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Abstract Modeling hydrogeologic processes facilitates

in accurate prediction/forecasting of groundwater level

variations. Still, the uncertainty in model prediction is a

major concern that requires detailed investigation. There

could be several factors which introduce uncertainty such

as inherent assumption, various levels of model complexity

and simplicity. In general, model inputs, parameters and

structure are the major sources of uncertainty while quan-

tifying model prediction uncertainty. In this study, a

genetic programming (GP) based models have been

employed for forecasting groundwater level variation along

with prediction uncertainty quantification. Though various

sources induce uncertainty in the model prediction, the

input uncertainty quantification has received little atten-

tion. Hence, the input uncertainty has been considered for

the analysis in this study. The proposed method is

demonstrated using measured monthly values of rainfall

and corresponding groundwater level data of Amarawathi

basin, India. It is observed that the prediction along with

uncertainty quantification improves the confidence level of

models while making decisions, in particular for effective

planning and management of groundwater resources.

Keywords Genetic programming � Groundwater �
Prediction � Uncertainty

Introduction

Groundwater plays a vital role while estimating the overall

water balance in hydrologic and hydrogeologic processes.

The world’s 30 % of fresh water exists in the form of

ground water. Agriculture is a major activity in developing

countries which solely depends on groundwater resources.

In India, the contribution of groundwater in agricultural

sector is about 50 % of the total irrigated area and nearly

80 % of total agricultural production depends on ground-

water resources. However, during recent past, the ground-

water resources face acute shortage due to over

exploitation, urbanization and population growth. Also the

excessive pumping of groundwater leads to several nega-

tive environmental consequences such as land subsidence,

water quality issues, changes in flow patterns, sea water

intrusion, etc. It may be noted that unlike the surface water,

no clear guidelines or policies available for regulating the

groundwater pumping. Hence, effective strategies should

be developed for managing the groundwater, and also to

maintain the equilibrium state.

Recent developments in computer modeling and

sophisticated instruments that measure the groundwater

level are useful tools which help administrators and policy

makers for efficient utilization. Models, in general, are

broadly classified into physics based and data driven

approach. The physics based groundwater models are

powerful tool while representing high spatial and temporal

variability of aquifer parameters (Shiri and Kisi 2011). The

rigorous model calibration procedure and large data

required often discourages the physics based groundwater
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models. Some of the model parameters such as hydraulic

conductivity, porosity and permeability are difficult to

measure in field (Bierkens 1998; Knotters and Bierkens

2000), also which involves in cost and efforts. Conse-

quently, there is considerable level of uncertainty associ-

ated with these parameters due to heterogeneity and

complexity of the system. In such situations, the data dri-

ven modeling approaches produce reasonably accurate

estimate of groundwater levels, further the results are

comparable with physics based models. The main advan-

tage of the data driven models are as follows: (i) do not

require complete physics of the system, (ii) robustness, (iii)

can be modeled with available observed input, output

variables, (iv) can be generalized to an arbitrarily level of

accuracy (Srivastav et al. 2007).

Variety of data driven models have been employed for

groundwater level forecasting. In specific, the application

of artificial neural network (ANN) models have produced

promising results while forecasting the groundwater level

(Dash et al. 2010; Ghose et al. 2010; Krishna et al. 2008;

Nayak et al. 2006; Taormina et al. 2012). Also the com-

parison between different data driven models showed the

relative improvement across the models (Yoon et al. 2011;

