
Complex Intell. Syst. (2017) 3:41–66

DOI 10.1007/s40747-017-0036-x

REVIEW ARTICLE

Genetic programming for production scheduling: a survey
with a unified framework

Su Nguyen1
· Yi Mei1 · Mengjie Zhang1

Received: 26 November 2016 / Accepted: 7 February 2017 / Published online: 24 February 2017

© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract Genetic programming has been a powerful tech-

nique for automated design of production scheduling heuris-

tics. Many studies have shown that heuristics evolved by

genetic programming can outperform many existing heuris-

tics manually designed in the literature. The flexibility

of genetic programming also allows it to discover very

sophisticated heuristics to deal with complex and dynamic

production environments. However, as compared to other

applications of genetic programming or scheduling appli-

cations of other evolutionary computation techniques, the

configurations and requirements of genetic programming for

production scheduling are more complicated. In this paper,

a unified framework for automated design of production

scheduling heuristics with genetic programming is devel-

oped. The goal of the framework is to provide the researchers

with the overall picture of how genetic programming can be

applied for this task and the key components. The frame-

work is also used to facilitate our discussions and analyses

of existing studies in the field. Finally, this paper shows how

knowledge from machine learning and operations research

can be employed and how the current challenges can be

addressed.

Keywords Genetic programming · Job shop · Production

scheduling · Hyper-heuristics

B Mengjie Zhang

mengjie.zhang@ecs.vuw.ac.nz

Su Nguyen

su.nguyen@ecs.vuw.ac.nz

1 Evolutionary Computation Research Group, Victoria

University of Wellington, Wellington, New Zealand

Introduction

Production scheduling has been one of the most popular

research topics in operations research, management science,

and artificial intelligence. Because of limited production

resources, jobs or customer orders usually have to wait in

the shop floor significantly longer than their actual process-

ing times. Production scheduling is required to determine

when a job needs to be processed, which machine to process,

or which priority assigned to the job. The goal of production

scheduling is to effectively utilise the available resources to

achieve some organisational objectives such as minimising

average time that jobs have to spend in the system and min-

imise penalties caused by late deliveries. Over the years, new

production technologies have been adopted but production

scheduling is still an essential task to help businesses coor-

dinate production activities and become more competitive.

Production scheduling has a number of challenges. For

example, production environments are dynamic and uncer-

tain (e.g. job arrivals, job cancellations, machine break-

downs), which cause computational difficulties for most

optimisation techniques. The complexity of the production

systems caused by heterogeneous production processes (e.g.

batching, sequence-dependent setup times, assembly) also

makes scheduling tasks particularly hard. Moreover, produc-

tion scheduling has to take into account multiple conflicting

objectives to ensure that the obtained schedules are approved

and applicable.

In the last few decades, a large number of studies in artifi-

cial intelligence (AI) and operations research (OR) have been

conducted to develop new scheduling techniques for pro-

duction scheduling. Many techniques to search for optimal

solutions such as branch-and-bound and dynamic program-

ming have been investigated in the literature but they are

mainly restricted to small and special problems. However,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-017-0036-x&domain=pdf

42 Complex Intell. Syst. (2017) 3:41–66

these techniques are too time consuming and impractical to

handle real-world production scheduling problems. There-

fore, heuristics have been proposed to find “good enough”

and “quick” solutions. Scheduling heuristics can be very

simple such as simple dispatching rules First-In-First-Out

(FIFO), shortest processing time (SPT), and earliest due date

(EDD). Some heuristics also monitor the status of the shop

and machine to decide which dispatching rule to be applied.

For example, the rule FIFO/SPT will apply FIFO when the

jobs in the queue of the considered machine have been wait-

ing for more than a specific time and SPT will be applied

otherwise. Heuristics can also be very sophisticated such

as composite dispatching rules [119], which are combina-

tions of simple rules basically in the form of sophisticated

human-made priority functions of various scheduling param-

eters. Other heuristics based on understandings of problem

domains have been also proposed in the literature such

as shifting bottlenecks [5]. More general techniques based

on meta-heuristics such as tabu search [106] and genetic

algorithm [16] have been developed to deal with different

production scheduling problems and show promising results.

However, it is noted that designing a good heuristic is not a

trivial task and it can be very time consuming and requires a

lot of problem domain knowledge.

The field of automated heuristic design or hyper-heuristics

[21,23] has been very active recently to facilitate the design

of heuristics for hard computational problems. The goal of

this approach is to explore the “heuristic search space” of the

problems instead of the solution search space in the cases

of heuristics and meta-heuristics. In this survey, we focus

on hyper-heuristics for heuristic generation to fabricate a

new heuristic (or meta-heuristic) by combining various small

components (normally common statistics/features or opera-

tions used in pre-existing heuristics) and these heuristics are

trained on a training set and evolved to become more effec-

tive. The motivation of this approach is to reduce the time

needed to design heuristics from the human experts and to

increase the chance to explore a wide range of powerful and

undiscovered heuristics. In the last decade, genetic program-

ming [6,67] has been the dominating technique for automated

design for production scheduling heuristics [20].

As compared to other hyper-heuristics based on super-

vised learning such as decision tree [107,127], logistic

regression [57], support vector machine [129], and artificial

neural networks [32,138], genetic programming (GP) has

shown a number of key advantages. First, GP has flexible

representations which allow various heuristics to be rep-

resented as different computer programs. Second, GP has

powerful search mechanisms which can operate in the heuris-

tic search space to find optimal or near optimal scheduling

heuristics. Different from the supervised learning methods

mentioned above, GP can simultaneously explore both the

structure and corresponding parameters of a heuristic with-

out assuming any model based on a particular distribution

or domain knowledge. Moreover, many evolutionary multi-

objective optimisation (EMO) techniques are also available

in the literature to help GP design effective heuristics to

deal with multiple conflicting objectives. Finally, heuris-

tics obtained by GP can be partially interpretable and very

efficient, which is a very important feature to enhance its

applicability in practice.

In the last decade, there is a growing number of arti-

cles about automated heuristic design and its applications.

In Burke et al. [22], a general genetic programming-based

hyper-heuristic framework was presented and some studies

were used to explain the idea. Burke et al. [24] provided a gen-

eral survey of related studies on hyper-heuristics developed

to deal with a wide range of scheduling and combinatorial

optimisation problems. Both heuristic selection and heuris-

tic generation are discussed in that survey. Brief discussions

of hyper-heuristic applications were also provided. Although

there are a number survey papers for production scheduling

such as Ouelhadj and Petrovic [109] and Hart et al. [43], they

just focused on traditional meta-heuristics to find optimal

solutions for a set of static scheduling instances. Recently,

Branke et al. [20] presented the most comprehensive sur-

vey of existing studies on hyper-heuristics and production

scheduling. In the survey, critical design aspects such as

attribute selection, representation, and fitness functions are

presented. However, as the survey attempts to cover all exist-

ing hyper-heuristic approaches for production scheduling,

only key general issues are provided.

GP-based hyper-heuristics have been applied to many pro-

duction scheduling problems and many new algorithms have

been developed. As compared to other evolutionary compu-

tation techniques, GP is more sophisticated because of its

variable representations and special operators. Production

scheduling problems themselves are also complicated and

have special characteristics as compared to other combina-

torial optimisation problems. To successfully apply genetic

programming to production scheduling, researchers will

need to understand technical aspects from these two research

areas. The goal of this paper is to provide a comprehensive

review of existing studies on using GP for automated design

of production scheduling heuristics. A unified framework is

presented in this paper to show how GP can be applied to

design production scheduling heuristics and the key com-

ponents that can influence the performance of GPHHs for

these tasks. Each key component is described in detail and

we also analyse how they are treated in the previous studies.

Then we discuss the connections between GP and other AI

and OR techniques. Finally we highlight the current issues

and challenges. It is expected that the survey will help the

beginning researchers have a good overview of this emerg-

ing and interesting research area and pick up key ideas and

challenges for the future studies.

123

Complex Intell. Syst. (2017) 3:41–66 43

Background

Before moving to detailed discussions of GP for produc-

tion scheduling, we provide a brief overview of production

scheduling and genetic programming. This section targets

researchers who are new to these two research areas. Those

who are familiar with scheduling and GP concepts can safely

skip this section.

Production scheduling

Production scheduling is about allocation of scarce manu-

facturing resources to tasks over time. Depending on the

nature of production processes and customer demand, there

are many different types of production environments. In the

literature, a scheduling problem is described by the triplet

β|γ |δ, where β represents the machine environment, γ pro-

vides the processing characteristic (it may contain no entry

at all or multiple entries), and δ describes the objective

to be optimised [119]. The goal of production scheduling

is to determine when a job (or a customer order) should

be processed and which machine (i.e. production resource

in β) is used to process that job to optimise δ, given

that all process constraints γ are satisfied. For the single

machine environment, a job only needs to go through one

production process to be completed. For multi-stage (with

multiple machines) environment, a job is a sequence of oper-

ations, each of which is to be performed on a particular

machine.

Studies of production scheduling literature can be classi-

fied into two main streams. The first one focuses on static

scheduling problems where information of all jobs is avail-

able. Previously studies on static problems try to develop

efficient algorithms to find optimal solutions. Nevertheless,

many scheduling problems are proven to be NP-hard. Thus,

most proposed exact methods such as branch-and-bound and

dynamic programming fail to find optimal solutions (or can

only find optimal solutions for very small instances). As a

result, a large number of scheduling heuristics, e.g. NEH

for flows shop scheduling [136], and shifting bottleneck

[119] for job shop scheduling, are developed to search for

“good enough” solutions within a reasonable computational

times. Meta-heuristics such as tabu search [106], genetic

algorithm [16], particle swarm optimisation [126] have also

been applied extensively to solve production scheduling

problems.

For dynamic scheduling problems, jobs may arrive ran-

domly over time and their information is not available before

their arrivals. Dispatching rules is the most popular approach

for dynamic scheduling problem. In most cases, dispatch-

ing rules are represented by priorities functions that assign

priorities to jobs. Then the jobs with the highest priority

will be processed first. Many rules have been developed by

practitioners and researchers to cope with a wide range of

production environments. Three attractive characteristics of

the dispatching rules are their efficiency, reactiveness, and

interpretability. GP plays a major role in dynamic schedul-

ing, which is to be described below.

Genetic programming

GP [67] is an evolutionary computation (EC) method,

inspired by biological evolution, to automatically find com-

puter programs (i.e. scheduling heuristics in our case) for

solving a specific task. In genetic programming, a popula-

tion of computer programs (individuals) is created and these

programs are evolved to gain higher fitnesses through an

evolutionary process. In each generation of the evolution-

ary process, each program is evaluated using a pre-defined

fitness function, which assesses the ability of the program

to perform a specific computational task. The fitness values

obtained by programs in the population decide the chance of

each program to survive and reproduce (with genetic opera-

tors) in the next generation.

