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Abstract

Genetic programming, in conjunction with advanced analytical instruments, is a novel tool for
the investigation of complex biological systems at the whole-tissue level.

In this study, samples from tomato fruit grown hydroponically under both high- and low-salt
conditions were analysed using Fourier-transform infrared spectroscopy (FTIR), with the aim of
identifying spectral and biochemical features linked to salinity in the growth environment.

FTIR spectra are not amenable to direct visual analysis, so supervised machine learning was used
to generate models capable of classifying the samples based on their spectral characteristics. The
genetic programming (GP) method was chosen, since it has previously been shown to perform
with the same accuracy as conventional data modelling methods, but in a readily-interpretable
form.

Examination of the GP-derived models showed that there was a small number of spectral regions
that were consistently being used. In particular, the spectral region containing absorbances
potentially due to a cyanide/nitrile functional group was identified as discriminatory. The
explanatory power of the GP models enabled a chemical interpretation of the biochemical
differences to be proposed. The combination of FTIR and GP is therefore a powerful and novel
analytical tool which, in this study, improves our understanding of the biochemistry of salt
tolerance in tomato plants.

Introduction

The metabolome is a generic term for the total biochemical composition of a cell or tissue sample at any
given time. Recent advances in DNA sequencing have lead to an explosion in the number of known
gene sequences, but the majority of these new genes have never been characterised experimentally, and
most have completely unknown functions within the cell. By investigating the changes in the
metabolome of biological systems under different conditions, it is hoped that previously undescribed
metabolic processes or pathways may be uncovered, leading to functional assignments for many of the
newly-discovered genes within the genomic databases. This area of biology, termed functional
genomics, will be a major focus of study over the next decade.
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In order to study the metabolome of biological samples, new analytical techniques need to be
developed. A typical metabolome study seeks to detect changes in the levels of a few specific
biochemicals against a background of more than a thousand other cellular components. To address this,
analytical instumentation is being developed which is capable of measuring biochemical signatures
from whole-tissue or whole-organism samples. This typically results in datasets comprising
measurements of many hundreds or thousands of variables. To complicate this task further, the
identities of the particular biochemicals to be monitored are frequently unknown at the outset. The
power of GP to select variables from high dimensional data and to form interpretable predictive models
gives it a unique advantage in the analytical interpretation of metabolomic data.

Over the past two decades, the tomato as a crop has increased in popularity. Consequently, much
research has been aimed at improving the economic viability of tomato production and post-harvest
stability.  Environmental stress, such as high salt concentration, is one of the main parameters limiting
crop production. The tomato cultivar Edkawy is potentially salt-tolerant as it grows in the El-Bosaily
area of North Egypt, where the soils are saline sands. Edkawy has already been studied in terms of salt
tolerance and previous literature provides evidence that this tomato variety may have salt tolerant
attributes[1,2]. In this study, Edkawy plants were cultivated using a hydroponic drip irrigation system,
allowing precise control of the nutrient conditions within the root zone, including the salinity level. The
aim of the study was to identify biochemical constituents (biomarkers) within the fruit tissue which are
discriminatory for salt-grown tomato plants, and hence to contribute to the understanding of the
fundamental biological mechanisms potentially underlying salt tolerance in tomato plants. This in turn
may lead to rational improvements in the quality of tomato fruit grown in conditions of high salinity.

Fourier-transform infrared spectroscopy [3] is a physico-chemical analytical technique, which uses the
vibrational characteristics of chemical bonds within molecules to obtain a ‘fingerprint’ spectrum with
features defined by the functional chemical groups within the sample. This form of analytical technique
is therefore able to give quantitative information about the total biochemical composition of a sample.
A thin layer of the biological sample to be analysed is illuminated in the infrared to obtain an
interferogram (produced by splitting an infrared beam of light, extending the path length of one half by
reflecting it off a movable mirror, and recombining the beams optically). Chemical groups within the
sample absorb specific frequencies of light within the interferogram due to ‘resonance’ with their
vibrational motions, the precise frequencies absorbed being related to the energies specific to the
vibrational modes of each chemical group. The information encoded in the reflected/absorbed light is
then recovered by performing a Fourier-transform on the detected signal. The FTIR spectrum so
obtained comprises 882 variables, each of which indicates the level of absorbance at a particular
frequency of infrared light.