Sreekanth et al. 2012). However, there is no clear evidence

which indicates a single best model, which out performs

under different condition. Hence the choice of particular

model depends on the data used. In this study, the GP based

models have been employed for forecasting groundwater

level. In fact, GP has been reported in variety of hydrologic

and hydro-geologic modeling such as: flood routing (Si-

vapragasam et al. 2008), evaporation (Shiri et al. 2013),

ground water remediation (Aly and Peralta 1999), sus-

pended sediment modeling (Kisi et al. 2012), stage dis-

charge curve (Azamathulla et al. 2011), short-term water

level fluctuations (Shiri and Kisi 2011) and rainfall-runoff

model (Kisi et al. 2013). The detailed review of application

of GP in water resources has been presented in ASCE Task

Committee (2010). The potential advantage of using GP

lies in optimizing the model structure and parameters

simultaneously, whereas most of the other data driven

models use predefined model structure for optimizing the

model parameters. It may be noted that all these studies did

not consider quantifying model prediction uncertainty

rather focused on point prediction. The major reason could

be the complex interaction between the modeled variables

and high computation required. However, in recent times,

the quantification of uncertainty has become a necessary

exercise in modeling for improving the confidence and

reliability of the developed models.

Hence, the focus of this study is to model groundwater

level using GP approach along with quantification of pre-

diction uncertainty. This is accomplished using a proba-

bilistic framework which generates different realization of

model inputs for obtaining the variability of model output.

The approach is demonstrated through data collected from

three observation wells located in Amaravathi basin, India.

Study area and data description

Amaravathi River is one of the major tributaries of Cauvery

River. It covers an area of 8280 km2 which lies in between

the latitudes 10�1000000N and 11�0201000N, the longitudes

77�0302400E and 78�1300600E (Fig. 1). The basin has four

districts namely Coimbatore, Erode, Dindigul and Karur.

The main stream originates at an altitude of 2600 m above

mean sea level (MSL). From the total area of the basin, the

forest and cultivated land area covers around 1100 and

3770 km2 respectively. The remaining area comes under the

category of barren and uncultivable lands. Paddy, sugarcane

and groundnut are the major crops in this region.

The basin has three major soil types such as black soil,

alluvial soil and calcareous soil. The area is underlined by

crystalline rocks of Peninsular Gneissic Complex, com-

prising of hornblend-biotite-gnesis and charnokite. The

basin has four distinct seasons that include South-West

monsoon from June to September, North-East monsoon

from October to December, the winter season from January

to February and summer from March to May. The rainfall

pattern in this region is highly heterogeneous, which

receives rainfall due to South-East and North-West mon-

soons. The long term average annual rainfall is varying

from 1300 to 500 mm.

The basin experiences a maximum and minimum

monthly mean temperature of 38.21 and 23.81 �C respec-

tively. The average wind speed ranges between 16.03 and

0.2 kmph. The mean relative humidity is low in dry

weather and high in the monsoon season. The sky is very

cloudy during the monsoon season and is lightly clouded

during non-monsoon season. The monthly climate data for

the meteorological stations (i.e., K.Paramathy, Sun-

dakampalayam, Uthamapalayam and Viralipatti) were

obtained from the Public Works Department, Chennai.

The selected wells (K.Paramathy, Keeranur and Kuthi-

raiyar) for the study are illustrated in the Fig. 1 along with

rain gauge and evaporation stations. The rationale behind

in selecting these wells is geographically located in plain,

highland and hilly regions.

Performance measures

Model prediction measures

The model prediction is evaluated with various statistical

indices [i.e., correlation coefficient (CC), Nash–Sutcliffe

27 Page 2 of 11 Model. Earth Syst. Environ. (2016) 2:27

123



efficiency (NE), root mean square (RMSE), and mean bias

error (MBE)] and defined as follows:
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where, loi and l
p
i are the observed and predicted water

table values at time t, respectively; �lo and �lp are the mean of

the observed and predicted water table values corresponding

to n data points, n refers the number of degrees of freedom.

Model prediction uncertainty measures

The two uncertainty indices i.e., percentage of coverage

(POC) and average width (AW) are used and is defined as

follows.
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where, l
up
i and l

lp
i are the upper and lower bound estimation

of the ith pattern; ci = 1 if the observed values of target fall

in the prediction band l
up
i ; l

lp
i

h i

, otherwise ci = 0.

