments. Applying four different MR tests with varying assumptions, we consistently 
found that increased telomere length was significantly associated with increased MPN 
risk (Fig. 2e). The reverse association was also significant using two out of the four tests 
(see Methods). These data show that MPN risk is bi-directionally linked to increased 
leukocyte telomere length, an important marker of HSC self-renewal capacity. 
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Interestingly, we also noted a suggestive genetic correlation between MPN risk variants 
and those predisposing to clonal hematopoiesis described in a companion manuscript (rg 
= 0.39, s.e.m. = 0.21, p = 0.07)21, suggesting that these loci may not only promote risk for 
overt MPNs, but also somatic mutation acquisition in HSCs via a similar mechanism. All 
of these in vivo phenotypic assessments collectively support a role for modulation of HSC 
function by MPN risk variants. 
 
Given the compelling, albeit indirect, nomination of HSC function by MPN risk variants, 
we next sought an independent method to holistically assess this concept. We have 
previously demonstrated the value of using chromatin accessibility (ATAC-seq) data 
across 18 human hematopoietic cell populations to identify enrichments of fine-mapped 
variants for hematopoietic traits and thereby enable mechanistic elucidation13,22. When 
we overlapped fine-mapped MPN risk variants with hematopoietic ATAC-seq data, we 
found that 12.4% (35/282) of MPN risk variants with PP > 0.01 fell within accessible 
chromatin of one or more hematopoietic populations (Fig. 2f), compared to only 5.35% 
(889/16606) of variants with PP < 0.01 (χ2 p = 3.95 x 10-6), suggesting that stronger fine-
mapped variants are enriched for hematopoietic regulatory function. We next used g-
chromVAR, a high-resolution cell type enrichment tool13, to compute enrichments of fine-
mapped variants across these 18 hematopoietic chromatin accessibility profiles. 
Strikingly, in contrast to common variants associated with blood cell traits, which are 
maximally enriched in terminally differentiated hematopoietic cells13, MPN risk variants 
showed the strongest enrichment in accessible chromatin of HSCs (p = 2.34 x 10-2) (Fig. 
2g). Because g-chromVAR only considers significantly associated loci (the 28 regions 
with p < 1 x 10-6), we also applied LDSC to assess whether MPN risk is enriched in cell 
type-specific accessible chromatin across the entire genome. We again found that HSCs 
showed the highest enrichment relative to all other hematopoietic populations (p = 7.17 x 
10-3) (Fig. 2h). Interestingly, many risk variants locate near known regulators of HSC self-
renewal. For example, rs2834712 (joint p = 1.1 x 10-9) lies within an intron of RUNX123 
(Fig. 2i), and rs7323267 (joint p = 6.3 x 10-9) lies within an intron of FOXO124 (Fig. 2j), 
and both fall in regions with maximal chromatin accessibility in HSCs.  
 
These findings all nominate HSC function as a key target underlying inherited MPN risk. 
However, we wanted to gain further biological insights into this process by using an 
integrative approach to map risk variants to target genes. To increase specificity, we 
focused this analysis on 54 strongly fine-mapped variants with PP > 0.10 and/or lead 
variants (most significant association) across the 28 suggestive loci. We first nominated 
three genes from risk loci containing lead variants or variants at PP > 0.10 with missense 
coding consequences: rs1800057 (risk allele frequency (RAF) = 0.026) causes the 
P1054R substitution in ATM, rs3184504 (RAF = 0.481) causes the R262W substitution 
in SH2B3, and rs17879961 (RAF = 0.017) causes the I157T substitution in CHEK2 
(Supplementary Table 5). For the remaining 25 non-coding risk loci, we prioritized target 
genes via three independent approaches: 1) if a variant was contained within a gene 
body, 2) if hematopoietic promoter capture Hi-C (PCHi-C) data25,26 suggested that the 
variant was contained within an enhancer that looped to a promoter, or 3) if there was 
significant correlation between chromatin accessibility and nearby gene expression 
across hematopoietic cell types, we would nominate the corresponding gene, as we have 
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successfully done for identifying mechanisms by which blood cell trait-associated variants 
act13. Using these approaches, we identified 28 putative target genes underlying MPN 
risk. The nominated genes displayed a much stronger set of protein and other functional 
interactions than expected by chance (STRING database27, 18 vs. 7 expected 
interactions, p = 5.63 x 10-4) (Extended Data Fig. 5). Remarkably, 10 of the 28 genes 
have robustly characterized roles as modulators of HSC self-renewal and other functions, 
including FOXO124, GATA228,29, RUNX123, PODXL30, MECOM31, TERT32, JAK233, 
SH2B334-36, ATM37, and GFI1B38,39 (Fig. 3a). Consistent with this, the most significantly 
enriched gene ontology biological processes for the full gene set included replicative 
senescence, immune system development, and HSC proliferation (Extended Data Fig. 
5, Supplementary Table 6). Moreover, analysis of bulk RNA sequencing of 16 primary 
hematopoietic cell populations showed that the 28 target genes are most enriched for 
expression in HSCs compared to other cell types (rank-sum test, p = 8.7 x 10-3) (Fig. 3a). 
To extend these observations to single cell resolution in a more comprehensive survey of 
human hematopoiesis, we examined the expression of MPN target genes in 278,978 
human bone marrow cells. Across 25/28 target genes with detectable expression, we 
observed a higher MPN score in HSC-enriched cell clusters compared to all other cells. 
Following gene imputation, we noted a significant co-localization between MPN and HSC 
signatures across all cells (Spearman rs = 0.27, p < 2.2 x 10-16) (Fig. 3b-c, Extended 
Data Figs. 6-7). Together, these results indicate that our nominated set of MPN target 
genes are enriched for HSC function and expression. 
 