A readily accessible interpretation of such extremely high-dimensional spectra, also known as
hyperspectral data, is often very difficult to obtain. Conventional analysis of data of this form falls into
two types. The first type, unsupervised learning methods, includes principal components analysis
(PCA), discriminant function analysis (DFA) and hierarchical cluster analysis (HCA), and seeks to form
separable clusters in the data by performing mathematical transforms derived from the variables within
the dataset without reference to known classes.  The second type, supervised learning methods, includes
partial least squares (PLS), multivariate rule induction (MRI), inductive logic programming (ILP) and
artificial neural networks (ANNs), and seeks to refine a model based on the accuracy of its predictions
for a set of examples with a known class structure. Although widely used, none of these methods
provide models which are readily interpretable in a chemical sense.

Genetic programming [4-6] is an evolutionary technique which uses the concepts of Darwinian
selection to generate and optimise a desired computational function or mathematical expression. GP is a
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supervised learning method, and consequently requires a set of training examples to form predictive
models that can then be applied to the classification of a set of previously unseen test samples. It has
previously been shown that GP performs at least as well as conventional predictive modelling methods
for analysing hyperspectral data [7].

Recently, hybrid GA-GP systems have been described [8,9] which are able to produce accurate
predictive models whilst minimising their complexity by enforcing constraints on their functional form
and expression length. However, a full GP system was chosen for use in this study because the precise
mathematical form and complexity of predictive models able to classify tomato fruit tissue samples
based on their FTIR spectra were unknown at the outset.

Methods

Plant Cultivation

The plants were grown in a hydroponic open-drip irrigation system, using perlite as an inert substrate.
The use of a hydroponic system is ideal for studies into plant physiology as it allows complete control
over the nutrients applied to the plants. The system was arranged to facilitate saline and control
treatments. The capacity of this system was 120 plants with 60 replicates per treatment. All plants were
irrigated with complete liquid fertiliser and supplementary sodium chloride (4000 ppm) was applied to
the saline treated plants.

Fruit Tissue Preparation

Twenty fully ripe (at stage 10 on the OCDE tomato ripening chart) Edkawy fruits were harvested. Fruit
were selected for uniformity to maximise homogeneity between samples. Ten fruit were taken from salt-
grown plants, and ten from control plants. The seeds and skin were removed, the outer pericarp was
crushed using a press, and kept on ice. The extract was homogenised using a Polytron blender at speed
5 for 1 minute. After homogenisation, 1ml aliquots of the sample were placed in Eppendorf tubes, and
snap-frozen in liquid N2. These were stored at -70°C until needed.

FTIR Spectroscopy

Ten replicate 5µl samples of each of the 20 fruit tissue samples were applied to wells drilled on a
sandblasted aluminium plate, arranged to minimise the effects of artifactual trends in the data. Prior to
analysis, the samples were oven-dried at 50 °C for 30 min. The plate was loaded onto the motorised
stage of a reflectance thin-layer chromatography (TLC) accessory attached to a Bruker IFS28 FTIR
spectrometer (Bruker Ltd.) equipped with a mercury-cadmium-telluride (MCT) detector cooled using
liquid N2.

The FTIR spectra were collected over a wavenumber range from 4000 cm-1 to 600 cm-1 under the
control of an IBM-compatible personal computer using OPUS 2.1 software running under the IBM
OS/2 Warp operating system. Spectra were acquired at a rate of 20 s-1, and at a resolution of
approximately 3.85 cm-1. To improve the signal-to-noise ratio, 256 spectra were recorded and averaged
for each sample. The complete dataset therefore comprised 200 averaged spectra, each containing 882
input variables. 100 spectra (50 from saline-grown and 50 from control fruit samples) were used by the
GP as a training set to derive the models, and the remaining 100 spectra were used to test their
predictive ability.
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Genetic Programming

The GP implementation used in this study was capable of performing non-linear multivariate
regressions with automatic variable selection. It was written in C, and was run on IBM-compatible PCs
under Windows NT 4.0, and on DEC Alpha-based PCs under Linux 5.1.