Methodology

Genetic programming

Genetic programming (GP) is an evolutionary algorithm

based on Darwinian theories of natural selection and sur-

vival to approximate the equation, in symbolic form, that

best describes how the output relates to the input variables

(Sivapragasam et al. 2008). The algorithm initializes with a

randomly generated arithmetic operators (?, -, 9,7) and

mathematical functions (sin, cos, tan, exp, log, sigmoid)

from population. Based on understanding of the physical

process, the combination of these operators and functions

along with inputs form a set of equations in each genera-

tion/iteration. The individuals in other words genes consist

of operators (i.e., ?,/ and 9) and terminals (3, 4, x and z)

Fig. 1 Study area map of Amarawathi basin
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are illustrated in Fig. 2. The example may be interpreted as

((4/z) ? (3 9 y)).

Each set of potential solutions is then subjected to an

evolutionary process called ‘fitness’ (a measure of how well

they solve the problem). The individual programs that best fit

the data are selected from the initial population. This paper

used mean square error (MSE) as a measure of fitness func-

tion. GP attempts to combine the elements of existing solu-

tions in order to create a new solution, with some of the

features of each ‘‘parent’’. Based on this, the generated

model equations that best fit are selected to exchange part of

the information between them to produce optimal model

equations through ‘crossover’ and ‘mutation’ processes

which mimics the natural world reproduction system. The

GP equation which less fitted the data are discarded. This

evolution process is repeated over successive generations

and is driven towards finding symbolic expressions

describing the data, which can be interpreted to derive

knowledge about the process. The flow chart describes the

GPmodel evolution at different stages (Fig. 3). More details

on GP can be obtained from (Koza 1992; Babovic and Kei-

jzer 2000; Khu et al. 2001). This study used DTREG soft-

ware (Phillip 2012) to develop GP based groundwater

fluctuation model.

Fig. 2 A typical individual that returns ((4/z) ? (3 9 y))

Fig. 3 Flowchart of proposed methodology
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Input selection

There is a growing interest in modeling the relationship

between the physical variables with variety of test proce-

dure to account the non-linearity. However, identifying the

significant input variables generally require a priori

knowledge about the system to be modeled (Campolo et al.

1999; Thirumalaiah and Deo 2000). In fact most of the

occasion, the relationship between the variables is not

clearly known a priori, and hence often an analytical

technique, such as auto-, cross-correlation is employed

(Sajikumar and Thandaveswara 1999; Sudheer et al. 2002;

Kasiviswanathan and Sudheer 2013). However, the cross-,

auto- correlation is only being able to detect the linear

dependence between the variables, while the modeled

relationship may be highly nonlinear. Nonetheless, the

cross-, auto- correlation methods represent the most pop-

ular analytical techniques for selecting appropriate inputs

(Bowden et al. 2004a, b).

The model proposed in this study used monthly rainfall

and groundwater level information of selected three wells

over 30 years of period to forecast future groundwater

level. The data were collected between January, 1980 and

December, 2009. Out of the total available data (30 years),

first 21 years of data (252 sets) was used for model cali-

bration and the remaining was used for model validation.

Initially the potential input variables corresponding to

different lag time periods are identified through statistical

analysis suggested by (Sudheer et al. 2002). In such anal-

ysis, various antecedent values at different lagged time

model inputs (i.e., rainfall) were analyzed for their influ-

ence on model output (i.e., groundwater level). The quan-

titative analysis of cross correlation function between

inputs and output was employed to determine appropriate

inputs for the model to be trained. Similarly, an autocor-

relation function (ACF) suggests the most influencing

antecedent groundwater level in producing the better

autoregressive process with model output. Based on this

analysis, the modeler can select appropriate inputs which

would result the models of parsimonious and subsequently

eliminates the input variables which has less influence.

With this procedure, the input variables are identified to

develop GP model for the wells selected and is presented in

Table 1.

It is clear that different well has different potential

lagged values of rainfall and depth to water table. The

statistically obtained lagged values of depth to water

table values are consistent across the wells for the model-

ing. It is interesting to note that while selecting the lagged

values of rainfall, the immediate and long term precedent

values where identified which has good correlation with

output variable of the model. This information reinforces

that the groundwater table fluctuation is subjected to both

immediate and long term response of rainfall.