Different from genetic algorithms, each individual of a

GP population is not represented by a fixed-length string of

genes (bits, real numbers, or symbols). Because the shape and

length of the final program is normally not known by the user,

individuals in GP usually represent programs as tree struc-

tures which are constructed by a set of terminals and a set of

functions. Basically, a GP individual is a specific combina-

tion of elements selected from these two sets. The terminal

set consists of programs’ inputs (also referred to as features

or attributes) or (ephemeral random) constants [67]. Mean-

while, the function set can contain arithmetic operators, logic

operators, mathematical or specialised functions used to con-

struct GP programs. Other representations are also developed

in grammar-based GP [139], graph-based GP [120,124] and

linear-based GP [17,69] and achieve very promising results.

For each representation, special genetic operators (crossover,

mutation) are developed to help GP create new individuals

based on parent programs.

Genetic programming for production scheduling

GP for production scheduling has been very active in recent

years. With flexible representations, GP can represent and

evolve effective scheduling heuristics to deal with a wide

range of scheduling problems. In addition, since GP does not

rely on any specific assumptions, it can be easily extended

to deal with different production scheduling problems. Fig-

ure 1 shows the number of published articles in this area

since 2000. Miyashita [81] is probably the first study that

used GP to evolve dispatching rules for job shop scheduling

123

44 Complex Intell. Syst. (2017) 3:41–66

Fig. 1 Published articles on GP for production scheduling since 2000

and showed the effectiveness of evolved dispatching rules.

The paper also analysed different ways dispatching rules can

be learned in a general job shops. From 2000 to 2004, there

were only four papers about this topic and mainly focused

on applications of GP for classical production scheduling

problems. From 2005 to 2009, GP is applied to more produc-

tion scheduling problems and researchers become interested

in improving the performance of GP. New representations

and genetic operators were proposed to cope with specific

scheduling problems [38]. Experiments to compare differ-

ent GP methods were also conducted [59,73]. Since 2010,

there have been a dramatic growth in the number of stud-

ies on this topic. These recent studies have focused on

improving the effectiveness and efficiency of GP for pro-

duction scheduling by developing new representations [89],

new surrogate-assisted models [45], local search heuristics

[97], and ensemble methods [42,113]. Practical issues such

as multiple conflicting objectives [35,90], multiple deci-

sions [95,104], attribute selection [79] are catching more

attentions. Moreover, researchers have been interested in

reusability of evolved dispatching rules as well as their inter-

pretability [46,95]. Table 1 shows a list of major papers about

automatic design of production scheduling heuristics via GP

and their focuses.

Unified framework

Figure 2 shows a proposed unified framework for automated

heuristic design of production scheduling with GP. Based on

the scheduling problem of interest, the first step is to deter-

mine the meta-algorithm of scheduling heuristics, which

explains how the heuristic will work. Based on the meta-

algorithm, we need to identify which component(s) should

be evolved by GP. Then the suitable representations, relevant

features or attributes, and function sets used to evolve heuris-

tics are decided. The evaluation models or evaluators are also

needed help evaluate the performance of evolved heuristics

during the evolution process. In the lower part of Fig. 2, the

evolutionary process of GP is presented. Similar to other EC

techniques, GP starts with a population of randomly gener-

ated heuristics (based on the representation, function sets, and

terminals set defined previously). Each generated heuristics

are then evaluated by the evaluation model to determine their

quality, i.e. fitness. After all individuals in the GP population

are evaluated, genetic operators are applied to generate new

heuristics and potential heuristics are selected to form the

population for the next generation. The population will be

evolved over many generations and the evolution is stopped

when the termination condition is met. Post-processing rou-

tines can also be applied to simplify and interpret the evolved

heuristics. In the rest of this section, we will analyse each key

component in this framework and the related existing studies.

Production scheduling problems

GP has been applied in a wide range of production scheduling

problems, ranging from single machine scheduling [30,38,

59,100,142], parallel machine scheduling [31,60], to (flexi-

ble) job shop scheduling [42,53,59,63,79,81,88,89,95,102,

123

Complex Intell. Syst. (2017) 3:41–66 45

T
a
b

le
1

T
o
p
ic

s
co

v
er

ed
b
y

p
re

v
io

u
s

st
u
d
ie

s

P
ap

er
M

et
a-

al
g
o
ri

th
m

R
ep

re
se

n
ta

ti
o

n
G

en
et

ic

o
p
er

at
o
r

S
ea

rc
h

m
ec

h
an

is
m

F
it

n
es

s

fu
n
ct

io
n

M
u

lt
ip

le

d
ec

is
io

n
s

M
u

lt
i-

o
b

je
ct

iv
e

A
tt

ri
b
u

te

an
al

y
si

s

In
te

rp
re

ta
b

il
it

y
G

en
er

al
is

ab
il

it
y

M
iy

as
h

it
a

[8
1

]
�

D
im

o
p
o
u
lo

s
an

d
Z

al
za

la
[3

0
]

�
�

Y
in

et
al

.
[1

4
2

]
�

�
�

�

H
o

an
d

T
ay

[5
0

]
�

G
ei

g
er

et
al

.
[3

8
]

�
�

Ja
k
o
b
o
v
ic

an
d

B
u
d
in

[5
9

]
�

�

Ja
k
o
b
o
v
ic

et
al

.
[6

0
]

�

T
ay

an
d

H
o

[1
3
4

]
�

B
eh

am
et

al
.
[1

4
]

�

G
ei

g
er

an
d

U
zs

o
y

[3
7

]
�

�

B
ay

k
as

o
g
lu

[9
]

�
�

L
i

et
al

.
[7

3
]

�
�

�

T
ay

an
d

H
o

[1
3
5

]
�

�
�

Y
an

g
et

al
.
[1

4
1

]
�

�

M
u

ci
en

te
s

et
al

.
[8

3
]

�
�

B
ay

k
as

o
lu

an
d

G
k
en

[1
2

]
�

K
o
fl

er
et

al
.
[6

6
]

�

F
u
ru

h
o
lm

en
et

al
.
[3

6
]

�
�

H
il

d
eb

ra
n
d
t

et
al

.
[4

6
]

�
�

�
�

K
u
cz

ap
sk

i
et

al
.
[6

8
]

�

N
ie

et
al

.
[1

0
0

]
�

�

P
ic

k
ar

d
t

et
al

.
[1

1
7

]
�

B
ay

k
as

o
g

lu
et

al
.
[1

1
]

�
�

�

A
b
ed

n
eg

o
an

d
H

en
d
ra

tm
o

[1
]

�

N
g
u
y
en

et
al

.
[8

5
]

�
�

�

N
ie

et
al

.
[1

0
1

]
�

�
�

N
ie

et
al

.
[1

0
2

]
�

V
az

q
u
ez

-R
o
d
ri

g
u
ez

an
d

O
ch

o
a

[1
3
6

]
�

�
�

123

46 Complex Intell. Syst. (2017) 3:41–66

T
a
b

le
1

co
n
ti

n
u
ed

P
ap

er
M

et
a-

al
g

o
ri

th
m

R
ep

re
se

n
ta

ti
o

n
G

en
et

ic

o
p
er

at
o
r

S
ea

rc
h

m
ec

h
an

is
m

F
it

n
es

s

fu
n
ct

io
n

M
u

lt
ip

le

d
ec

is
io

n
s

M
u

lt
i-

o
b

je
ct

iv
e

A
tt

ri
b
u

te

an
al

y
si

s

In
te

rp
re

ta
b

il
it

y
G

en
er

al
is

ab
il

it
y

Ja
k
o
b
o
v
i

an
d

M
ar

as
o
v
i

[5
8

]
�

�

N
g
u
y
en

et
al

.
[8

6
]

�
�

�
�

N
g
u
y
en

et
al

.
[8

7
]

�
�

N
ie

et
al

.
[1

0
3

]
�

�

H
an

et
al

.
[4

1
]

�

N
g
u
y
en

et
al

.
[8

8
]

�
�

�
�

N
g
u
y
en

et
al

.
[8

9
]

�
�

�
�

�
�

N
g
u
y
en

et
al

.
[9

0
]

�
�

N
g
u
y
en

et
al

.
[9

1
]

�
�

N
ie

et
al

.
[1

0
4

]
�

�

P
ar

k
et

al
.
[1

1
0

]
�

�

P
ar

k
et

al
.
[1

1
1

]
�

�
�

P
ic

k
ar

d
t

et
al

.
[1

1
8

]
�

�
�

�
�

Q
in

et
al

.
[1

2
2

]
�

�
�

N
ie

et
al

.
[1

0
5

]
�

H
il

d
eb

ra
n
d
t

an
d

B
ra

n
k
e

[4
5

]
�

�
�

H
il

d
eb

ra
n
d
t

et
al

.
[4

7
]

�
�

H
u
n
t

et
al

.
[5

3
]

�

H
u
n
t

et
al

.
[5

4
]

�
�

N
g
u
y
en

et
al

.
[9

3
]

�
�

�
�

N
g
u
y
en

et
al

.
[9

2
]

�
�

N
g
u
y
en

et
al

.
[9

4
]

�
�

�

N
g
u
y
en

et
al

.
[9

5
]

�
�

�
�

�
�

N
g
u
y
en

et
al

.
[9

6
]

�
�

�

P
ar

k
et

al
.
[1

1
2

]
�

A
ls

in
a

et
al

.
[3

]
�

�

B
el

is
ri

o
an

d
P

ie
rr

ev
al

[1
5

]
�

�
�

S
im

an
d

H
ar

t
[1

3
0

]
�

�
�

�

B
ra

n
k
e

et
al

.
[1

8
]

�
�

�
�

�

123

Complex Intell. Syst. (2017) 3:41–66 47

T
a
b

le
1

co
n
ti

n
u
ed

P
ap

er
M

et
a-

al
g

o
ri

th
m

R
ep

re
se

n
ta

ti
o

n
G

en
et

ic

o
p
er

at
o
r

S
ea

rc
h

m
ec

h
an

is
m

F
it

n
es

s

fu
n
ct

io
n

M
u

lt
ip

le

d
ec

is
io

n
s

M
u

lt
i-

o
b

je
ct

iv
e

A
tt

ri
b
u

te

an
al

y
si

s

In
te

rp
re

ta
b

il
it

y
G

en
er

al
is

ab
il

it
y

H
u
n
t

et
al

.
[5

6
]

�
�

H
u
n
t

et
al

.
[5

5
]

�
�

�

N
g
u
y
en

et
al

.
[9

7
]

�
�

N
g
u
y
en

et
al

.
[9

8
]

�
�

�

P
ar

k
et

al
.
[1

1
4

]
�

�

P
ar

k
et

al
.
[1

1
3

]
�

�

S
h
i

et
al

.
[1

2
8

]
�

W
an

g
et

al
.
[1

3
7

]
�

B
ay

k
as

o
g
lu

an
d

O
zb

ak
r

[1
0

]
�

�
�

�

C
h

en
et

al
.
[2

6
]

�
�

D
u

ra
se

v
ic

et
al

.
[3

1
]

�
�

�

F
re

it
ag

an
d

H
il

d
eb

ra
n
d
t

[3
5

]
�

�

H
ar

t
an

d
S

im
[4

2
]

�
�

�
�

K
ar

u
n
ak

ar
an

et
al

.
[6

3
]