The global analyses above strongly nominate modulation of HSC function as a driver of 
genetic MPN risk. In two select cases, we performed targeted variant-to-function analyses 
to gain mechanistic insights into disease predisposition, starting with the missense variant 
in CHEK2. CHEK2 has been previously shown to modulate genotoxic responses in 
leukemia, but its role in primary human HSPCs had not been studied40. Importantly, the 
lead risk variant (I157T) in our study has been associated with increased risk for other 
cancers and shown to be a hypomorphic allele with functionally impaired activation of 
downstream effectors41,42. Knowing this, we utilized previously characterized methods to 
suppress its activity or expression40. Consistent with observations made in leukemia cells, 
we found that CHEK2 inhibition reduced genotoxicity upon irradiation of primitive human 
Lin-CD34+CD38- cells, as compared to more differentiated progenitors (Extended Data 
Fig. 8). Remarkably, while we did not observe skewed lineage commitment in colony 
assays by CHEK2 inhibition (Extended Data Fig. 9), suppression of CHEK2 through RNA 
interference increased expansion of human cord blood Lin-CD34+ in long-term cultures in 
the absence of genotoxic stress (Fig. 3d). These results suggest that CHEK2 may 
ordinarily constrain HSPC expansion; reduced CHEK2 function may promote self-
renewal and thereby increase MPN risk. In a second instance, we identified a compelling 
MPN risk locus ~3 kb downstream of GFI1B, falling within a region of active enhancer-
associated histone modifications (H3K27ac) and accessible chromatin in human HSPCs 
(Fig. 3e). The risk locus spanned a super-enhancer defined by H3K27ac signal 
(Extended Data Fig. 10), and its chromatin accessibility across cell types significantly 
correlated with increased GFI1B expression (Pearson r = 0.620, p = 2.01 x 10-5). A 
reporter assay of the lead risk variant (rs621940) revealed that this regulatory region 
conferred hematopoietic transcriptional activity, with the risk variant reducing enhancer 
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activity (Fig. 3f). Endogenous perturbation of the super-enhancer encompassing this risk 
locus in human HSPCs resulted in 99.6% editing efficiency and a 65% reduction in GFI1B 
expression (Fig. 3g-h, Extended Data Fig. 11). To assess for effects on HSC function 
with a more homogeneous endogenous alteration, we performed genome editing-
mediated perturbation of the GFI1B gene itself in human HSPCs and found reduced 
erythroid differentiation, but greatly increased self-renewal of progenitors as 
demonstrated through the presence of increased re-plating capacity in methylcellulose 
colony assays (Fig. 3i-j, Extended Data Fig. 12). Analogous to the results obtained for 
CHEK2, these results suggest that this MPN risk locus reduces GFI1B expression in 
HSPCs and may thereby promote self-renewal. 
 
In summary, we have characterized the germline genetic architecture of MPN risk through 
the largest GWAS to date and implicate HSC function in underlying this risk through a 
number of functional analyses. Our discoveries of common genetic variation underlying 
MPN risk complement other recent studies identifying inherited rare variants that promote 
clonal hematopoiesis43. Understanding the fundamental mechanisms of MPN 
predisposition may inform the development of novel preventive interventions for the 
disease, analogous to the implementation of human papillomavirus testing and 
colonoscopic surveillance to reduce cervical and colorectal cancer incidence, 
respectively44,45. In this context, modulation of HSC function or improved surveillance of 
this compartment may enable therapies to prevent progression to clonal hematopoietic 
disorders like MPNs46-48. More broadly, our findings may serve as a paradigm for 
dissecting the underlying basis of cancer predisposition alleles. 
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Methods  
UK Biobank GWAS 
We performed a GWAS on MPNs using the UK Biobank (UKBB)49. Written consent was 
obtained for all participants. Variant imputation was performed as previously described 
using a combined 1000 Genomes Phase 3-UK10K panel and Haplotype Reference 
Consortium (http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=263)49. The following 
sample-level quality control filters (previously generated by UKBB) were applied to subset 
our samples: self-reported British ancestry with similar genetic ancestry based on a 
principal components analysis of the genotypes, included in kinship inference, no excess 
(>10) of putative third-degree relatives inferred from kinship, no outlier in heterozygosity 
and missing rates, and no putative sex chromosome aneuploidy. 408,241 individuals 
satisfied all of these criteria and were included for genetic association studies. 
 
We curated a definition for the MPN phenotype within UKBB using the following codes: 
Polycythemia (ICD10 D45; ICD9 2384), chronic myeloproliferative disease (ICD10 
D47.1), essential thrombocythemia (ICD10 D47.3, D75.2), familial erythrocytosis (ICD10 
D75.0), osteomyelofibrosis (ICD10 D47.4, D75.81), chronic myeloid leukemia (ICD10 
C921, C922, C931; ICD9 2051), and chronic myeloproliferative disease (ICD10 D47.1). 
Individuals were also classified as cases if they had a self-reported cancer, self-reported 
illness code, or histology of cancer tumor code for polycythemia vera, essential 
thrombocythemia, myelofibrosis, chronic myeloid leukemia, or malignant mastocytosis. 
 
We used SAIGE version 0.29.450 to perform the GWAS using a generalized linear mixed 
model that controls for case-control imbalance. To select for variants used to estimate the 
genetic relatedness matrix (GRM), genotyped variants were filtered using the following 
criteria: minor allele frequency (MAF) > 0.01, LD pruned with r2 threshold of 0.2, Hardy-
Weinberg p-value > 1 x 10-6, and genotype missingness < 0.01. Principal components of 
ancestry were calculated with these variants using PLINK2 (--pca approx). Age, sex, 
genotyping array, and the top 10 principal components were included as covariates when 
fitting the logistic mixed model. For association testing, 26,942,478 autosomal and 
1,039,234 X chromosome variants (excluding the pseudo-autosomal region) with MAF > 
0.0001 and Info > 0.6 were included.  
 
We also performed GWAS on 19 continuous blood traits within the same 408,241 
individuals and same Info and MAF-filtered variants from the UKBB. These associations 
were performed using BOLT-LMM v2.3.251, with the same covariates of age, sex, 
genotyping array, and top 10 principal components.  

 
23andMe GWAS 
GWAS summary statistics on MPNs from the cohort collected by the personal genetics 
company 23andMe, Inc. were obtained from a previous study, whose analysis has been 
described in-depth elsewhere8. Written consent was obtained for all participants. 
Imputation was performed using the August 2010 release of 1000 Genomes reference 
haplotypes. The MPN phenotype was defined using participant self-report for the 
following diseases: PV, ET, PMF, post-PV/ET myelofibrosis [MF], systemic mastocytosis, 
chronic myelogenous leukemia, chronic eosinophilic leukemia, and hypereosinophilic 
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syndromes. For our meta-analysis, we used the revised phenotype in their study which 
also included carriers of the somatic JAK2 V617F mutation. There was a total of 1,223 
cases and 252,140 controls in this population. The GWAS was performed using a logistic 
regression model with covariates of age, gender, and the top five principal components.  
 