The GP used the arithmetic operator functions add, subtract, multiply, and protected divide and a
Boolean ‘if greater than or equal to’ function. The if function returned a value of 1.0 if the first
argument was greater than or equal to the second argument; 0.0 otherwise. To avoid possible numeric
overflows, a protected divide function was used which returned a numerical value of 1015 for divisions
with a denominator ≤10-15. Additional protection from floating-point errors was enforced by clipping
the return value of each node into the range ±1015.

Terminals comprised either floating-point constants (initialised randomly in the range –10.0 to 10.0) or
input variables (corresponding to one of the 882 absorbance measurements which comprised each
spectrum).

The GP generated initial individuals with random function trees of depth 2 to 6, and assessed their
fitness using a scoring function that compared ei (the model’s estimate of the output for example i) with
oi (the experimentally-observed value) by calculating the root-mean-square error of prediction
(RMSEP) for n training examples:
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The fittest individuals were those which gave the lowest RMSEPs for the training set examples.

Since the dataset contains two classes (fruit from plants grown under either saline or control
conditions), class membership was defined in the training examples by assigning a target output value
of 1.0 to members of the saline-grown class, and 0.0 to members of the control class. A correct
classification assigned when the output value of the GP-derived rule was within 0.01 of the target
output for any given spectrum.

GP-generated rules, if allowed to evolve unchecked, tend to become longer and more arithmetically
complex as the evolution proceeds, a phenomenon known as bloat [10]. This increase in complexity
reduces the ready interpretability of the expressions generated. To combat this, a penalty of 0.01 × N,
where N represents the number of nodes in the function tree, was added to the fitness calculation. This
ensured that, for a given RMSEP, a shorter tree would be chosen over a longer one. In addition, a
maximum tree depth of 10, and a maximum node count of 100 was enforced during the evolution.

The size constraints on the GP rules meant that even the longest rules could use only a small subset of
the available input variables comprising the dataset. The GP was therefore compelled to perform an
automatic variable selection, resulting in predictive models with significantly lower dimensionality (i.e.
using far fewer variables) than the dataset as a whole. The automatic variable-selection ability of the GP
approach is one of the main benefits of using this as a predictive modelling method [11]. Since the GP-
derived models are readily-interpretable, analysis of the selected variables can lead to a rationalisation
of the mechanism underlying the model.
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The GP used five demes (sub-populations) each of 7500 individuals. Every 10 generations, the best 5%
of the individuals in each of four satellite demes replaced the worst 5% in a central deme. The best 5%
from this deme then replaced the worst 5% in the satellite demes. This divergent evolution and
migration strategy has been shown to be more effective at solving high-dimensional problems than a
conventional single-population GP [12].

During each generation, 1500 new individuals were created by single-point mutation, and 3000 by
single-point crossover. Parental selection was proportional to fitness, and new individuals were retained
in the deme if their fitness was higher than that of the current worst individual.

Partial Least Squares Modelling

Partial least squares (PLS) modelling is a widely-used supervised learning technique which reduces the
dimensionality of multivariate data by using a priori knowledge of which spectra were derived from
plants grown under saline or control conditions to produce mathematical models comprising linear
combinations of variables. For this study, we used a PLS modelling system written in house by Dr. Alun
Jones.

Variable Analysis

An analysis was performed to investigate the correlation between the GP-selected input variables and
the known class structure of the data. Product moment correlation (PMC) is a method which uses linear
transformations to quantify which variables (x) are most strongly related to the output data (y) being
modelled.