Uncertainty quantification

The calibration of the GP model is carried out with mea-

sured values of inputs–output identified through correlation

analysis. While these models are used to predict future

variables for the unseen input variables, it might be pos-

sible that the models may not be able to produce better

results because of inherent uncertainty. Consequently, the

point prediction is always questionable, which in turn lacks

explaining the model robustness and limitations. Therefore,

the quantification of uncertainty in the form of prediction

interval is a necessary exercise in modeling which helps in

improving the confidence of the developed model. There

are different methods of uncertainty analysis is reported in

literature (Shrestha and Solomatine 2006; Montanari

2007).

In recent decades, the quantification of input uncertainty

has gained significant attention among researchers, since

the input variables are one among the major source for

causing the variability in model predictions. In general, the

model validation is carried out with calibrated model of f(.)

with deterministic structure, parameter and input data and

it is denoted as follows:

yi ¼ f ðxi; pÞ ð7Þ

where, x denotes model inputs, p denotes model parame-

ters, y refers model output at any instance ‘i’.

In this study, a simplified approach is proposed to

account the input uncertainty of GP model. In such

approach, the errors (ei) are probabilistically sampled for

quantifying the prediction uncertainty of GP models.

Therefore the Eq. (7) changes into Eq. (8) which has errors

multiplied with inputs.

Table 1 Identified input

variables for developing GP

models

Well Climatic input Initially identified model inputs

K.Paramathy Rainfall lt = f(Rt - 14, Rt - 13, Rt - 12, Rt - 2, Rt - 1,lt - 2,lt - 1)

Keeranur Rainfall lt = f(Rt - 14, Rt - 13, Rt - 3, Rt - 2, Rt - 1,lt - 2,lt - 1)

Kuthiraiyar Rainfall lt = f(Rt - 14, Rt - 13, Rt - 12, Rt - 2, Rt - 1 lt - 3,lt - 2,lt - 1)
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yi ¼ f ðei � xi; pÞ ð8Þ

It is known that the error is normally distributed with

zero mean and with specified values of standard deviation.

In this framework, the assumption is that the error follows

log-normal distribution with zero mean and pre-fixed

standard deviation values, since we require positive values

of errors to be multiplied. The error forced input variables

(i.e., sampled error is multiplied with measured values of

rainfall and water level values) are then simulated through

the calibrated GP models for quantifying the prediction

uncertainty. It is to be noted that input errors associated

with rainfall and water levels may not be same and there-

fore, the independent error values are sampled from distinct

log normal distribution.

Results and discussion

GP model development

Based on the input selection, the patterns of input–output

vector corresponding to calibration and validation period is

separated. In which the calibration data is used for training

the GP model. The selection of suitable model setting

parameters is listed in Table 2. This generally requires

extensive trails of different combination of parameters for

better predicting the model output. After setting these

parameters, the GP creates initial sets of number of equa-

tions (i.e., which is equal to population value). These

equations are evaluated with fitness function such as

‘MSE’; subsequently the performance of the model is

evaluated. Based on the fitness criteria, models with good

performance are preserved using the process of cross over

and mutation. This process continues for the number of

generation and the final model is obtained if there is no

recognized level of improvement in model performance

(Fig. 3). The GP equations trained for each well are listed

in Table 3.

It is noted that the finally evolved GP equations consist

different levels of complexity as well simplifications.

Hence, the GP model might contain various combinations

of short and long term lagged values of rainfall informa-

tion. It clearly indicates that GP model explicitly considers

the nonlinearity associated with the variables of interest

and not necessary that all the input variables identified

through cross-, auto- correlation methods should be

included.

The GP model developed for K.Paramavathy well has

more number of parameters and variables compared to

other wells. This indicates the complex nature and high

non-linearity. Keeranur well has only lt - 1 and Rt - 1

information as input variables. It can be interpreted as high

nonlinearity of these variables, which has strong correla-

tion with groundwater level fluctuations. Other probable

reason could be ascribed as this well is located in high

elevation which causes immediate response through lagged

variables of Rt - 1 and lt - 1. It is interesting to note that

the final GP model did not consist lt - 1 variable in the case

of Kuthiraiyar well. However the presence of lt - 2 indi-

cates that in hilly areas a slight delayed response of water

table depth has more influence with future predicted values

of groundwater level.