FinnGen GWAS 
The GWAS on MPNs in the FinnGen cohort was performed using SAIGE version 0.29.4, 
modified to handle missing genotypes and complete separation in covariates. The 
FinnGen dataset comprised of 96,499 individuals of Finnish descent, including 318 cases 
of MPN and 96,181 controls. Written consent was obtained for all participants. The MPN 
phenotype was defined by individuals with one or more clinical codes in nationwide 
hospital discharge or cause-of-death registries for polycythemia vera (ICD10 D45; ICD9 
238.4; ICD8 208), chronic myeloproliferative disease (ICD10 D47.1), thrombocythemia 
(ICD10 D47.3; ICD9 238.7B; ICD8 287.2), myelofibrosis (ICD10 C9.45; ICD9 238.7A; 
ICD8 209), and chronic myeloid leukemia (ICD10 C92.1; ICD9 205.1). Variant imputation 
was performed using a reference panel of 3,775 whole-genome sequenced individuals 
from Finland. The GRM was calculated with 49,811 variants that were imputed in every 
cohort, and which satisfied the following quality control filters: INFO > 0.95, MAF > 0.05, 
genotype missingness < 0.05, LD pruned with r2 threshold of 0.1. Age, sex, the top 10 
principal components, and genotyping batch/cohort were applied as covariates to the 
SAIGE logistic regression model.  
 
For GWAS variant quality control, variants were excluded based on significant allele 
frequency (AF) differences between Affymetrix batches (association p < 1 x 10-20 between 
one batch and the rest for more than one batch, or AF difference > 10 percentage points 
between one batch and the rest), and AF differences to imputation panel (3,775 WGS 
Finns) (AF difference between batch and panel > 10 percentage points for at least two 
batches or log2(af_batch/af_panel) > 3 for at least one batch). 
 
GWAS meta-analysis  
We aggregated association summary statistics from the UKBB, 23andMe, and FinnGen 
GWAS used a fixed effects model with inverse-variance weighting of log(odds ratios), as 
implemented in the METAL software52. We meta-analyzed 7,329,649 variants which had 
association statistics in at least the two largest cohorts (UKBB and 23andMe). Linkage 
disequilibrium score regression (LDSC) of the meta-analysis showed an LDSC intercept 
of 1.005 and genomic control factor of 1.0255, indicating negligible inflation in test 
statistics due to population structure. Therefore, we did not adjust test statistics using 
genomic control.   
 
Million Veteran Program replication 
We performed replication of our discovery meta-analysis results in 220,810 individuals of 
European descent from the Million Veteran Program (MVP). Written consent was 
obtained for all participants. We attempted to replicate the lead variants at 27 / 28 
suggestive loci identified from our discovery analysis which also had genotype information 
within MVP (Supplementary Table 2); the one exception was rs75405916 (p = 7.4 x 10-

7, RAF = 0.0004), which was not detected in MVP. Within the MVP cohort, MPN cases 
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were defined as individuals carrying substantial JAK2 V617F mutation burden, 
determined by specifying a threshold variant mutant allele intensity for rs77375493, the 
genotyping probe for the V617F mutation. To set the threshold, we utilized the previously 
reported odds ratio of 2.04 between rs7868130 (a JAK2 46/1 haplotype variant) and JAK2 
pV617F, as an estimate of the true association between JAK2 46/1 and V617F cases8. 
Setting the rs77375493 allele intensity threshold to achieve this odds ratio resulted in a 
V617F case prevalence of 0.27% within MVP, which was comparable to the previously 
reported population prevalence of ~0.2%8. The slightly higher point estimate may reflect 
the fact that the MVP cohort is predominantly male and older than other population 
studies, both of which have been associated with increased rates of V617F53. We also 
attempted to replicate using an MPN definition including Phecodes and ICD9 codes 
(polycythemia vera (Phecode 200.1), chronic myeloid leukemia (Phecode 204.22), 
essential thrombocythemia (ICD9 238.71), and myelofibrosis (Phecode 289.1, ICD9 
238.76)). However, this phenotype resulted in a weaker directional concordance and 
fewer replications at p < 0.05 as compared to using solely the JAK2 V617F carrier 
phenotype. Thus, we chose to use the JAK2 V617F carrier definition for final replication, 
given the potential presence of spurious phenotype designations in this cohort. Logistic 
regression for each replication variant was performed using the PLINK2 –glm function, 
with age, sex, and the top 5 principal components included as covariates. Inverse-
variance weighted meta-analysis was used to compute joint p values combining the 
discovery meta-analysis and MVP replication associations. 
 
Approximate conditional association analysis 
GCTA was used to perform approximate conditional and joint association analyses 
(COJO) to identify independent MPN risk loci7. In brief, this method performs a stepwise 
model selection (--cojo-slct) to identify all conditionally independent risk signals at a given 
p-value of association, using GWAS summary statistics and estimated LD from a 
reference panel. For estimation of LD, we used a reference sample of 6,000 unrelated 
individuals of white British origin, randomly selected from the UKBB, similar to the 
approach performed in a previous study54. After excluding variants with low imputation 
quality (INFO < 0.4) or deviation from Hardy-Weinberg equilibrium (p < 1 x 10-6), this 
reference panel included ~36 million variants. The reference panel was converted from 
BGEN files to hard-called PLINK files using PLINK2. When running GCTA-COJO, we set 
the threshold p-value to p < 1 x 10-6 and the distance for assuming complete linkage 
equilibrium (--cojo-wind) at 10000 kb (i.e. 10 Mb). 
 
Polygenic risk score analysis 
We trained a polygenic risk score (PRS) on a meta-analysis of the 23andMe and FinnGen 
cohorts, which included 1,541 cases of MPN and 348,321 controls. We performed LD 
clumping on these meta-analysis associations using PLINK version 1.9055 (--clump) with 
an r2 threshold of 0.2 and 8 different p-value thresholds: p < 1, 5 x 10-3, 1 x 10-3, 5 x 10-4, 
1 x 10-4, 5 x 10-5, 1 x 10-5, 1 x 10-6, and 5 x 10-8.  
 
We applied the PRS to the UKBB, an out-of-sample test set, containing 1,086 cases of 
MPN and 401,155 controls. The PRS was computed for each individual in the UKBB by 
multiplying the genotype dosage of each risk allele for each variant by its association 
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estimate betas (log-odds) as a weight. This was performed using the PLINK2 --score 
function. 
 