�
�

P
ar

k
et

al
.
[1

1
5

]
�

�

P
ar

k
et

al
.
[1

1
6

]
�

�

R
il

ey
et

al
.
[1

2
3

]
�

�

B
ra

n
k
e

et
al

.
[1

9
]

�
�

M
ei

an
d

Z
h
an

g
[7

8
]

�

K
ar

u
n
ak

ar
an

et
al

.
[6

4
]

�
�

M
as

o
o
d

et
al

.
[7

5
]

�
�

M
ei

et
al

.
[7

9
]

�
�

N
g
u
y
en

[8
4

]
�

�
�

N
g
u
y
en

et
al

.
[9

9
]

�
�

�

123

48 Complex Intell. Syst. (2017) 3:41–66

Production Scheduling Problems

Meta-algorithm of Scheduling Heuristics

Evaluation
Models

Component(s) to be evolved

Representation(s)
Selected
Attributes

Function Set

Initilization
of Population

Fitness
evaluation

Reproduction
via genetic
operators

Selection

Termination ?
Best

Heuristic

Post-processing

Yes

No

Fig. 2 Unified framework

104,135,136]. Most machines considered in these problems

are the same in terms of capability (eligibility to handle a job)

and assumptions (e.g. utilisation level). Although some spe-

cial cases are considered in the literature such as batching

[37,118], machine breakdowns [142], and unrelated paral-

lel machines [31], these are very limited. In addition, most

scheduling problems handled by GP are dynamic problems

where jobs will arrive randomly over time and their informa-

tion is only available upon their arrivals. For most of these

problems, the main concern is to find the best way to pri-

oritise or schedule jobs to optimise some objectives such as

makespan, mean flowtime, maximum flowtime, mean tardi-

ness, and total weighted tardiness.

Meta-algorithm of scheduling heuristics

As the scheduling problems are formulated, one of the key

steps is to identify the meta-algorithm of scheduling heuris-

tics. This step provides the basic concepts of the scheduling

heuristics and explains how scheduling decisions will be

made. It is expected that the meta-algorithm is general

enough, ideally can lead to optimal scheduling decisions. In

this step, it is important to (1) identify the fixed and variable

components of the meta-algorithm, and (2) understand the

complexity of the scheduling heuristics based on the meta-

algorithm.

For example, Fig. 3 shows a generalized schedule con-

struction algorithm [16,89,119] to construct an active sched-

ule, a non-delay schedule or a hybrid of both active and

non-delay schedules with a specific dispatching (priority)

rule. This algorithm was based on the Giffler and Thompson

[39] and has been widely used in the scheduling literature

to deal with different production scheduling problems. The

algorithm first identifies the machine m∗ to be scheduled

based on the earliest completion time of all available opera-

tions P. Then a subset P’∈ P including candidate operations

to be scheduled next is determined by checking if the ready

times of these operations are smaller than S∗+alpha(C∗-

S∗). The parameter alpha is the non-delay factor ∈ [0, 1] to

control the look-ahead ability of the algorithm by restricting

operations included inP’ (the algorithm generates non-delay

schedules if alpha = 0 and active schedules if alpha=1).

A dispatching rule is applied to determine the next

operation in P’ to schedule next. It is clear that performance

of the algorithm depends on how the subset P’ is deter-

mined and how the next operation is picked. This algorithm

is very efficient because the next operation can be determined

easily by calculating priorities for jobs in P’. These two

decisions are governed by the non-delay factor alpha and

the dispatching rule. In this algorithm, alpha and

dispatching rule are the two variable components

and the rest are fixed. When designing scheduling heuristics

based on the algorithm in Fig. 3, we need to decide alpha

and dispatching rule to apply to obtain optimal or

near optimal schedules. These two are candidate components

which can be evolved using GP.

It is noted that the above algorithm and its variants have

been used in most previous studies on automated design of

production scheduling heuristics. Nguyen et al. [88] pro-

posed iterative dispatching rules (IDR) which are able to

create multiple schedules iteratively and the new schedule is

generated based on the information of the previous gener-

ated schedule (e.g. completion times of jobs). Although their

meta-algorithm is slightly different from one in Fig. 3 (only

small change in step 2 and step 7), two variable components

to be designed are still alpha and dispatching rule.

In the variable neighborhood search with IDR [88], k itera-

tive dispatching rules can be used to improve the quality of

the final schedule. In this case, the variable components are

the k dispatching rules and the non-delay factor.

Usually meta-algorithms of scheduling heuristics are

developed by studying existing heuristics in the literature.

Other meta-algorithms have also been investigated such as

beam search heuristics [93,111], ensembles of heuristics

[42], adaptive scheduling heuristics based on bottleneck

machines [59], and NEH heuristics [136]. These evolved

heuristics are very different in terms of computational costs

and how they build schedules. While the majority of schedul-

ing heuristics investigated in the literature are construction

heuristics [23], i.e. step-by-step construct the schedule,

some have also investigated improvement heuristics that

iteratively refine the schedule [74,88,110,136]. One of the

reasons is that the improvement heuristics are usually much

more computationally expensive as compared to construc-

tion heuristics. Although improvement heuristics developed

by GP show very promising results, they are still restricted to

static scheduling problems. The studies of applying evolved

123

Complex Intell. Syst. (2017) 3:41–66 49

Fig. 3 Example

meta-algorithm of schedule

construction heuristics

Fig. 4 Variable neighborhood search with IDR [88]

improvement heuristics to dynamic environments will be an

interesting research topic in future studies. When dealing

with different planning and scheduling decisions, different

meta-algorithms can also be used [95,103].

Component(s) to be evolved

The meta-algorithms discussed above help us understand

how scheduling decisions are made and its basic (variable)

components. Depending on the production environments,

one or more components will need to be designed. Below

are some popular components that have been investigated in

the literature:

– Dispatching rule or priority rule is used for sequencing

tasks in a scheduling problem. At the moments when

a sequencing decision needs to be made, dispatching

rules will prioritise the jobs in the queue of a consid-

ered machine. Then, the job with the highest priority is

processed next.

– Routing rule or machine assignment rule is used to decide

which machine from a pre-determined set of machines

to process the considered operation. Routing rules are

usually investigated when dealing with flexible job shop

scheduling problems.

– Due date assignment rule is used to determine the due

dates for arriving jobs by estimating the job flowtimes

(the time taken from the arrival until the completion of a

job).

– Batch formulation rule is used to determine how to group

the individual jobs into batches. This is mainly investi-

gated for shops with batching processes.

– Performance/processing time estimation: a model is

obtained to estimate processing times or performance

measures for planning purposes.

– Inserted idle time a model is obtained to estimate the idle

times to be inserted into the schedule to absorb disrup-

tions.

– Non-delay factor is used to govern the look-ahead ability

of dispatching rules, i.e. to what extent upstream jobs will

be considered when making scheduling decisions.

– Improvement/greedy heuristics is used to iteratively

improve the quality of schedules in static scheduling

problems.

Table 2 summarises the basic components evolved by

GP in the literature. Dispatching rules are the most popular

component investigated in previous studies as sequencing

and scheduling decisions are required in most production

scheduling problems. Other components are more problem

specific and only investigated when dealing with produc-

tion systems with special processes or requirements. Because

the structure of these components are usually unknown in

advance, their corresponding search spaces are large and

finding optimal or near-optimal solutions is very challeng-

ing. Moreover, evaluating the quality of evolved heuristics

is not straightforward because of the complex and dynamic

production environments. Thus, evolving scheduling compo-

nents is challenging and time consuming. More discussions

about these challenges and proposed techniques to overcome

them will be provided in the upcoming sections.

However, it is noted that we do not need to evolve all

those components. There are a number of reasons that evolv-

ing all components is not always a good idea. First, it can be

very time consuming to evolve multiple components at the

same time because the evaluation costs (for fitness evalua-

tions) will be higher. Second, the search space of scheduling

heuristics is also much larger as evolved components can be

very different and can use different function sets and feature

sets (will be discussed more in “Representations, function

sets, and terminal sets”). Finally, some good alternatives are

available for the variable components in some specific cases.

Most previous studies focused on only one component

and fixed all other components to reduce the complexity. For

example, Tay and Ho [135] applied GP to evolve dispatching

123

50 Complex Intell. Syst. (2017) 3:41–66

Table 2 Component(s) to be evolved by GP

Component References

Dispatching rule or priority rule Miyashita [81], Dimopoulos and Zalzala [30], Yin et al. [142], Ho and Tay [50], Geiger

et al. [38], Jakobovic and Budin [59], Jakobovic et al. [60], Tay and Ho [134], Beham

et al. [14], Tay and Ho [135], Yang et al. [141], Baykasoglu et al. [11], Kofler et

al. [66], Hildebrandt et al. [46], Kuczapski et al. [68], Nie et al. [100], Pickardt et

al. [117], Abednego and Hendratmo [1], Nie et al. [102], Jakobovi and Marasovi [58],

Nguyen et al. [86], [103], Nguyen et al. [89–91], Nie et al. [104,105], Park et

al. [110,111], Pickardt et al. [118], Qin et al. [122], Hildebrandt and Branke [45],

Hildebrandt et al. [47], Hunt et al. [53,54], Nguyen et al. [96], Park et al. [112],

Branke et al. [18], Chen et al. [26], Han et al. [41], Hunt et al. [55,56], Nguyen et

al. [97,98], Park et al. [113,114], Shi et al. [128], Sim and Hart [130], Wang et al.

[137], Branke et al. [19], Karunakaran et al. [64], Durasevic et al. [31], Freitag and

Hildebrandt [35], Hart and Sim [42], Karunakaran et al. [63], Masood et al. [75], Mei

et al. [79], Nguyen [84], Nguyen et al. [99], Park et al. [115,116], Riley et al. [123],

Mei and Zhang [78]

Routing rule Nie et al. [103,104]

Due date assignment rule Baykasolu and Gken [12], Nguyen et al. [86,87,94,95]

Batch formulation rule Geiger and Uzsoy [37], Li et al. [72]

Performance/processing time estimation Baykasoglu [9], Mucientes et al. [83]

Inserted idle time Yin et al. [142]

Non-delay factor Nguyen et al. [88,89]

Improvement/greedy heuristic Nguyen et al. [85], Vazquez-Rodriguez and Ochoa [136], Mascia et al. [74], Nguyen et

al. [88,92,93]

Others Alsina et al. [3], Baykasoglu and Ozbakr [10], Belisrio and Pierreval [15], Furuholmen

et al. [36], Li et al. [73]

rules for flexible job shop scheduling and use the least waiting

time assignment [49] to find a suitable machine to process an

operation. Similarly, Pickardt et al. [117] evolved dispatching

rules for semiconductor manufacturing and used two existing

heuristics, i.e. minimum batch size (MBS) and larger batches

first (LBF), to control batch formulation. Nguyen et al. [94]

used GP to evolve the due date assignment rules while fixing

the dispatching rules.