Efficacy of model performance

The GP model performance is evaluated using various

statistical indices such as mean biased error, root mean

square error (RMSE), Nash–Sutcliffe efficiency (NE) and

the coefficient of correlation between the measured and

computed groundwater level values. The performance

indices values are presented in Table 4. The results indi-

cate that process has been modeled with reasonable accu-

racy across selected wells. Though a slight improved model

performance is observed during calibration, performances

Table 2 The values of parameters used in GP model evolution

Parameter Value

Population size 50

Generation 2000

Crossover rate 0.96

Mutation rate 0.04

Fitness function Mean square error

Table 3 Trained GP models for predicting groundwater fluctuation

Well Climatic input GP equation

K.Paramathy Rainfall lt ¼ �13:16 � e Rt�1�6:20ð Þ�lt�2
� �

þ �15:76 � e Rt�2�7:12ð Þ�lt�2
� �

þ lt�1 þ 0:05
lt�2

Keeranur Rainfall lt ¼ lt�1 þ 0:12ð Þ � 0:95
ffiffiffiffiffiffiffiffiffiffiffiffiffi

e0:30�Rt�1

p
� �

Kuthiraiyar Rainfall lt ¼ �0:08 � lt�2 � Rt�1ð Þ þ 0:004�Rt�1

Rt�1�1:005
þ 0:08þ lt�2
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across calibration and validation periods are consistent

across the wells selected for the study.

In the case of K.Paramathy well, the GP model has NE

of 76.45 % with CC of 0.88 during calibration and the

validation simulation produced NE of 61.88 % with CC of

0.79. The model generalization is good in calibration and

validation period. The positive values of MBE indicates the

under estimation of model prediction both in calibration,

validation phase. The RMSE obtained in validation is

1.23 m against the mean value of water level fluctuation

4.02 m in validation shows less residual variance against

total variance. The model prediction (i.e., groundwater

level fluctuation) is plotted with observed values for

calibration and validation periods and it is illustrated in

Fig. 4. It is also observed that the model in some points

fails to capture sharp fluctuation of water level. In the case

of Keeranur well, the model’s NE during calibration and

validation is 71.05 and 64.25 % respectively. The MBE

indices show similar performance as obtained for K.Para-

mavathy well. Figure 5 illustrates the model predictions of

Keeranur well during calibration and validation periods.

The RMSE value during validation is 2.35 m whereas the

mean water level fluctuation is 9.29 m which shows better

model generalization. While comparing performance

across different wells using NE values, the GP model for

Kuthiraiyar well has produced better results than other two

Table 4 Performance of GP

model across different wells
Well Calibration Validation

CC NE (%) RMSE (m) MBE (m) CC NE (%) RMSE (m) MBE (m)

K.Paramathy 0.88 76.45 0.67 0.11 0.80 61.88 1.23 0.26

Keeranur 0.85 71.05 1.75 0.23 0.81 64.25 2.35 0.27

Kuthiraiyar 0.90 80.43 1.56 0.06 0.83 66.41 2.43 -0.05

Fig. 4 Observed and predicted values of water table depth for K.Paramathy well a Calibration and b Validation

Fig. 5 Observed and predicted values water table depth for Keeranur well a Calibration and b Validation
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wells. It has NE value of 80.43 % in calibration and

66.41 % in validation. The negative MBE value (i.e.,

-0.0484 m) indicates model over prediction during vali-

dation. The observed and predicted values are plotted in

Fig. 6 during calibration and validation period. Overall, the

model prediction is reasonably good across different water

level fluctuations.