For each p-value threshold, we modeled the PRS using a logistic regression with MPN 
case-control status as the phenotype and PRS, age, sex, top 10 principal components of 
ancestry, and genotyping array as covariates. We calculated the area under the receiver-
operator curve (AUROC) for each threshold and determined that the p < 1 x 10-5 threshold 
provided the maximum AUROC (0.669). The PRS at this threshold featured 92 clumped 
risk variants and was used for all further analysis. The proportion of variance explained 
was calculated by using the Nagelkerke’s pseudo-R2 metric. We used this metric to 
calculate the incremental R2, which quantifies the gain in R2 when the PRS variable is 
added to a logistic regression of MPN case-control status on a set of baseline controls 
(sex, age, genotyping array, 10 principal components of ancestry). 
 
To use PRS to stratify individual risk for MPNs, we divided individuals in the UKBB cohort 
into deciles based on their PRS. For each of deciles 2-10, logistic models were fitted with 
the same covariates as used above, comparing MPN risk for members of the given decile 
compared to those in the lowest decile (i.e., decile 1, containing those with the lowest 
10% of PRS). 
 
Genetic fine-mapping 
For each distinct association signal, we calculated approximate Bayes’ factors (ABFs)11 
for all variants within 1-Mb of the lead variant. ABFs were calculated as: 

𝐴𝐵𝐹 = √1 − 𝑟 ∗ 𝑒
+,-

.  

where 𝑟 = 0.04/(𝑠. 𝑒..+ 0.04)  and 𝑧 = 𝛽/𝑠. 𝑒.  For loci with multiple distinct signals, 
statistics were based on approximate conditional analysis, adjusting for all other index 
variants in the region. We then calculated the posterior probability of being causal (PP) 
by dividing the ABF of each variant by the sum of ABF values over all variants in the locus. 
The 95% credible set for each locus was constructed by 1) ranking all variants in 
descending order of PP and 2) including ordered variants until the cumulative PP reached 
95%.  
  
Contribution of variants to overall familial relative risk 
We estimated the proportion of the familial risk of MPNs that can be explained by variants 
identified in our GWAS under a log-additive model, as previously described56. We applied 

the formula 𝜆: = ∑ 𝑝=(1 − 𝑝=)(𝛽=
. − 𝜏=

.)/ ln 𝜆= , where 𝜆:  is the proportion of familial risk 

explained, 𝑝= is the MAF for variant 𝑖, 𝛽= is the log(odds ratio) estimate for variant 𝑖, 𝜏= is 
the standard error of 𝛽=, and 𝜆 is the overall familial relative risk. We assumed the overall 
familial relative risk for MPNs to be 4.93 based on a recent epidemiological study3. 
 
Definition of known loci 
We compiled a list of 10 previously reported genome-wide significant MPN association 
signals from the literature8,9. Loci were only included if they were identified using a similar 
MPN phenotype (i.e., combination of JAK2 V617F carriers and all MPN subtypes, without 
any sub-stratification of MPN subtypes). Loci which surpassed genome-wide significance 
(p < 5 x 10-8) before or after replication steps were included.  
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g-chromVAR cell type enrichment analysis 
Bias-corrected enrichment of MPN risk variants for chromatin accessibility of 18 
hematopoietic populations was performed using g-chromVAR 
(https://github.com/caleblareau/gchromVAR), whose methodology has been previously 
described13. In brief, this method weights chromatin peaks by fine-mapped variant 
posterior probabilities and computes the enrichment for each cell type versus an 
empirical background matched for GC content and feature intensity. For the chromatin 
accessibility component, we used a consensus peak set for all 18 hematopoietic cell types 
with a uniform width of 250 bp centered at the summit. For the variant scores, we used 
the fine-mapped PP for all MPN risk variants with fine-mapped PP > 0.001 across the 28 
suggestive loci. 
 
Linkage disequilibrium score regression 
We used LD score regression (LDSC) to estimate the narrow-sense heritability estimate 
of MPN risk and compute genetic correlations between MPN risk and other phenotypes12. 
Reference LD scores were computed with a subset of European individuals combined 
from the 1000 Genomes Phase 3 (1000GP3) and UK10K cohorts. Variants were filtered 
by MAF > 1%, and 5,653,963 variants were used as input to LDSC. To estimate heritability 
on the liability scale, the sample prevalence of MPNs was 0.00347 in our GWAS, and the 
population prevalence of MPNs was estimated to be 0.000328 based on previous 
reports5,6.  
 
To calculate genetic correlations with blood traits, we first used BOLT-LMM to perform 
GWAS on 19 blood traits in 408,241 European ancestry individuals from the UKBB, the 
same samples used for the MPN GWAS. Imputation and variant quality control filters were 
the same as those applied in the MPN GWAS. To calculate cross-trait correlations, we 
used the same 1000GP3-UK10K reference panel used to estimate LDSC heritability. We 
constrained the intercept by accounting for the known sample overlap between the MPN 
and blood trait GWAS, as well as adjusting for phenotypic correlations between MPN 
case-control status and each of the 19 blood traits. To calculate genetic correlations with 
blood cancers and cardiovascular disease, we obtained previously generated summary 
statistics from the UKBB (see URLs) and calculated genetic correlations as described 
above, except without constraining the intercept. 
 
To calculate cell type enrichments, we generated LD scores for 18 primary hematopoietic 
ATAC peak sets. We also generated a “pan-heme” peak set representing the union of 
peaks across all 18 populations. Adopting the approach previously used for LDSC tissue-
specific enrichments57,  we jointly modeled the annotation for each cell type of interest, 
the “pan-heme” annotation for all hematopoietic peaks, as well as the 52 annotations in 
the baseline model.  
 
Blood trait pleiotropy analysis 
We tested whether fine-mapped MPN risk variants were more likely to demonstrate 
pleiotropic associations with common blood traits from distinct lineages. To do this, we 
performed fine-mapping on all genome-wide significant regions for each of 18 lineage-
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specific blood traits (all except white blood cell count) using FINEMAP v1.3.158.  We then 
assigned each blood trait to a major hematopoietic lineage: basophil count to basophils; 
eosinophil count to eosinophils; neutrophil count to neutrophils; red blood cell count, 
hematocrit, hemoglobin, RDW, MCH, MCHC, MCV, reticulocyte count, and mean 
reticulocyte volume to red blood cells; platelet count, MPV, platelet crit, platelet distribution 
width to platelets, monocyte count to monocytes, and lymphocyte count to lymphocytes. 
We considered a variant to be pleiotropic if it had a fine-mapped PP > 0.10 for blood traits 
from multiple lineages. Then, we constructed a contingency table for the proportion of 
MPN fine-mapped variants (PP > 0.10 vs. PP < 0.10), which were classified as pleiotropic 
vs. not pleiotropic, and calculated an enrichment using a two-sided Fisher’s exact test.  
 