A limited number of studies focused on multiple com-

ponents simultaneously. For example, Nie et al. [103,104]

considered both dispatching rules and routing rules simul-

taneously when designing scheduling heuristics for flexible

job shop scheduling. Nguyen et al. [95] developed a GP tech-

nique to deal with both sequencing decisions and due date

assignment decisions. Yin et al. [142] aimed at designing

predictive scheduling heuristics using GP to evolve two com-

ponents, i.e. a dispatching rule and an estimation function to

calculate the inserted idle time. Although the above studies

showed benefits of evolving multiple components together,

it may not be always the case. In the research on order accep-

tance and scheduling, Park et al. [111] showed that evolving

both acceptance rules and dispatching rules is less effective

than only focusing on dispatching rules and using a simple

rule to reject orders. Therefore, selecting components to be

evolved will be problem specific and depends on costs and

benefits of the selection.

Representations, function sets, and terminal sets

After determining which component(s) will be evolved by

GP, the next critical step is to select the suitable representa-

tion(s) for the component(s). In this section, we describe the

most popular GP representations employed in the previous

studies, especially those used to represent the dispatching

rules because they are the main focus of previous studies (as

shown in Table 2).

Evolving priority function

The most popular representations for scheduling heuristics

are those used to evolve the priority functions. An example of

this representation is presented in Fig. 5. In this example, the

well-known minimum slack (MS) rule [119] is represented

in the form of expression tree, i.e. a priority function. Based

on the inputs (attributes of a job) such as the current time

t, the remaining processing time RT, and the due date d,

the function will calculate the priority of the corresponding

job. Whenever a sequencing decision needs to be made at a

machine (or in step 5 of Fig. 3), this function is applied to

all jobs in the considered queue and the job with the highest

priority will be selected to process next. Although this repre-

sentation is very simple, it allows GP to explore a very diverse

set of scheduling heuristics to handle different scenarios

123

Complex Intell. Syst. (2017) 3:41–66 51

-

d

RT

+

t

Priority = - [d - (t + RT)]

Priority = -[due date –(current time + remaining

processing time)]

Fig. 5 Arithmetic representation

and has shown to be effective in designing very competi-

tive scheduling heuristics. To create heuristics, a function

set and a terminal (attribute) set need to be defined. Usually

basic arithmetic operators (addition, subtraction,

multiplication, and protected division)

are almost always included in the function set. Other opera-

tors such as if, min, max are also commonly used to

evolve heuristics and have shown to be particularly use-

ful when dealing with difficult scheduling objectives such

as maximum tardiness and total weighted tardiness. The

attributes used to construct scheduling heuristics can be clas-

sified as job attributes, work center attributes, and global or

system attributes. A comprehensive list of attributes used in

the literature can be found in [20].

The tree-based representation of the traditional GP tech-

nique [6,67] and the linear representation in gene expression

programming (GEP) [34] are usually applied in the previ-

ous studies. For the tree-based GP, there are many genetic

operators available in the literature [6,67]. Subtree crossover

and subtree mutation are commonly used to evolve schedul-

ing heuristics. The subtree crossover creates new individuals

for the next generation by randomly recombining subtrees

from two selected parents. Meanwhile, the subtree mutation

is performed by selecting a node of a chosen individual and

replacing the subtree rooted by that node with a newly ran-

domly generated subtree.

In GEP, the priority function is represented as a chromo-

some of one or more genes. Each gene in the chromosome

represents a fixed length symbolic string which represents

a mathematical function. A gene can be divided into two

parts: head and tail. While the head can contain both func-

tions and terminals, the tail can only contain terminals. An

example GEP chromosome with a single gene is shown in

Fig. 6. The gene can be translated into an expression tree

using K-expression (similar to the tree-based representation

in the traditional GP). In this example, the first element in

the gene + is the root of the tree whose arguments can be

obtained from the next elements in the gene. It is noted that

Fig. 6 GEP representation

the first five elements in the gene have already formed a valid

K-expression and the rest of the gene will be ignored in this

case. To ensure that a valid K-expression can be obtained, the

length of the gene will be set such that t = h(n−1)+1, where

h, t , and n are, respectively, the length of the head, the length

of the tail, and the maximum number arguments of a func-

tion. In their experiments with the dynamic single machine

scheduling problems, Nie et al. [100] showed that GEP was

very competitive as compared to tree-based GP. The genetic

operators in GEP can be considered as hybrids between those

of genetic algorithm (GA) and the tree-based GP. The subtree

crossover and subtree mutation mentioned above can also be

applied to GEP. However, because of the difference in data

structure (linear and tree), GEP needs to explicitly transverse

through elements in a gene to identify the subtree. Because

the length of a GEP gene is fixed, the same genetic opera-

tors such as the point mutation and the one-point/two-point

crossover in GA can also be applied [103,104]. Special trans-

position operators are also employed in GEP to randomly

select a fragment of the chromosome and insert it into the

head.

Basically, other popular GP representations in the liter-

ature such as graph representations in strongly typed GP

[82], Cartesian GP [80], linear GP [17], and grammar-based

GP [77,139] can also be applied to evolve priority func-

tions for scheduling heuristics. The choice of representations

will depend on the requirements of scheduling heuristics.

For example, Nguyen et al. [89] used grammars to evolve

scheduling heuristics (as shown in Fig. 7) that can select

appropriate priority functions based on the shop conditions.

In this case, the proposed grammar is used to ensure that

system attributes are used to set the conditions while job

and work centre attributes are used to create the priority

functions. Durasevic et al. [31] used dimensionally aware

genetic programming [65] (similar to strongly typed GP)

to improve the interpretability of scheduling heuristics by

ensuring that evolved priority functions are semantically cor-

rect (e.g. the addition operator can be performed only on

the nodes whose values are in the same unit). Similarly,

Hunt et al. [55] designed a grammar to help evolve dispatch-

ing rules with better understandability for dynamic job shop

scheduling.

123

52 Complex Intell. Syst. (2017) 3:41–66

0.221

Dispatch

SPT 0.078

Dispatch

FIFO

≤

20

I

WR

If (workload ratio is less than or equal to 20%)

Use the SPT rule with non-delay factor of 0.221

Else

Use the FIFO rule with non-delay factor of 0.078

Fig. 7 Decision tree-like representation

Evolving multiple components

Due to the complexity of production scheduling problems,

evolving a single component may not be sufficient to gen-

erate effective and comprehensive scheduling heuristics.

Therefore, more sophisticated representations have been

developed. Geiger et al. [38] propose a multiple tree rep-

resentation to evolve different dispatching rules (trees) for

different machines or groups of machines. The goal of this

approach is to generate specialised rules to cope with partic-

ular requirements of each machine.

To create more effective scheduling heuristics for job

shops, Jakobovic and Budin [59] presented the GP-3 method

in which three program trees represent one discriminating

function and two priority functions. The conceptual illus-

tration of this representation is shown in Fig. 8. A special

terminal set is used to build the discriminating function which

is employed to determine whether the considered machine is

bottleneck. Based on this decision, one of the two priority

functions (for bottleneck and non-bottleneck machines) is

applied to make scheduling decisions. Nguyen et al. [88]

represented the scheduling heuristics by two program trees.

The first one is the priority function (the same ones described

in the previous section) while the second represents the look-

ahead strategy based on the Giffler and Thompson algorithm

[119] to decide how much idle time machines can delay

before jobs can be processed. The experiments show that

these extended representations can help GP evolve signif-

icantly better scheduling heuristics as compared to those

focusing only on priority functions.

Multiple tree representations are also useful for rep-

resenting different scheduling decisions such as accep-

tance/rejection [111], due date assignment [95] and mainte-

nance [142]. Figure 9 shows the representation of scheduling

policies developed by Nguyen et al. [95]. This is motivated by

the fact that scheduling and sequence decisions are directly

influenced by other related production planning and control

decisions such as due date assignment. The proposed repre-

Fig. 8 Multiple components for bottleneck-guided dispatching rules

[59]

d

Fig. 9 Representation of scheduling policies [95]

sentation allows the due date assignment rule and dispatching

rules to be evolved at the same time, which provides the

chance to optimise the overall performance of the dynamic

production systems. In Yin et al. [142], a GP technique is pro-

posed to evolve predictive scheduling heuristics to deal with

stochastic machine breakdowns. The goal of the research is

to handle job tardiness and stability. The two GP trees are

used to represent the priority function, i.e. to determine the

sequence of jobs, and to represent the idle time to be inserted

before processing a particular job.

Estimate quality of evolved scheduling heuristics

Similar to any EC methods, GP needs to estimate the quality

of heuristics in its population. Here we discuss how evolved

heuristics are evaluated and how fitnesses of heuristics are

calculated. Recent developed techniques to improve the effi-

ciency of GP evaluations are also presented.

Evaluation models

GP guides the search based on the quality of evolved

scheduling heuristics, i.e. fitness values. To calculate the fit-

ness function, a evaluation model or evaluator needs to be

developed. Ideally, the evaluation model has to be a good

representation of the real-world problems or the environment

in which the obtained scheduling heuristics will be applied

123

Complex Intell. Syst. (2017) 3:41–66 53

to. For static scheduling problems, the quality of a heuris-

tic is determined by applying the heuristic to a set of static

problem instances, obtained from real-world situations. In

the literature, instances from popular benchmark datasets,

e.g. OR-library [13], or randomly generated based on some

assumptions [59,135], are usually applied to test the quality

of different GP methods.

Meanwhile, for dynamic scheduling problems, simulation

models are used to determine the steady-state performance

of scheduling heuristics. Discrete event simulation (DES)

[70] was the main simulation technique to estimate the per-

formance of scheduling heuristics [46,51,95]. In previous

studies, different theoretical simulation models have been

employed. For example, the ten-machine symmetrical job

shop model [51] is commonly used to evaluate performance

of evolved dispatching rules. Although this model is rela-

tively simple, it can reflect important characteristics of job

shops (which is suitable for studies on scheduling decisions)

and its scale is reasonable for evaluation purpose. More

complex simulation models such as simulation models of

semi-conductor production systems [118] have also been

used to evaluate scheduling heuristics.

To deal with real-world dynamic production systems, it

is recommended that the evaluation or simulation models

should be developed by the researchers after carefully inves-

tigating the real systems. Essential steps for simulations

studies can be found in [70]. Before incorporating the sim-

ulation models into the GP framework (in Fig. 2), following

steps (adopted from [70]) are expected to be done by the

researchers:

– Formulate the problem.

– Collect data and define a model.

– Check if the model assumptions are correct and complete.

– Construct and verify a computer program (simulator).

– Make pilot runs and validate the programmed model.

To ensure that the performance of evolved heuristics is

accurately estimated, the simulation model needs to be a good

representation of the real system. Otherwise, evolved rules

are not applicable. Fortunately, techniques in computer sim-

ulation has been quite mature and useful tools are available

to help researchers develop and validate their models.

Although DES has been shown to be a better way to eval-

uate the scheduling heuristics in dynamic environments, it

is computationally much more expensive. As thousands of

evolved scheduling heuristics need to be evaluated by GP,

time-consuming simulation will dramatically increase the

running times of GP. In the next sections, we will discuss

some techniques that can be used to efficiently utilise the

computational budget.