The PMC (R) ranges from -1 to +1, indicating a perfect negative to a perfect positive correlation R
takes the sign of Cxy. A value of 0 indicates that x is uncorrelated with y. R for n examples be calculated
as follows:
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Quantum Mechanics and Infrared Spectral Analysis

The semi-empirical quantum mechanics program PM1, part of the HyperChem 5.1 molecular modelling
package (HyperCube, Inc.) was used to calculate infrared vibrational spectra and molecular vibrational
modes for potential metabolites identified during the analysis of the data. The infrared spectral analysis
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package IR Mentor Pro 2.0 (Bio-Rad Laboratories) was used to suggest candidate chemical groups
responsible for the particular spectral features selected as discriminatory by the GP models.

Results and Discussion

After a sufficient number of reproductive generations, the GP was able to derive expressions capable of
correctly classifying the examples in both the training and test sets to an average accuracy approaching
90%. The final GP model was produced after fewer than 400 generations. The PLS model was also to
separate the classes to a similar accuracy (Figure 1). However, the PLS model, in common with the
other widely-used statistical modelling methods, does not provide readily-available information about
which variables have been selected.

The rules from 30 independent GP runs used 112 of the 882 input variables. The dataset as a whole
contained variables with PMC values ranging from 0.000332 to 0.4401. The GP-selected variables had
PMC values ranging from 0.000642 to 0.4296, indicating that the GP selected variables with both high
and low correlations with the known class structure. The two most widely-used variables (each found in
five models) had a PMC value of 0.3055 and 0.2876, both reasonably well-correlated with the class
structure. Although the most-correlated variable in the data set was not used, the GP selected an
adjacent variable on two occasions.
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Figure 1

Partial Least Squares 1 (PLS1) was used to classify the samples.  The PLS1 model was
trained on 50 spectra. The chosen model used 11 components, which gave the minimum
RMS error in the prediction values (0.3302) for a validation set of 50 previously unseen
spectra.  This model was then applied to 100 previously unseen spectra, comprising 50
control and 50 saline-grown samples.  The plot below shows the model’s predicted
output values for this test set.
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The GP-derived models used, on average, five variables in their predictive rules. No single variable
could be used to classify the spectra with an accuracy approaching the 90% value of the GP-derived
rules. Despite the reasonably high PMC values for most of the variables within the dataset PLS was
unable to completely separate the two classes based on the spectral data (Figure 1). This indicates that
the dataset does not contain enough information to allow a high degree of separation of the two classes
to be made without using non-linear combinations of variables. The if operator was used in every GP
rule, a clearly essential function for a classification problem which is not readily available to neural
networks and the conventional statistical modelling methods.

The GP models were all different. The prediction accuracy ranged from 84.5% to 94% correct. Runs 9,
13, 18 and 27 produced remarkably similar models, with the same logical structure and using very
similar variables:

Run 9: IF (A2164-A2245) ≥ (A2060-A2098) THEN [Saline] ELSE [Control] (89% correct)

Run 13: IF (A2171-A2245) ≥ (A1963-A2106) THEN [Saline] ELSE [Control] (88% correct)

Run 18: IF (A2168-A2257) ≥ (A2029-A2114) THEN [Saline] ELSE [Control] (89.5% correct)

Run 27: IF (A2179-A2230) ≥ (A2025-A2118) THEN [Saline] ELSE [Control] (90.5% correct)

In the above rules, An represents the measured absorbance at n wavenumbers. These rules may be
indicative of the nature of the globally-optimal rule derivable from this dataset. The best performing
rule, with a 94% predictive accuracy, used a similar logical construct and selected similar variables.
However it included an additional term associated with a spectral feature at 2480 wavenumbers which
enabled a better class prediction for some of the saline-grown samples which were incorrectly classified
by the simpler rules:

Run 28:

IF ( ) ( ) ( )[ ]211020173638155821332268
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8832480 IF AAAAAA
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THEN [Saline] ELSE [Control]   (94% correct)

An analysis of which input variables (in terms of absorbances at particular wavenumbers) were selected
showed that there were a few regions of the spectra that were consistently being used to form the
different models (Figure 2a). In particular, the spectral region covering 2270 to 1960 cm-1 was used by
most of the rules, and all of the best-performing models were based on a few small but distinct features
within this critical region. The absolute differences between saline and non-saline grown samples in this
region are relatively small, and so would not have been selected in a direct visual analysis, for example
by using a difference spectrum.
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Figure 2

(A) The wavenumbers selected by the 30 GP rules are shown in reference to a spectrum
averaged from the whole data set. The vertical lines represent the number of GP-derived
rules that use particular wavenumbers to form a predictive model. The region from 2270
to 1960 wavenumbers is clearly important for producing good predictive models.