Mendelian randomization 
Mendelian randomization (MR) analysis was performed using the R packages 
TwoSampleMR20 and MRPRESSO59. MR consists of two steps: (i) identification of proper 
instrumental variables or genetic predictors, i.e., variants independently associated with 
the exposure factor, and (ii) calculation of causal estimates60. To achieve step 1, we first 
obtained GWAS summary statistics for leukocyte telomere length. We then used the 
UCSC liftOver tool to convert variant coordinates from the hg18 to hg19 genome build. 
We filtered for variants associated with leukocyte telomere length at a minimum p < 1 x 
10-5, and then clumped these variants with an LD threshold of r2 < 0.001 to obtain 27 
independent genetic instruments. 
 
Next, we extracted the MPN risk effect sizes of these 27 genetic instruments from our 
MPN GWAS and harmonized the data to ensure the variant statistics for telomere length 
and MPN were relative to the same allele. To calculate causal estimates of telomere 
length on MPN risk, we implemented 4 different methods with varying assumptions 
regarding horizontal pleiotropy: MR-Egger regression with bootstrap61, the IVW method, 
the weighted median test, and MR-PRESSO. All tests found a significant causal 
relationship between telomere length and MPN risk: IVW, p = 0.0028; outlier-corrected 
MR-Presso, p = 0.0015; MR-Egger, p = 0.0031; weighted-median, p = 0.033. 
 
We also tested the reverse association to derive causal estimates of MPN risk on 
telomere length. The same parameters were used, except now we first clumped the MPN 
risk variants, and then extracted the corresponding effect sizes for telomere length. The 
MR test statistics for the reverse association were the following: IVW, p = 0.061; outlier-
corrected MR-Presso, p = 0.36; MR-Egger, p = 0.063; weighted-median, p = 0.040. 
 
Target gene identification 
To increase specificity of the target gene analysis, we restricted the input to 54 variants 
which were either fine-mapped with PP > 0.10 and/or the lead variant at a risk locus (to 
allow for representation of at least one variant per region). In all analyses, the HLA locus 
(chromosome 6:28866528-33775446) was excluded due to its complex linkage structure.  
 
We first checked whether any of these variants resulted in coding mutations or splice 
alterations. To check for splice variants, we annotated all risk variants with spliceAI62, a 
neural net prediction tool for splice altering variants. No variants had a delta score > 0.2, 
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indicating a low probability for any splicing changes. We used Variant Effect Predictor63 
to screen for coding variants, which identified two variants in distinct loci with PP > 0.10 
causing missense mutations: rs1800057 for ATM and rs3184504 for SH2B3. A lead 
variant, rs17879961, also caused a missense mutation in CHEK2. These three regions 
were mapped to these respective target genes and were not analyzed further using non-
coding variant approaches, described below. 
 
To map the remaining noncoding risk regions to target genes, we incorporated 3 different 
functional annotations: (1) gene bodies, (2) genes implicated by enhancer-promoter 
interactions, and (3) chromatin accessibility regions correlated with nearby gene 
expression. We did not incorporate expression quantitative loci (eQTL) data because to 
our knowledge, there are no eQTL experiments conducted in hematopoietic bone marrow 
stem and progenitor cells (HSPCs), the relevant tissue for MPN pathogenesis.  
 
To map variants to gene bodies, we used gene annotation coordinates from GENCODE 
release 2864 for the GRCh37 genome build. We removed all ribosomal protein genes by 
excluding any genes with names starting with “RP”. We then identified the nearest genes 
to risk variants using the nearest command in the GenomicRanges R package. 
 
For nominating target genes by enhancer promoter interactions, we used two published 
promoter capture hi-C datasets25,26, spanning 15 terminal hematopoietic cell types and 
CD34+ HSPCs. We filtered for looping interactions with a CHiCAGO score >5. If multiple 
gene targets were nominated for one variant, only the gene with the top CHiCAGO score 
was kept.  
 
ATAC-RNA correlations were generated by computing Pearson correlations between 
hematopoietic ATAC peaks and RNA counts of genes within a 1-Mb window of the ATAC 
peak, as previously described13.  
 
Finally, gene targets from the coding annotations, gene body co-localization, PCHi-C, and 
ATAC-RNA correlations were combined and filtered for protein-coding genes, as 
annotated by Ensembl using the annotables R package.  
 
Target gene cell type enrichments 
To measure the enrichment of MPN target genes in bulk RNA-seq data in 16 
hematopoietic populations, we performed a rank-sum permutation test. First, we summed 
the ranks of the 28 target genes ordered by expression (log2 counts per million) amongst 
all assayed protein-coding genes with non-zero expression in each cell type. Next, we 
randomly sampled 10,000 equally sized gene sets and obtained their rank sums within 
each cell type. We calculated the target gene enrichment z-score as the difference 
between the mean rank-sum of the permuted sets and the target gene rank sum, divided 
by the standard deviation of the permuted gene set rank-sums. The z-score was then 
converted into a two-sided p-value for each cell type. 
 
Gene set enrichments 
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We used the Functional Mapping and Annotation of Genome-Wide Association Studies 
(FUMA) tool65 to map putative target genes to enriched gene sets. All protein-coding 
genes were used as the background. Only Gene Ontology Biological Processes were 
considered.  
 
Single-cell RNA sequencing analysis 
Single-cell RNA-seq of 378,000 cells from human bone marrow were generated as part 
of the Human Cell Atlas project using 10X Genomics sequencing technology and aligned 
to the GRCh38 reference genome using the Cell Ranger pipeline as previously described 
(https://preview.data.humancellatlas.org/). Downstream analyses including 
normalization, scaling, and cell clustering were performed using the R software package 
Seurat66 version 2 (http://satijalab.org/seurat/). We filtered out low-expressed genes 
expressed in fewer than 50 cells and low-quality cells with fewer than 500 detected genes, 
leaving 19,156 genes and 278,978 cells for downstream analysis. Raw gene expression 
counts of each cell were normalized over total counts and log transformed, and gene 
expression was then scaled to have a mean of 0 and variance of 1 across cells. We 
performed dimensionality reduction using PCA, with the top 1000 most variable genes as 
input, and computed the top 50 principal components (PCs). To identify clusters of cells, 
we used the ‘FindClusters’ function from Seurat, which applies a shared nearest neighbor 
modularity optimization-based clustering algorithm to identify clusters based on their PCs 
(in this case, top 50). To infer the HSC population, we used a marker gene signature 
similar to one recently applied in a different scRNA-seq human hematopoiesis dataset67 
– CD34, HLF, and CRHBP. Of the 28 MPN target genes, we excluded three which were 
detected in less than 50 cells, resulting in an aggregate MPN signature of 25 genes. To 
calculate scores based on specific gene sets (e.g., HSC marker genes, MPN target 
genes) for each cell, we calculated the average of the Z-normalized expression (across 
all cells) of each gene in the list. To adjust for dropout in single-cell data when estimating 
the correlation between MPN and HSC signatures, we applied a gene imputation 
approach called MAGIC to infer missing transcripts in cells.  To do so, gene expression 
value in all cells were normalized, dimensionally reduced and transformed by the internal 
algorithms in MAGIC with the parameters: n_pca_components = 100, t = 6, k = 10, 
alpha = 15, rescale_percent = 99. Following imputation, marker gene expression was 
again used to calculate an MPN and HSC signature per cell, as described above, and a 
Spearman correlation of these scores was calculated.  
 