Table 3 Performance measures of scheduling heuristics

Mean flowtime F =

∑
j∈C

f j

|C|

Maximum flowtime Fmax = max j∈C{ f j }

Percentage of tardy jobs %T = 100 ×
|T|

|C|

Mean tardiness T =

∑
j∈T

(C j −d j)

|T|

Maximum tardiness Tmax = max j∈T{C j − d j }

Makespan Cmax = max j∈C{C j }

Total weighted tardiness TWT = max j∈T{w j × (C j − d j)}

Fitness function

Table 3 shows some common performance measures of

scheduling heuristics in the literature. Following are the def-

initions of notations used in Table 3:

– r j : the release time when job j is available to be pro-

cessed.

– w j : the weight of job j in the weighted tardiness objective

function.

– d j : the due date assigned to job j .

– C j : the completion time of job j .

– f j : the flowtime of job j calculated by f j = C j − r j .

– T j : the tardiness of job j calculated by T j = max(C j −

d j , 0).

– C: the collection of jobs recorded to calculate the objec-

tive values. (C is all the jobs in static JSS problem

instances or a set of jobs recorded after the warm-up

period of the simulation of the dynamic job shops).

– T = { j ∈ C : C j − d j > 0}: the collection of tardy jobs.

The quality of evolved scheduling heuristics depends

on its corresponding performance measure under interested

shop conditions. The application of a scheduling heuristic H

to a number of training instances (static instances or simula-

tion replications) T = {1, 2, . . . , |T |} results in performance

measures zi (H), the objective value reached by the heuristic

on instance i . These measures have to be integrated by means

of a fitness function f i tness(·) to determine the overall fit-

ness of the heuristic. The following fitness functions have

been proposed in the literature:

– Sum [or average] of objective values

f i tness(H) = [1
|T |

]
∑|T |

i=1 zi (H)

– Average relative objective value

f i tness(H) = 1
|T |

∑|T |

i=1
zi (H)
zi (ref)

– Sum [or average] of relative deviations

f i tness(H) = [1
|T |

]
∑|T |

i=1
zi (H)−zi (ref)

zi (ref)

where zi (ref) denotes a reference objective value for instance

i , obtained by some other solution method. Depending on

123

54 Complex Intell. Syst. (2017) 3:41–66

Fig. 10 Decision vectors used in the surrogate models [45]

the practical requirements, the researcher may choose the

suitable fitness function. Sum (or average) of objective val-

ues concentrates on performing well on problem instances

with a large potential for improvement while largely ignor-

ing their performance on other instances. On the other hand,

the average relative objective value or the sum (or average)

of relative deviations try to measure the quality of evolved

heuristics weighted by the difficulty of training instances.

This fitness function is less opportunistic as compared to the

fitness function based on sum of objective values.

As discussed previously, the evaluations of scheduling

heuristics can be very time consuming, a full evaluation

with a large number of training instances to calculate the

fitness function is slow. Because GP usually requires a large

population (hundreds to thousands of individuals), full evalu-

ations for the whole population could be computationally too

expensive. Therefore, most past studies did not use full eval-

uations to calculate the fitness function and replaced them

with much cheaper evaluations as discussed in “Evaluation

models”. Hildebrandt et al. [46] showed that it is possible to

evolve effective dispatching rules for dynamic job shop using

a single simulation replication per generation. The random

seed for the simulation will be changed in each generation to

improve the diversity in the population. They also gave high

penalties for heuristics causing instability in the simulated

shop as they will slow down the evaluation process and usu-

ally are bad scheduling heuristics. This is particularly true

in early generations of GP since the chance to generate bad

scheduling heuristics are very high.

Here are a number of techniques proposed to reduce the

computational times of GP for automated heuristic design

for production scheduling:

– Early termination of the simulation: stop the simulation

when the number of jobs in the system exceed some pre-

defined threshold [46].

– Use a small number of simulation replications but change

the random seed for each replication when moving to a

new generation [46,99].

– Avoid evaluating the same evolved rules [45].

– Surrogate models: reduce the evaluation costs caused by

expensive simulation [45,99].

Surrogate-assisted models

Recently, surrogate models have been proposed to reduce

the computational costs of GP [45,96,99]. These models

have reduced the evaluation costs of GP and improved its

convergence. Hildebrandt and Branke [45] proposed a sur-

rogate model based on the phenotypic characterisation of

evolved priority functions. In this technique, the phenotype

of an evolved heuristic is characterised by a decision vector

with the dimension of K, where K is the number of deci-

sion situations (each decision situation includes a number of

jobs to be prioritised). Figure 10 gives an example of how

decision vector is determined. First, a reference rule (e.g.

-2PT-WINQ-NPT) is selected and applied to all decision sit-

uation. The ranks of jobs (smaller ranks for jobs with higher

priorities) in each situation determined by the reference rule

are recorded. For each evolved priority function, the corre-

sponding ranks are also determined and the decision value

for each decision situation is the rank determined by the ref-

erence rule of the job whose rank obtained by the evolved

priority function is 1. In Fig. 10, the decision vectors for rule

1 and rule 2 are 〈3, 1, . . . , 3〉 and 〈2, 2, . . . , 1〉, respectively.

An archive is used to store past explored rules and their deci-

sion vector and are recorded during GP evolution. During the

reproduction process, the fitness of a new generated rule is

approximated by the fitness of the closest rule in the archive

based on the distance between their corresponding decision

vectors. This surrogate model, even though simple, can pro-

vide good estimation of fitness and help screening out bad

rules created by crossover and mutation.

Also trying to reduce the computational times of GP for

automated heuristic design [99] proposed a new technique

to estimate the fitness of evolved rules using a simplified

version of the original simulated shop, as shown in Fig. 11.

Instead of evaluating evolved heuristics with the model of

123

Complex Intell. Syst. (2017) 3:41–66 55

Fig. 11 Simplified models of

the original simulated shop [99]

the original shop which can be very large, a smaller model

of the shop is created with a smaller number of machines,

smaller simulation length while maintaining the same level

of utilisation, due date tightness, etc. A set of benchmark

rules are applied to different models and their objective val-

ues are recorded. The simplified model that has the highest

rank correlation with the original model will be used to esti-

mate the fitness of newly generated rules. Then, only the ones

with the highest estimated fitness are moved to the next gen-

eration and estimated by the original model. The proposed

GP technique based on this simplified model showed better

results as compared to other GP techniques.

In general, full evaluations to calculate the real fitness for

each evolved scheduling heuristics are too expensive. There-

fore, it is important to utilise evaluations efficiently within

the restricted computational budget. Here are some fitness

functions (classified by their accuracy and usage) which have

been employed in the literature:

– Real fitness function: requires a lot of simulation repli-

cations and it is the most expensive fitness function. This

should be used to validate the performance of selected

evolved heuristics.

– Generational fitness function: identify the most potential

heuristics for real fitness evaluations. The generational

fitness function can use a small number of replications to

reduce the computational costs but new training instances

are used for each generation to prevent GP from overfit-

ting and improve the diversity of the population [46].

– Fitness estimated by surrogate models: determines the

rough quality of generated heuristics. Because the like-

lihood to produce bad heuristics via crossover and

mutation by GP is very high, GP may waste a lot of

time evaluating bad heuristics. The fitness estimated effi-

ciently by surrogate models [45,99] helps the algorithm

screen out heuristics with poor performance and reduce

the computational costs as well as improve the conver-

gence of GP.

Figure 12 illustrates the trade-offs between the accuracy

and computational costs of different models used to evalu-

ate the performance of evolved scheduling heuristics. In this

figure, full evaluations are the one with the best accuracy

and the highest computational times while evaluations with

static training instances are the most efficient ones but may

cause overfitting issues [46,89]. Surrogate-assisted GP can

be designed to effectively use these models in the algorithm.

Currently, surrogate models are only used as the pre-selection

strategy [62]. Other applications of surrogate models in GP

can be also investigated in future studies (e.g. individual-

based, generation-based and population-based techniques).

Search mechanisms

Most GP techniques proposed in the literature for automated

design of production scheduling heuristics imitate Darwinian

biological evolution by maintaining and evolving a large pop-

ulation. Genetic operators inspired by natural evolution such

as crossover, mutation, and elitism (as discussed in “Rep-

resentations, function sets, and terminal sets”) are used to

generate new individuals. Despite its simplicity, this mecha-

nism is able to discover very effective scheduling heuristics.

However, to deal with more complicated design issues such

as multiple scheduling decisions and multiple conflicting

objectives, specialised search mechanisms will be needed.

Evolutionary multi-objective optimisation

Multiple conflicting objectives are a natural characteristic

in real-world applications and the design of new scheduling

heuristics also need to consider this issue. One advantage of

using GP for designing heuristics is that their search mech-

anisms are very flexible and many advanced EC techniques

[27,61,133] have been developed to cope with multiple

objectives.

Tay and Ho [135] aimed to tackle three objectives

(makespan, mean tardiness, and mean flowtime) when using

123

56 Complex Intell. Syst. (2017) 3:41–66

Fig. 12 An illustration of a

trade-off between fidelity

(approximation accuracy) and

computational cost for

evaluations of scheduling

heuristics (adopted from [62])

1 2

3 4

5

6

M1

M2

M3

GP to evolve dispatching rules for a flexible job shop. To sim-

plify the design problem, the three objectives are aggregated

using the weighted sum approach with the same weight for

each objective. However, because the scale of each objective

and the knowledge about the objective search space may be

unknown in advance, this approach can lead to unsatisfac-

tory results. For this reason, the rules evolved by their GP

method are sometimes worse than simple rules such as FIFO

Freitag and Hildebrandt [135]. When these evolved rules are

examined in a long simulation [46], they are only slightly bet-

ter than the earliest release date (ERD) rule and worse than

the SPT rule with respect to mean tardiness. It suggests that

using the weighted aggregated objective to deal with multi-

objective design problem is not a good approach if the prior

knowledge about the individual objective is not available.

Nguyen et al. [90] developed a multi-objective genetic

programming-based hyper-heuristic (MO-GPHH) for

dynamic job shop scheduling. In this work, the goal is to

evolve a set of non-dominated dispatching rules for five com-

mon objective functions in the literature. By relying on the

Pareto dominance rather than any specific objective, the pro-

posed MO-GPHH was able to evolve very competitive rules

as compared to existing benchmark rules in the literature.

Their results showed that it is very easy for MO-GPHH to find

rules that totally dominate simple rules such as FIFO and SPT

regarding all five considered objectives. The proposed MO-

GPHH can also find rules that dominate more sophisticated

rules such as ATC, RR, 2PT+WINQ+NPT, and COVERT

[125] in most of its runs. The experimental results showed

that the obtained Pareto front contains many dispatching

rules with good trade-offs that have not been explored ear-

lier in the literature (e.g. percentage of tardy jobs %T can

be reduced greatly without significantly deteriorating other

objectives). Similar observations for a complex semiconduc-

tor manufacturing system are found by [35]. Thus, evolving

the Pareto front is more beneficial as compared to evolving a

single rule generally. Similar methods have been applied to

evolve comprehensive scheduling policies for dynamic job

shop scheduling [95] and order acceptance and scheduling

[84] and showed promising results.