Prediction uncertainty of GP models

Based on the methodology presented, the input data are per-

turbedwith forced errors ranges (from±10 to±30 %) that are

sampled from log-normal distribution (Kasiviswanathan

2013). For brevity, the error sampled from histogram corre-

sponds to ±10, ±20 %, and ±30 % are presented in Fig. 7.

The error forced inputs are validated through developed GP

model for constructing the prediction interval of the model

output. The prediction uncertainty for the validation data are

estimated using indices AW and POC for the selected wells.

The results are presented in Table 5. It is expected that

increasing the input error increases the predictive uncertainty

at the output. Hence, the AW value increases across all the

wells when the error increases from ±10 to ±30 %. It is

obvious that increasing the average width of prediction band

would tend to contain more observed points, consequently

which increases the percentage of coverage values. It is also

Fig. 6 Observed and predicted values water table depth for Kuthiraiyar well a Calibration and b Validation

Fig. 7 Histogram of errors sampled from the lognormal distribution

Table 5 Quantitative

estimation of prediction interval
Error forced (%) K.Paramathy Keeranur Kuthiraiyar

AW (m) POC (%) AW (m) POC (%) AW (m) POC (%)

±10 0.52 20.21 3.32 60.00 2.12 50.53

±20 0.98 40.43 7.00 81.05 4.30 78.94

±30 1.55 47.87 11.65 87.37 6.58 89.47
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noted that K.Paramavathy well has a less POC even with

considerable increase in its average width (Fig. 8). However,

the models developed for Keeranur and Kuthiraiyar has

significant POC variations while there is increase in input

error (Figs. 9, 10). The reason could be the developed GP

model for K. Paramavathywell may not be able to capture the

Fig. 8 The prediction interval of GP model for K.Paramathy well during validation (The dotted points denote observed values)

Fig. 9 The prediction interval of GP model for Keeranur well during validation (The dotted points denote observed values)

Fig. 10 The prediction interval of GP model for Kuthiraiyar well during validation (The dotted points denote observed values)
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variance of the underlined non-linear process; consequently

the model covers less number of observed values. This

information would be useful while analyzing the model

behavior under uncertain condition. The increased POC and

reduced AW indicates the robustness of the model, where the

model can be considered as more reliable.

Remarks

The presented results clearly illustrate that quantification of

uncertainty helps in improving the confidence of the

models as compared to the single point forecast values of

groundwater level fluctuations. While developing GP

models couple of concerns have arisen.

1. Can GP model be developed with rainfall, evapotran-

spiration information together in case of groundwater

level fluctuation? In doing so, we observed that the

finally evolved equation hides the information of

evapotranspiration and does not present in GP equation.

In addition, the performance of model is also reduced.

From the region map it is clear that the wells are located

near streams and interactions between groundwater/sur-

face water in loosing and/or gaining streams would

affect the groundwater level to great extent.

2. Can the information of river stage as another input

variable improve the model prediction? The answer is

yes. However in this study, we don’t have the

information of river stage data near the wells. There-

fore, further analysis with more climatic and hydro-

logic variables would require for better understanding

the actual process involved.

Conclusion

The following specific conclusions are listed based on the

present study

1. GP based model captures the non-linearity of ground-

water level fluctuations reasonably good with hydro-

geology and meteorological observed data without

requiring explicit knowledge of physics of the system.

2. The model prediction at 1 month lead time depends on

short term monthly lagged values of rainfall and

previous water levels rather long term lagged values.

This indirectly indicates the high porosity and

hydraulic conductivity values of filed under study.

3. The uncertainty analysis with forced error in the input

shows the model output variability which helps in

improving the model confidence in real case applications.

4. It is also noted that this study considers only error in

inputs however quantification of parameter and model

structure uncertainty further improves the quality of

prediction band which is in turn offer better under-

standing of the process being modeled.

5. The results from GP based groundwater level models

suggest that this can be directly incorporated while

developing scenarios of pumping strategies and hence

for consumptive use of any basin.

6. In the case of real time operation ofwell, theseGPmodels

can be coupled with optimizer for efficient decision

making in advance with specified levels of uncertainty.
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