Irradiation experiments 
Umbilical cord blood Lineage negative (Lin-) and CD34+ cells were obtained using 
StemSep system according to the manufacturer’s protocol (Stem Cell Technologies, 
Canada). Lin-CD34+ cells were sorted to obtain HSC (CD34+38-/lowCD45RA-CD90+), CMP 
(CD34+38+CD45RA-CD135+), GMP (CD34+38+CD45RA+CD135+), and MEP 
(CD34+38+CD45RA-CD135-) fractions. Then cells were resuspended in X-VIVO 10 
(BioWhittaker, Waldersville, MD) medium supplemented with 1% BSA, SCF (100 ng/ml), 
FLT3L (100 ng/ml), TPO (15 ng/ml), G-CSF (10 ng/ml), and IL-6 (10 ng/ml) and incubated 
for 72-96 hours followed by irradiation with 3Gy. When indicated, cells were pre-treated 
with CHEK2i (CHEK2 Inhibitor II,10uM final, Sigma 220486) or DMSO for 1hr prior to 
irradiation. Assessment of IR-induced cell death in the indicated populations 18hr post IR 
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relied on double staining with Annexin and Sytox. IR-induced cell death was calculated to 
reduce the variability between CD34+ batches by subtracting the fraction of 
AnnexinV+Sytox+ cells scored in the untreated sample from the same fraction in the IR 
sample. 
 
Viral constructs, human CD34+ transduction and expansion assays 
The following  pLKO-puro lentiviral shRNA constructs from the RNAi consortium shRNA 
library (TRC, https://portals.broadinstitute.org/gpp/public/) were used: shCHEK2 
(TRCN0000039946) and shControl (TRCN0000231746). This shRNA has been shown to 
induce knockdown of total and phosphorylated CHEK2 protein40. Viral particles 
pseudotyped with VSV-G were prepared using transient transfection of 293T cells as 
described elsewhere68.  
 
Lin-CD34+ cells were incubated with the indicated lentiviruses, at multiplicity of infection 
50-100, in the X-VIVO 10 medium supplemented with 1% BSA, SCF (100 ng/ml), FLT3L 
(100 ng/ml), TPO (15 ng/ml), G-CSF (10 ng/ml), and IL-6 (10 ng/ml) for 16 hours followed 
by cell wash and medium replacement.   Puromycin (500ng/ml) was added to the infected 
cells two days post infection for the additional two days. At the end of puromycin selection 
CD34+ cells were seeded in the ex vivo expansion cultures as previously described69. 
Briefly, CD34+ cells were plated in IMDM, 10% FCS (Sigma) supplemented with FLT3L 
(50 ng/ml), TPO (20 ng/ml), SCF (50 ng/ml), and IL-6 (10 ng/ml) at the density of 1 × 
105 cells/ml. Every seven days, cells were counted, washed, and resuspended at the 
density of 1 × 105 cells/ml in fresh medium and cytokines. 
 
Super-enhancer analysis 
To identify super-enhancers within HSPCs, we utilized previously reported H3K27Ac 
ChIP-Seq dataset from adult CD34+ HSPCs70. The raw sequencing data was re-aligned 
to human genome build hg19 using Bowtie271 with the --very-sensitive parameter, and 
PCR duplicates were removed with the Picard MarkDuplicates command. ChIP-Seq 
peaks were called using MACS272 with the --nomodel option and all other parameters left 
as default. Next, the ranking ordering of super enhancer (ROSE) software73,74 was 
executed on the ChIP-Seq peaks to define super-enhancer status using the following 
arguments (-s 9000 -t 2500). Enhancers were ranked according to their total reads per 
million base pairs. An inflection point in the distribution of the occupancy of the factor was 
used to establish the cutoff for super-enhancers. For visualization, the aligned ChIP-Seq 
H3K27ac data was converted from BAM to bigWig with bin sizes of 100 base pairs each 
and normalized to counts per million mapped reads. 
 
Luciferase reporter assays 
The genomic region containing risk and non-risk alleles were synthesized as gblocks (IDT 
Technologies) and cloned into the Firefly luciferase reporter constructs (pGL4.24) using 
NheI and EcoRV sites. The Firefly constructs (500ng) were co-transfected with pRL-SV40 
Renilla luciferase constructs (50ng) into 100,000 K562 cells using Lipofectamine LTX 
(Invitrogen) according to manufacturer’s protocols. Cells were harvested after 48 hours 
and the luciferase activity measured by Dual-Glo Luciferase Assay system (Promega). 
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For each sample, the ratio of firefly to Renilla luminescence was measured and 
normalized to the minimal promoter construct. 
 
Ribonucleoprotein electroporation of CD34+ human HSPCs 
Electroporation was performed using Lonza 4D Nucleofector using 20ul Nucleocuvette 
Strips. For the large enhancer element deletion experiment, CD34+ HSPCs were thawed 
24 hrs before electroporation. The RNA complex was made by mixing Cas9 (50 pmol) 
and modified sgRNAs from Synthego (100 pmol in total), including two guides (sgRNA4: 
GGCCCAGAAGTGTGGCTGT & sgRNA8: ATGACTTGCTTAGAGCACCA) targeting the 
five and three prime end of the large enhancer element (hg19 chr9:135868919-
135880520). For negative control, a guide targeting AAVS1 site was used 
(GGGGCCACTAGGGACAGGAT). GFI1B gene expression and editing outcome of the 
electroporation were measured at 6 days post-electroporation. Quantitative PCR was 
performed using SYBR green (Bio-Rad) to access the frequency of deletion and inversion 
of the target sequences in bulk cell populations, with primers designed to detect uncut 
(forward: GAGCCAGCAAAGCCTTAGAA; reverse: GGGAGTATGCAAAGCAGCTC), 
deletion (forward: TGTCGGTGTCCTGTCTTGAA; reverse: 
AGACAGCATACGGGGCTAAA), and inversion (forward: 
GAGTATGCAAAGCAGCTCCC; reverse: CTGCGGGTGGGTTTTCTTAT) events. 
 