Masood et al. [75] proposed to combine the advantage

of GP and NSGA-III to evolve a set of Pareto-optimal dis-

patching rules for many-objective job shop scheduling. The

proposed algorithm uses the tree-based representation and

evolutionary operators of GP and the fitness assignment

scheme (i.e. non-dominated sorting and reference points) of

NSGA-III. They further extended their work [76] by tak-

ing the discrete and possibly non-uniform Pareto front into

account. To search for the non-uniform Pareto front more

efficiently, they proposed a scheme to adaptively adjust the

positions of the reference points using particle swarm opti-

misation.

Coevolution

Miyashita [81] proposes three multi-agent learning struc-

tures based on GP to evolve dispatching rules for dynamic

job shop scheduling. The first one is a homogeneous agent

model, which is basically the same as other GP techniques

which evolve a single dispatching rule for all machines. The

second model treated each machine (resource) as a unique

agent which requires distinct heuristics to prioritise jobs in

the queue. In this case, each agent has its own population to

co-evolve heuristics with GP. Finally, this research proposed

123

Complex Intell. Syst. (2017) 3:41–66 57

a mixed agent model in which resources are grouped based

on their status. Two types of agents in this model are the

bottleneck agent and the non-bottleneck agent. Because of

the strong interactions between agents, credit assignment is

difficult. Therefore, the performance of each agent is directly

measured by the quality of the entire schedule. The experi-

mental results show that the distinct model has better training

performance compared to the homogeneous model. How-

ever, the distinct model has overfitting issues because of the

too specialised rules (for single/local machines). The mixed

agent model shows the best performance among the three

when tested under two different shop conditions. The draw-

back of this model is that it depends on some prior knowledge

(i.e. bottleneck machines) of the job shop environment, which

can be changed in dynamic situations.

To deal with multiple scheduling decisions (sequencing

and due date assignment) in job shops, Nguyen et al. [95]

develop a GP-based cooperative coevolution approach in

which scheduling rules and due date assignment rules are

evolved in their own subpopulation. Similar to Miyashita [81],

the fitness of each rule is measured by the overall perfor-

mance obtained through cooperation. Specialised crossover,

archiving and representation strategies are also developed

in this study to evolve the Pareto front of non-dominated

scheduling heuristics. The results show that the cooperative

coevolution approach is very competitive compared to some

other evolutionary multi-objective optimisation approaches.

The analysis also indicates that the proposed cooperative

coevolution approach can generate more diverse sets of non-

dominated scheduling heuristics.

In another study, Beham et al. [14] utilised parallel tech-

nologies to evolve dispatching rules for a flexible job shop

with a large terminal and function sets. They developed three

new GP methods based on island models and SASEGASA

[2] in which rules are evolved in multiple subpopulations.

The results show that the SASEGASA method can cope

better with the states of exception in the simulation than

island-based methods. In a very recent study, Karunakaran et

al. [63] investigated GP with different topologies of the island

model to deal with multi-objective job shop scheduling. Their

experimental results showed that the proposed techniques

outperform some general-purpose multi-objective optimiza-

tion methods, including NSGA-II and SPEA-2.

Park et al. [116] proposed two GP techniques to evolve

ensembles of dispatching rules based on Multilevel Genetic

Programming (MLGP) [140] and cooperative coevolution

[121]. While MLGP aims at automatically finding a group

of individuals that work together effectively, the coopera-

tive coevolution uses decomposition approaches to coevolve

multiple subpopulations. The experimental results showed

that MLGP outperformed the simple GP technique with no

significant increase in computational times. Meanwhile, the

cooperative coevolution technique are better than MLGP

in terms of performance of evolved rules but significantly

slower than MLGP.

Other search mechanisms

Nguyen et al. [97] developed a new technique called auto-

matic programming via iterated local search (APRILS) to

design dispatching rules for dynamic job shop scheduling.

APRILS used tree-based representation similar to GP but

it employed iterated local search to search for the best rule

instead of population-based search in most studies. In the

proposed algorithm, the neighbour heuristics are created by

applying subtree mutation (but only small random subtree is

generated). To help the algorithm escape from the local opti-

mum, subtree mutation and subtree extraction operators are

used. Given a fixed number of fitness evaluations, the exper-

imental results showed that APRILS is significantly better

than simple GP with the tree-based representation in terms

of performance of evolved heuristics, program lengths, and

the running times.

Hart and Sim [42] developed a hyper-heuristic based on an

ensemble method called NELLI [131]. The proposed NELLI-

GP extends NELLI by evolving a set of dispatching rules

represented as an expression tree. NELLI uses a method

inspired by Artificial Immune Systems [25] to evolve a set

of heuristics, which are behaviourally diverse in the sense

that each solves different subsets of a large instance set. The

three main components of NELLI-GP are: (1) a heuristic

generator to generate new scheduling heuristics, (2) sets of

problem instances, and (3) a network inspired by the idio-

typic network theory of the immune system. The key idea

is to evolve ensembles of heuristics that interact to cover a

problem space. The experiments showed that NELLI-GP can

produce promising results.

Pickardt et al. [118] proposed a two-stage approach to

evolve dispatching rule sets for semiconductor manufactur-

ing. In the first stage, GP is used to evolve general dispatching

rules. The best obtained dispatching rule is combined with

a list of benchmark dispatching rules to generate a set of

candidate rules. In the second stage, a µ + λ evolutionary

algorithm (EA) is used to select the most suitable dispatch-

ing rule in the set of candidate rules for each work centre in

the shop. The experiments compared the performance of the

two-stage hyper-heuristics with the pure GP and EA hyper-

heuristics. The results show that the three hyper-heuristics

outperformed benchmark dispatching rules and the two-stage

hyper-heuristics produced significantly better performance

than the other two hyper-heuristics.

Post-processing

The evolved scheduling heuristics are usually large in size

and it is not straightforward to understand how and why

123

58 Complex Intell. Syst. (2017) 3:41–66

scheduling decisions are made. Post-processing steps are

usually included to analyse the obtained heuristics to under-

stand how they handle scheduling problems. Following

are some post-processing techniques to analyse scheduling

heuristics commonly used in the recent literature:

– Simplification of obtained heuristics.

– Visualisation.

– Analyse feature usage within obtained heuristics.

– Analyse code fragment.

– Relearn obtained heuristics.

Simplification is the most popular technique to remove

redundant parts of evolved heuristics, which make the

heuristics smaller and easier to understand [89]. Manual sim-

plification is usually applied to the best evolved scheduling

heuristics [30,135]. Often the length of evolved scheduling

heuristics can be significantly reduced via manual simplifica-

tion since there are some parts that make no contributions to

the outputs (e.g. some conditions are always true). Symbolic

simplification function available in some mathematical soft-

wares can also be used. Nguyen et al. [99] applied a numerical

simplification routine that transverses the evolved tree and

check if the performance of the heuristic will be deteriorated

as the considered subtree is reduced to some constant.

Visualisation is also an attractive alternative to interpret

the evolved scheduling heuristics. Branke et al. [18] used con-

tour plot to visualise priorities as the functions of attributes.

Nguyen et al. [99] used parallel coordinate plot which is able

to show how priorities change with different combinations of

attributes. These visualisation techniques are helpful to show

the general characteristics of the evolved heuristics and the

differences between different heuristics. However, it is still

hard to fully understand the complex behaviours of evolved

scheduling heuristics.

Analysing the usages of attributes included in the evolved

scheduling heuristics has also been done in the literature to

understand the contributions of these attributes. For example,

Nguyen et al. [89] analyses the frequency usage of attributes

in the final dispatching rules evolved by GP to show what

are the most useful attributes. Branke et al. [18] analysed the

importance of each attribute by measuring the performance

of the best rules when certain attributes are not available.

Their analyses show that some attributes are more impor-

tant for specific representations. Instead of independently

investigating each attribute, Hunt et al. [55] performed frag-

ment analyses to show the most common fragments (with

the depth of two) in the evolved scheduling heuristics. The

analyses show that some fragments representing the differ-

ences between due date, machine ready time, and current

time appear most often in the evolved heuristics. The analy-

ses also showed that most frequent fragments from different

GP techniques can be different.

Since the evolved heuristics are usually complicated,

Nguyen et al. [99] attempted to apply supervised machine

learning techniques to relearn the scheduling heuristics

obtained by GP. Random sampling are applied to randomly

pick pairs of jobs and decide which one has the higher prior-

ity based on the heuristics to be relearned. From the collected

data, a binary classification problem is created. In this prob-

lem, the attributes are the relative attributes of the two jobs

and the label is whether or not the first job has a higher pri-

ority than the second one. Decision tree has been applied as

the obtained decision tree is easy to understand and more

important attributes can be easily detected (usually in the top

of the decision tree).

Evaluating GP methods

The performance of a GP method is measured by the per-

formance of the evolved scheduling heuristics. Similar to

traditional studies in the scheduling literature, scheduling

heuristics are evaluated based on the quality of obtained

scheduling solutions (usually the average objective value

from a set of test problem instances), the robustness (i.e. the

test performance in unseen scenarios), and the computational

times. Well-known benchmark instances in the scheduling

literature [4,29,71,132] are commonly used for evaluation

purposes. Some random instance generators [42,59,135]

are also applied to generate training and test instances for

GP. However, these are mainly used for static production

scheduling problems. For dynamic stochastic scheduling

problems, DES (as discussed in“Evaluation models”) is

typically applied. Most DES simulators are developed by

researchers to cope with their GP systems and specific

research objectives. [20] suggested that the publication of

entire simulators (e.g. Jasima from [44]) would greatly help

replicability and facilitate fair comparisons.

For a new application of GP, it is important to compare

evolved scheduling heuristics with the state-of-the-art heuris-

tics in the literature to demonstrate its effectiveness [46,59,

89,135]. As discussed in “Evolutionary multi-objective opti-

misation”, these comparisons can reveal interesting insights

about evolved heuristics [90]. When comparing different GP

methods, the average (relative) objective values of obtained

scheduling heuristics are the primary performance measures.

The complexity of evolved heuristics, i.e. often measured in

terms of the lengths of GP individuals, is also used to compare

GP methods [97,99]. Interpretability has been recently inves-

tigated when comparing different hyper-heuristics methods

[18,55]. For multi-objective scheduling problems, common

EMO metrics such as hyper-volume and inverted genera-

tional distance can be used to measure the quality of the

obtained trade-off heuristics [75,95].

In this section, we have discussed key components for

automated design of scheduling heuristics with GP and

123

Complex Intell. Syst. (2017) 3:41–66 59

showed how these components are connected under a unified

framework. For each component, the basic setting as well as

the more advanced techniques developed for complex situ-

ations have been presented. The new techniques have been

developed based on the needs of discovering more effective

and interpretable scheduling heuristics while reducing the

computational times. Although there have been many fruit-

ful studies in the last five years, many issues still remain

unsolved and require more studies in the future.

Connections with other artificial intelligence (AI)

and operations research (OR) techniques

Automated heuristic design is a relatively new area of

research and has attracted much attention of many researchers

in AI and OR. In previous studies, both machine learning

and operations research techniques have been applied within

automated heuristic design. In the rest of this section, we

discuss different ways that machine learning and operations

research can be used to enhance the way GP evolves produc-

tion scheduling heuristics.