(B) The wavenumbers selected by the 30 GP rules are shown in reference to the FTIR
spectrum of 0.1M β-cyanoalanine.  The highly characteristic region identified by the
GPs corresponds to the two distinctive peaks for the cyanide group in β-cyanoalanine.
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Quantum mechanics calculations showed that the only biochemically-reasonable functional groups that
absorb strongly in this critical part of the IR spectrum are acetylenes ( R – C ≡ C – R’ ) and cyanides
or nitriles ( R – C ≡ N ), with the absorption due to a periodic stretching motion of the triple-bond.
Acetylenes have a second characteristic vibration at approximately 3300 wavenumbers, a region unused
by any of the GP-derived rules. If an acetylene group were responsible for the characteristic spectral
features, this region would also be expected to be used by the rules. Therefore, the most likely
candidate chemical moiety being identified by the predictive models as characteristic for tomatoes
grown under saline conditions is a cyanide or nitrile group.

Cyanide, in the form of HCN, is formed in plants as a by-product during the conversion of  the
precursor 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by the enzyme ACC oxidase [13]:
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Increased ethylene biosynthesis is known to occur in plants in response to stress and during climacteric
fruit ripening [14]. It has previously been reported that tomato plants grown under saline conditions
show enhanced ethylene production [15]. Hydrogen cyanide is an extremely toxic molecule, and plants
have evolved a protective mechanism for its conversion to a less-harmful form. The cyanide produced
during ethylene biosynthesis is rapidly converted to the less-toxic compound -cyanoalanine by the
enzyme cyanoalanine synthase (CAS):

H2N
OH

O

SH

H2N
OH

O

N

H2SHCN+ +

Cysteine Hydrogen cyanide Cyanoalanine Hydrogen sulphide

The samples presented to the FTIR instrument were oven-dried in order to reduce the adverse effects of
water in the spectra collected. This would also have driven off most of the other volatile compounds
within the sample, such as free HCN. It is therefore a possibility that the compound being detected by
the FTIR-GP analysis is -cyanoalanine, or a related metabolite, which would be expected to remain in
the dried samples. Quantum mechanical predictions of the spectral regions to which the cyanide group
of  -cyanoalanine would contribute show a very high degree of correspondence with the critical
regions selected by the GP models (Figure 2b). This is by no means conclusive evidence that -
cyanoalanine is the actual metabolite being detected as a discriminatory biomarker for salt-grown
tomatoes, but it is consistent with this hypothesis.

From the observations and computational analyses, it seems reasonable to propose that tomato plants
grown in conditions of high salinity produce enhanced levels of cyanide as a result of an increase in the
production of the stress hormone ethylene. This is being detected by the analytical method described
here, potentially in the form of -cyanoalanine. It is possible that many of the toxic effects observed
under saline-induced stress conditions are caused not by the salt per se, but by the concomitant increase
in cyanide or a cyanide-containing compound as a result of increased ethylene biosynthesis. This
proposed biochemical explanation is now subject to experimental verification using conventional
biochemical techniques.
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This study has shown that FTIR, in combination with GP, is a powerful new tool for the analysis of
whole-tissue biological samples at the metabolome level. The technique is sensitive enough to detect
changes in the levels of a single metabolite against the background of the entire cellular components,
and can provide chemical information which can lead to the identification of the biochemicals which
may be involved in metabolic processes under investigation. This method has the promise of becoming
an extremely sensitive and discriminatory analytical tool which may be of crucial importance in the
emerging field of functional genomics, and so help to advance the understanding of metabolic processes
as yet unexplored by biological science.
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