For the coding deletion experiment, CD34+ HSPCs were thawed 48 hrs before 
electroporation. The RNP complex was prepared by mixing Cas9 (50 pmol) and modified 
sgRNA from Synthego (100 pmol) and incubating for 15 min at room temperature 
immediately before electroporation. HSPCs (3.75 × 10 5) resuspended in 20 μl P3 
solution were mixed with RNP and transferred to a cuvette for electroporation with 
program DZ-100. The electroporated cells were resuspended with Stemspan II media 
with CC100 cytokine cocktail (Stem Cell Technologies). Two guides targeting GFI1B 
coding regions (sgRNA1: GGGGTCGGGACAGCACAATG; sgRNA2: 
CCTTGTTGCACTTCACACAG) and control non-targeting guide (NT) was used in these 
experiments. Gfi-1b protein expression was measured at 5 days post-electroporation.  
 
Colony-forming unit cell assays 
3 days RNP post-electroporation, 500 CD34+ HSPCs were plated in 1ml methylcellulose 
media (# H4034, Stem Cell Technologies). Primary CFU-C colonies were counted after 
14 days. For the colony replating experiments, 2 weeks after the primary plating, the 
colonies from three pates were pooled, washed with PBS, and the cells were plated in 
new methylcellulose media at 25,000 cells/ml for an additional 2 weeks. 
 
Data availability 
We provide full summary statistics for the MPN meta-analysis comprising UK Biobank 
and Finngen data at https://www.bloodgenes.org/ (to be uploaded). Summary statistics 
from analyses based entirely or in part on 23andMe data can only be reported for up to 
10,000 SNPs. Thus, all lead variants and the next 8,000 most significant variants from 
the full GWAS meta-analysis (UK Biobank, Finngen, 23andMe) can be downloaded from 
https://www.bloodgenes.org/ (to be uploaded). To fully recreate our meta-analysis results 
for MPN: (1) obtain MPN summary statistics from 23andMe; (2) conduct a meta-analysis 
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of our summary statistics with the 23andMe summary statistics. Individual genetic and 
phenotypic UK Biobank data are available upon application to the UK Biobank 
(https://www.ukbiobank.ac.uk). 
 
Code availability 
Code and source data required for reproducing results and figures discussed herein are 
available on GitHub (https://github.com/sankaranlab/mpn-gwas).  
 
URLs 
g-chromVAR: https://github.com/caleblareau/gchromVAR; Immune cell atlas: 
https://preview.data.humancellatlas.org/. 
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Table 1: Genome-wide-significant loci from MPN GWAS.  

locus SNP Chr bp risk nonrisk RAF OR OR_95CI pvalue joint_pvalue nearest_gene other_genes 

3q21.3 rs9864772* chr3 128316939 G A 0.605 1.16 1.1-1.23 1.99E-07 2.64E-08 GATA2  

3q25.33 rs74676712* chr3 160284736 T C 0.1062 1.31 1.2-1.43 3.35E-09 2.64E-11 KPNA4  

3q26.2 rs12491785 chr3 168846701 C T 0.3938 1.18 1.12-1.25 4.51E-09 5.80E-10 MECOM  

4q24 rs1548483 chr4 105749895 T C 0.0391 2.01 1.74-2.32 3.98E-21 6.01E-30 TET2  

5p15.33 rs7705526 chr5 1285974 A C 0.3376 1.58 1.49-1.68 1.88E-48 1.88E-54 TERT  

5p15.33 rs2853677 chr5 1287194 G A 0.4227 1.45 1.37-1.53 8.40E-39 1.66E-48 TERT  

6p21.31 rs116466979* chr6 34235378 C T 0.0453 1.5 1.31-1.71 3.34E-09 2.31E-12 NUDT3 HMGA1 

7q32.3 rs62471615 chr7 130746955 C A 0.2953 1.29 1.21-1.37 6.06E-16 2.31E-17 MKLN1  

9p24.1 rs7868130 chr9 4998401 T C 0.2695 2 1.88-2.12 9.00E-115 1.22E-147 JAK2  

9q34.13 rs621940 chr9 135870130 G C 0.1572 1.24 1.16-1.33 4.13E-09 1.83E-11 GFI1B  

11q22.3 rs1800057 chr11 108143456 G C 0.0262 1.61 1.38-1.89 2.60E-09 7.27E-10 ATM  

12q24.12 rs7310615 chr12 111865049 C G 0.485 1.3 1.23-1.38 2.12E-20 2.91E-21 SH2B3 ATXN2 

13q14.11 rs7323267* chr13 41204015 C T 0.2031 1.19 1.12-1.28 1.15E-07 6.31E-09 FOXO1  

21q22.12 rs55857134* chr21 36347627 C T 0.3339 1.19 1.12-1.26 1.01E-08 1.05E-09 RUNX1  

 
Variants shown are the most associated variant at each locus. Novel associations are denoted with an 
asterisk after the SNP. Coordinates based on hg19 genome build. Alleles are on the + strand. Locus, 
chromosome band and locus; SNP, variant RSID identifier; Chr, chromosome; bp, base position; risk, 
risk-increasing allele; nonrisk, other allele; RAF, risk allele frequency; OR, odds ratio estimate for risk 
allele; OR_95CI, 95% confidence interval for OR; pvalue, discovery GWAS association p-value; 
meta_pval, joint discovery + replication association p-value; nearest_gene, nearest gene to variant; 
other_genes, additional genes located within 25 kb of the variant. 
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Figures 