Machine learning

In most previous studies, GP is used as a unsupervised

learning technique to learn the most effective heuristics for

scheduling problems. GP has to discover both the heuristic

structures as well as the corresponding parameters. From this

viewpoint, automated heuristic design can be simply treated

as an optimisation problem where the objective function is

the fitness function to evaluate the quality of heuristics. As

the search space of GP is very large, searching for (near) opti-

mal heuristics is very challenging and it is even more difficult

if there are many attributes or features to be considered (in

the terminal set). To deal with this issue, feature selection

are needed to remove redundant attributes which may influ-

ence the performance of GP. Mei et al. [79] has shown that

selecting a good feature subset can significantly improve the

performance of GP, i.e. finding better scheduling heuristics.

Feature construction [52] and feature extraction will be also

an interesting aspects that need to be considered in the future

studies.

Supervised learning techniques such as decision tree

[107,127], logistic regression [57], support vector machines

[129], and artificial neural networks [32,138] have also been

investigated in the literature for automated design of produc-

tion scheduling heuristics. For supervised learning, optimal

decisions from solving small instances with exact optimi-

sation methods or from the historical data are needed to

build the training set. However, there are a number of chal-

lenges with supervised learning. As scheduling decisions are

highly interdependent (i.e. the decision for an operation may

influence decision of other operations), learning the opti-

mal decisions for the whole schedule will not be easy. If the

goal is to determine which dispatching rules to apply given

a set of jobs and system status, there is also no guarantee

that the learned heuristics will actually provide the (near)

optimal solution as the available dispatching rules may not

be effective (similar to the cases when historical data are

used). Nguyen et al. [93] proposed a sequential GP to learn

a set of rules that can learn optimal scheduling decisions for

order acceptance and scheduling problem. The training set

is a number of decision situations which the optimal deci-

sions obtained by exact methods. The obtained heuristics are

very efficient and are competitive as compared to customised

meta-heuristics developed in the literature. Combining the

power of advanced supervised machine learning techniques

with GP would be an interesting research direction in the

future.

The scheduling literature has covered a wide range of

scheduling problems. In production scheduling, many popu-

lar problems have been investigated intensively such as single

machine scheduling, parallel machine scheduling, (flexible)

flow shop scheduling, (flexible) job shop scheduling, and

open shops. There is shared knowledge between these prob-

lems which can be used to develop different heuristics (e.g.

ATC can be extend to ATCS to deal with setup depen-

dent scheduling problems). Clearly, transfer learning [7,33]

and multi-task learning [8,40,108] will be very useful in

automated design of production scheduling heuristics. The

knowledge to solve a simple scheduling problem can be

reused to solve hard problems and scheduling jobs at dif-

ferent machines can be based on some common pieces of

knowledge.

Operations research

Discrete event simulation (DES) has been used intensively in

automated design of production scheduling heuristics and it is

proven to be an effective method to evaluate the performance

of scheduling heuristics, especial in dynamic environments.

DES is also very flexible which allows it to model a wide

range of complex real-world problems and to be embedded

into GP. In terms of simulation, many aspects should be con-

sidered to improve the evaluation accuracy and efficiency:

– Continuous simulation In some cases, production sys-

tems need continuous simulation method [70] as the

states of the system change continuously [48] like the

movement of liquids (e.g. oil, chemical) or the steel mak-

ing process. Scheduling with the continuous production

process is an interesting topic and continuous simulation

or hybrid simulation combining both DES and continu-

ous simulation will be useful (e.g. in food industry).

123

60 Complex Intell. Syst. (2017) 3:41–66

– Multi-agent simulation To gain better understandings of

the system and investigate how individual behaviours

may influence the overall performance, multi-agent sim-

ulation, a powerful technique in OR and AI, will be a

more suitable method. Miyashita [81] investigated dif-

ferent GP-based agent models and showed interesting

preliminary results. In the future studies, different real-

world aspects (e.g. human factors) should be considered

to see how GP-based agents will behave.

– Simulation optimisation Automated design of production

scheduling heuristics can be treated as simulation optimi-

sation problems as the fitness of heuristics is stochastic.

Then, many advanced techniques developed in simula-

tion optimisation can be applied in this case to improve

the accuracy of fitness evaluations and improve the effi-

ciency of GP.

Queueing theories and stochastic models of production

systems have been studied intensively in the last few decades

and it would be useful to incorporate the knowledge from

these research fields into the automated design process. For

an example, useful scheduling policies developed for the

stochastic environments or policies to cope with the machine

breakdowns can be considered when developing the meta-

algorithms of scheduling heuristics (see “Meta-algorithm of

scheduling heuristics”). Similarly, to build a more compet-

itive scheduling heuristics, the advances in the scheduling

literature and combinatorial optimisation need to be taken

into account.

Current issues and challenges

There are many issues that are worth considering in the future

studies. Here we point out three key issues needed to be

addressed if we want to apply automated heuristic design in

practice.

Dynamic changes

Dynamic changes are unavoidable in the real-world appli-

cations and coping with this issue is essential. Traditional

optimisation methods could not handle dynamic change well.

Fortunately, scheduling heuristics evolved by GP can cope

very well with the dynamic changes. Basically, these heuris-

tics can deal easily with most dynamic changes such as

dynamic job arrivals, machine breakdowns, and stochastic

processing times. However, to improve the quality as well

as the robustness of evolved heuristics, the problem domain

knowledge is needed. Either the knowledge is provided to

GP by the researchers or automatically extracted from the

environment will need further investigation.

Strategies for dynamic scheduling in production systems

[109] can be classified as:

– Completely reactive scheduling no schedule is generated

in advance and decisions are made in real time. Priority

dispatching rules are the main techniques for completely

reactive scheduling.

– Predictive-reactive scheduling scheduling/rescheduling

is triggered by the real-time events where both objectives

of interest and stability (measured by the deviation from

original schedule) are considered.

– Robust pro-active scheduling focus on building pre-

dictable schedules; the key idea is to improve the pre-

dictability of the schedules in a dynamic environment

(e.g. by inserting additional time in the predictive sched-

ule) with minimal effects on the schedule performance.

While GP has been applied to many studies to evolve prior-

ity rules, there is no study on predictive-reactive scheduling.

Yin et al. [142] and Nguyen et al. [95] are the only two studies

that considered pro-active scheduling issues. Yin et al. [142]

tried to evolve a scheduling heuristics that include a priority

rule to determine the job sequence and a function to estimate

the idle time needed to be inserted into the schedule to buffer

against stochastic machine breakdowns. Their objective was

to minimise both the mean tardiness of the schedule and the

deviations between initial and final schedules. In this case,

Yin et al. [142] proposed a fitness function that is a weighted

sum of mean tardiness and mean deviations of completion

times. Nguyen et al. [95] aimed at coevolve both the dis-

patching rules and due date assignment rules to optimise the

scheduling performance measures and minimise the devia-

tions between the realised completion times and assigned

due dates of jobs. Different from Yin et al. [142], Nguyen

et al. [95] used evolutionary multi-objective optimisation

to evolve the set of non-dominated scheduling policies. GP

studies in this research direction are still at a very early stage

and many things will need to be done such as improving

stability and predictability of schedules, handling different

sources of disturbances, and improving the efficiency of GP

and its evolved heuristics.

Multiple decisions

Previous studies on production planning and scheduling

focused mainly on scheduling or sequencing decisions and

assumed that other related decisions are fixed. For example,

the due date assignment rules (e.g. total work content) and

the job release policy (e.g. immediate release) are fixed and

we try to find the best scheduling heuristics. These assump-

tions reduce the computational burden of the optimisation or

learning techniques, but they also restrict us from develop-

ing an effective comprehensive systems. It should be noted

123

Complex Intell. Syst. (2017) 3:41–66 61

that past studies are limited by manual designs of scheduling

heuristics and computational power, which is not a serious

issue now. The automated heuristic design and the growing

computing power provide us with the chance to consider a

much wider scope.

However, to effectively handle multiple decisions, better

search mechanisms will need to be developed. There are two

common approaches to dealing with multiple decisions. The

first approach creates a sophisticated representation that con-

tains two or more decision rules and programs based on this

representation are evolved and reproduced based on some

customised genetic operators. The second approach is to

apply cooperative coevolution technique to coevolve mul-

tiple subpopulations for multiple decision rules. In these two

approaches, each rule is constructed based on an independent

set of terminals and functions. Since each decision rule has its

own characteristic, it is not necessary to use GP to evolve all

the rules. For example, supervised learning (e.g. regression)

can be used to estimate due dates of randomly arriving jobs

given a fixed dispatching rule. It would be useful to investi-

gate how GP can be combined with other machine learning

techniques to deal with multiple decisions in production plan-

ning and scheduling.

Multiple conflicting objectives

Similar to multiple decisions, GP allows the researchers to

cope with multiple conflicting objectives in various ways.

Using pure EMO search mechanisms such as NSGA-II

[28] may have troubles dealing with this designing prob-

lems because of a number of reasons. First, the search

space for GP to explore can be very large because of the

number of terminals, functions sets, and the number of objec-

tives to be optimised. Therefore, it will be much harder for

the search methods to find a good set of non-dominated

heuristics. Second, GP usually requires a large population

to maintain a large and diverse genetic materials to cre-

ate effective scheduling heuristics, especially when dealing

with multiple conflicting objectives. As a result, more heuris-

tic evaluations will be needed, which significantly increases

the computational costs of GP. Finally, it will be more dif-

ficult to understand how the trade-offs are achieved via

the evolved heuristics (it has been already very hard to

understand scheduling heuristics in the case of optimising a

single objective). In addition, how to measure the robustness

of scheduling heuristics (when they are applied to differ-

ent/unseen scenarios) is still a open research question.

Possible approaches to handle these issues are:

– Developing more specialised genetic operators and local

search heuristics to improve the search effectiveness and

efficiency.

– Incorporating user’s preferences to guide the search of

GP to improve the efficiency of GP.

– Developing new surrogated assisted GP to reduce the

computational costs of GP and improve its effectiveness.

– Developing new representations to allow GP to deal with

multiple objectives effectiveness and improve the inter-

pretability of evolved scheduling heuristics.

Other challenges

Developing an efficient, effective, and scalable GP systems

for evolving scheduling heuristics will continue to be a major

challenge for the research community. As the real-world pro-

duction systems can be very complicated with many different

types of resources and technical constraints, many attributes

need to be considered to construct heuristics and the search

space of scheduling heuristics can be very large. The key

point for future research is to enhance the search mechanism

of GP so that GP is able to evolve effective sophisticated

structures of scheduling heuristics and optimise their related

parameters for complex production environments. As men-

tioned earlier, transfer learning can be an interesting research

topic for GP to reuse the knowledge obtained from handling

different scheduling problems.