 
Figure 1. Characterizing the genetic architecture of germline MPN risk. a, Manhattan 
plot and quantile-quantile (QQ) plot (embedded) illustrating results of the genome-wide 
association study (GWAS) meta-analysis for MPNs in 2,627 cases and 755,476 controls 
of European descent. The x axis is chromosomal position and the y axis is the significance 
of association derived by logistic regression. Association signals that reached genome-
wide significance (P < 5 x 10−8) are shown in blue, and signals that reached suggestive 
significance (P < 1 x 10-6) are shown in green. The QQ plot illustrates the deviation of 
association test statistics (points) from the distribution expected under the null hypothesis 
(line). Labels correspond to nearest gene symbols at each distinct association locus (+/- 
500 kb). b, Polygenic risk score (PRS) percentile among MPN cases versus controls in 
the UK Biobank testing dataset. Box plots represent the median and interquartile range; 
whiskers extend 1.5x the interquartile range from the hinges of the box plots. c, Additional 
variance in MPN risk explained by PRS compared to age, sex, and combined age and 
sex. d, Odds ratio (mean and 95% confidence interval) for MPN according to deciles of 
the PRS, with decile 1 (10% of individuals with lowest PRS) as the reference group.  
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Figure 2. Functional enrichments in MPN risk. a, Schematic depicting the trajectory of 
undifferentiated hematopoietic stem and progenitor cells (HSPCs) into various committed 
cell types: lymphocytes (LYMPH), monocytes (MONO), neutrophils (NEUT), basophils 
(BASO), eosinophils (EO), red blood cells (RBC), and platelets (PLT). b, Genetic 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 8, 2019. ; https://doi.org/10.1101/790626doi: bioRxiv preprint 

https://doi.org/10.1101/790626
http://creativecommons.org/licenses/by-nc-nd/4.0/


 32 

correlations (mean and standard error) between MPN and 19 commonly measured blood 
traits (results from UK Biobank GWAS of 408,241 individuals): WBC, white blood cell; 
RETIC, reticulocyte; RDW, red cell distribution width; PDW, platelet distribution width; 
MCV, mean corpuscular volume; MCHC, mean corpuscular hemoglobin concentration; 
MCH, mean corpuscular hemoglobin; HGB, hemoglobin; HCT, hematocrit. Red shading 
indicates significance after adjusting for false discovery rate (FDR-adjusted p < 0.05). c, 
Proportion of fine-mapped MPN risk variants with fine-mapped posterior probability (PP) 
> 0.10 vs. PP < 0.10 that exhibit pleiotropic associations with blood traits from 2 or more 
lineages. Absolute proportions are listed above the stacked bar plots. d, Z-scores of 
variants in the TERT locus for MPN vs. telomere length. The dashed line represents the 
linear regression line of best fit. Points colored in orange indicate variants that reach 
genome-wide significance in both the MPN and telomere length GWAS. e, Mendelian 
randomization scatter plot showing pruned telomere length GWAS variants (p < 1 x 10-5) 
and their effects on MPN risk (outcome) versus telomere length (exposure). Lines 
represent the slopes of the three methods tested (MR Egger, inverse-variance weighted, 
weighted median). Error bars represent standard errors of effect sizes. f, Heatmap 
depicting fine-mapped MPN risk variants, clustered by chromatin accessibility across 18 
primary hematopoietic populations: B, B cell; CD4, CD4+ T cell; CD8, CD8+ T cell; 
CLP, common lymphoid progenitor; CMP, common myeloid progenitor; ery, erythroid; 
GMP, granulocyte–macrophage progenitor (3 sub-populations); HSC, hematopoietic 
stem cell; LMPP, lymphoid-primed multipotent progenitor; mDC, myeloid dendritic cell; 
mega, megakaryocyte; MEP, megakaryocyte–erythroid progenitor; Mono, monocyte; 
MPP, multipotent progenitor; NK, natural killer cell; pDC, plasmacytoid dendritic cell. Each 
row marks a fine-mapped variant, each column denotes a hematopoietic cell type, and 
color denotes relative chromatin accessibility (blue = least accessible chromatin, red = 
most accessible chromatin). Fine-mapped posterior probability (PP) is indicated to the 
right. g-h, g-chromVAR and LD score regression results for the enrichment of MPN risk 
variants across chromatin accessibility profiles of 18 hematopoietic cell types. i-j, 
Examples of fine-mapped risk variants with high chromatin accessibility in hematopoietic 
stem cells (HSCs), located in or nearby genes known to regulate HSC function: (i) 
rs2834712 for RUNX1 and (j) rs7323267 for FOXO1.  
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Figure 3. Mapping MPN risk variants to target genes. a, Heatmap depicting gene 
expression across 16 hematopoietic populations for 28 target genes of MPN risk loci.  
Each row marks a target gene, each column denotes a hematopoietic cell type, and color 
denotes relative gene expression (blue = lowest expression, red = highest expression). 
Bar plot above the heatmap depicts the enrichment of target gene expression in each cell 
type, based on a rank-sum permutation test. Genes which have been previously shown 
to be involved in hematopoietic stem cell function are boxed in red. b-c, UMAP projections 
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of 278,978 single cells from human bone marrow, colored according to (b) HSC and (c) 
MPN target gene signatures. d, Expansion of Lin-CD34+ derived hematopoietic stem and 
progenitor cells after short hairpin RNA knockdown of CHEK2 vs. control. e, MPN risk 
variant rs621940 falls in a region of HSPC H3K27ac signal (top row) and hematopoietic 
chromatin accessibility (all subsequent rows) ~3 kb downstream of GFI1B, a transcription 
factor known to maintain HSC quiescence. A locus plot showing all MPN GWAS variants 
in this region is shown above, plotting -log10(p) of association; color reflects linkage 
disequilibrium to lead variant rs621940; the dashed line marks the threshold of genome-
wide significance (p = 5 x 10-8). f, Reporter assays demonstrate allele-specific enhancer 
activity of rs621940 in hematopoietic cells, compared to a minimal promoter (MinP). g, 
CRISPR/Cas9 disruption of GFI1B super-enhancer (Enh edit) in human CD34+ HSPCs 
results in 99.6% editing rate (69.4% deletion, 30.2% inversion), compared to 0.8% editing 
rate in a negative control AAVS1 guide. h, GFI1B super-enhancer disruption in human 
HSPCs leads to 65% reduction in GFI1B gene expression compared to AAVS1 control. i, 
Human HSPCs were electroporated with Cas9 targeting a coding region of GFI1B vs. 
nontargeting (NT) sequence and plated for primary and secondary colony-forming 
assays. j, GFI1B coding disruption (CDS) leads to reduced erythroid primary colony 
formation compared to NT control, but increased secondary colony formation. CFU-M, 
colony forming unit-macrophage; CFU-GM, granulocyte macrophage; CFU-GEMM, 
granulocyte erythrocyte macrophage megakaryocyte; CFU-G, granulocyte; BFU-E, burst 
forming unit-erythroid. In d, f, g, h, and j, error bars represent standard error of the mean. 
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