Conclusions

Automated design of production scheduling heuristics is an

interesting and challenging research area which has a lot

of potential applications. GP has been the most popular

technique for the automated design tasks in the last several

years. Different from existing survey papers that focused on

general ideas and taxonomies, the goal of this paper is to

emphasise on the technical issues when using GP to evolve

production scheduling heuristics. In this paper, we discussed

the key issues related to automated design of scheduling

heuristics with GP including meta-algorithms of schedul-

ing heuristics, selection of component(s) to be evolved,

representations, evaluation models, fitness functions, search

mechanism and post-processing. A unified framework was

developed to provide beginning researchers with an overall

picture of all essential steps, components, and their connec-

tions when developing a GP system for automated design of

production scheduling heuristics. Through analyses of each

component, we also pointed out the strength and weakness

of each technique proposed in the literature and provided

hints for future studies. Representations, evaluation models,

and post-processing are still three main research directions to

be explored as they can directly influence the applicability of

these techniques in practice. Researchers from GP communi-

ties can develop better representations and genetic operators

to help GP discover more powerful and more interpretable

123

62 Complex Intell. Syst. (2017) 3:41–66

scheduling heuristics. Advanced knowledge from the fields

of simulation and optimisation of expensive functions can

be very useful when systematically applied to GP. For post-

processing, it is a space for creativeness, in which the goal

is to explain how the evolve how discovered heuristics work,

its sensitivity, and the reliability of decisions made by the

heuristic.

Automated design of production scheduling heuristics is a

multi-disciplinary and inter-disciplinary research area where

the knowledge from operations research and artificial intel-

ligence is required. Scheduling has its root from operation

research and many clever techniques have been proposed

in the literature. It would be interesting to see how GP can

assist to make scheduling research more productive. For AI,

automated heuristics design will greatly enlarge the scope

of machine learning applications from traditional predic-

tion tasks to making optimal decisions based on historical

operational data. In addition, many aspects from supervised

learning, unsupervised learning, and transfer learning will

need to be investigated in the context of automated heuristic

design.

Production environments can be complex and it is crit-

ical for GP to handle key issues that commonly occur in

real-world situations such as dynamic changes, multiple deci-

sions, and multiple conflicting objectives. Although many

issues can be handled directly by GP (e.g. reactively deal-

ing with dynamic changes), some have not been investigated

or have not had a satisfactory solutions. In addition, many

aspects discussed here will be true for other scheduling

and combinatorial optimisation problems and we expect that

more applications will appear in the near future.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

1. Abednego L, Hendratmo D (2011) Genetic programming hyper-

heuristic for solving dynamic production scheduling problem. In:

IEEE 2011 international conference on electrical engineering and

informatics (ICEEI)

2. Affenzeller M, Wagner S (2004) SASEGASA: a new generic par-

allel evolutionary algorithm for achieving highest quality results.

J Heuristics 10(3):243–267

3. Alsina EF, Capodieci N, Cabri G, Regattieri A, Gamberi M, Pilati

F, Faccio M (2015) The influence of the picking times of the com-

ponents in time and space assembly line balancing problems: an

approach with evolutionary algorithms. In: 2015 IEEE sympo-

sium series on computational intelligence, pp 1021–1028

4. Applegate D, Cook W (1991a) A computational study of the job-

shop scheduling instance. ORSA J Comput 3(2):149–156

5. Applegate D, Cook W (1991b) A computational study of the job-

shop scheduling problem. ORSA J Comput 3(2):149–156

6. Banzhaf W, Nordin P, Keller R, Francone F (1998) Genetic pro-

gramming: an introduction. Morgan Kaufmann, San Francisco

7. Baxter J (1998) Theoretical models of learning to learn. In: Thrun

S, Pratt L (eds) Learning to learn. Springer US, Boston, pp 71–94.

doi:10.1007/978-1-4615-5529-2_4

8. Baxter J (2000) A model of inductive bias learning. J Artif Int Res

12(1):149–198

9. Baykasoglu A (2008) Gene expression programming based meta-

modelling approach to production line design. Int J Comput Integr

Manuf 21:657–665

10. Baykasoglu A, Ozbakr L (2015) Discovering task assignment

rules for assembly line balancing via genetic programming. Int

J Adv Manuf Technol 76:417–434

11. Baykasoglu A, Gocken M, Ozbakir L (2010) Genetic program-

ming based data mining approach to dispatching rule selection

in a simulated job shop. SIMULATION Trans Soc Model Simul

86:715–728

12. Baykasolu A, Gken M (2009) Gene expression programming

based due date assignment in a simulated job shop. Expert Syst

Appl 36(10):12143–12150

13. Beasley JE (1990) Or-library: distributing test problems by elec-

tronic mail. J Oper Res Soc 41(11):1069–1072

14. Beham A, Winkler S, Wagner S, Affenzeller M (2008) A genetic

programming approach to solve scheduling problems with parallel

simulation. In: Wu J, Robert Y (eds) Proceedings of the 2008 IEEE

International Parallel & Distributed Processing Symposium. IEEE

Computer Society Press, Los Alamitos, CA, pp 1–5

15. Belisrio LS, Pierreval H (2015) Using genetic programming and

simulation to learn how to dynamically adapt the number of cards

in reactive pull systems. Expert Syst Appl 42(6):3129–3141

16. Bierwirth C, Mattfeld DC (1999) Production scheduling and

rescheduling with genetic algorithms. Evol Comput 7(1):1–17

17. Brameier MF, Banzhaf W (2010) Linear genetic programming,

1st edn. Springer Publishing Company, Incorporated, Berlin

18. Branke J, Hildebrandt T, Scholz-Reiter B (2015) Hyper-heuristic

evolution of dispatching rules: a comparison of rule representa-

tions. Evol Comput 23(2):249–277

19. Branke J, Groves MJ, Hildebrandt T (2016a) Evolving control

rules for a dual-constrained job scheduling scenario. In: Pro-

ceedings of the 2016 Winter Simulation Conference, Winter

Simulation Conference

20. Branke J, Nguyen S, Pickardt CW, Zhang M (2016b) Automated

design of production scheduling heuristics: a review. IEEE Trans

Evol Comput 20(1):110–124

21. Burke EK, Hyde M, Kendall G, Woodward J (2007) Automatic

heuristic generation with genetic programming: evolving a jack-

of-all-trades or a master of one. In: GECCO ’07: Proceedings of

the 9th annual conference on genetic and evolutionary computa-

tion. ACM Press, New York, pp 1559–1565

22. Burke EK, Hyde MR, Kendall G, Ochoa G, Ozcan E, Wood-

ward JR (2009) Exploring hyper-heuristic methodologies with

genetic programming. In: Mumford C, Jain L (eds) Computational

intelligence, intelligent systems reference library, vol 1. Springer,

Berlin, pp 177–201

23. Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward JR

(2010) A classification of hyper-heuristic approaches. In: Hand-

book of metaheuristics, international series in operations research

& management science, vol 146. Springer, New York, pp 449–468

24. Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Ozcan E,

Qu R (2013) Hyper-heuristics: a survey of the state of the art. J

Oper Res Soc 64(12):1695–1724

25. Castro LRd, Timmis J (2002) Artificial immune systems: a new

computational intelligence paradigm. Springer-Verlag New York

Inc, secaucus

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/978-1-4615-5529-2_4

Complex Intell. Syst. (2017) 3:41–66 63

26. Chen L, Zheng H, Zheng D, Li D (2015) An ant colony

optimization-based hyper-heuristic with genetic programming

approach for a hybrid flow shop scheduling problem. In: CEC’15:

IEEE congress on evolutionary computation

27. Coello Coello CA (1999) A comprehensive survey of

evolutionary-based multiobjective optimization techniques.

Knowl Inf Syst 1(3):269–308

28. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and

elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans

Evol Comput 6(2):182–197

29. Demirkol E, Mehta S, Uzsoy R (1998) Benchmarks for shop

scheduling problems. Eur J Oper Res 109(1):137–141. doi:10.

1016/S0377-2217(97)00019-2

30. Dimopoulos C, Zalzala AMS (2001) Investigating the use of

genetic programming for a classic one-machine scheduling prob-

lem. Adv Eng Softw 32(6):489–498

31. Durasevic M, Jakobovi D, Kneevi K (2016) Adaptive schedul-

ing on unrelated machines with genetic programming. Appl Soft

Comput 48:419–430

32. Eguchi T, Oba F, Toyooka S (2008) A robust scheduling rule using

a neural network in dynamically changing job-shop environments.

Int J Manuf Technol Manag 14(34):266–288

33. Feng L, Ong YS, Lim MH, Tsang IW (2015) Memetic search with

interdomain learning: a realization between CVRP and CARP.

IEEE Trans Evol Comput 19(5):644–658

34. Ferreira C (2006) Gene expression programming: mathematical

modeling by an artificial intelligence, 2nd edn. Springer, Berlin

35. Freitag M, Hildebrandt T (2016) Automatic design of schedul-

ing rules for complex manufacturing systems by multi-objective

simulation-based optimization. CIRP Ann Manuf Technol

65(1):433–436

36. Furuholmen M, Glette K, Hovin M, Torresen J (2009) Coevolving

heuristics for the distributor’s pallet packing problem. In: CEC’09:

IEEE congress on evolutionary computation, pp 2810–2817

37. Geiger CD, Uzsoy R (2008) Learning effective dispatching rules

for batch processor scheduling. Int J Prod Res 46(6):1431–1454

38. Geiger CD, Uzsoy R, Aytu H (2006) Rapid modeling and dis-

covery of priority dispatching rules: an autonomous learning

approach. J Sched 9(1):7–34

39. Giffler B, Thompson GL (1960) Algorithms for solving

production-scheduling problems. Oper Res 8(4):487–503

40. Gupta A, Ong Y, Feng L (2016) Multifactorial evolution: toward

evolutionary multitasking. IEEE Trans Evol Comput 20(3):343–

357

41. Han S, Seo J, Park J (2012) Designing an effective scheduling

scheme considering multi-level BOM in hybrid job shop. In:

Proceedings of the 2012 international conference on industrial

engineering and operations management, pp 1302–1310

42. Hart E, Sim K (2016) A hyper-heuristic ensemble method

for static job-shop scheduling. Evol Comput. doi:10.1162/

EVCO_a_00183

43. Hart E, Ross P, Corne D (2009) Evolutionary scheduling: a review.

Genetic Program Evol Mach 6(2):191–220

44. Hildebrandt T (2014) Jasima an efficient java simulator for man-

ufacturing and logistics. http://code.google.com/p/jasima/

45. Hildebrandt T, Branke J (2014) On using surrogates with genetic

programming. Evol Comput 23(3):343–367

46. Hildebrandt T, Heger J, Scholz-Reiter B (2010) Towards improved

dispatching rules for complex shop floor scenarios a genetic pro-

gramming approach. In: Pelikan M, Branke J (eds) GECCO ’10:

Proceedings of the 12th annual conference on genetic and evo-

lutionary computation. ACM Press, Portland, Oregon, USA, pp

257–264

47. Hildebrandt T, Goswami D, Freitag M (2014) Large-scale

simulation-based optimization of semiconductor dispatching

rules. In: Proceedings of the 2014 winter simulation conference,

pp 2580–2590

48. Hmida JB, Lee J, Wang X, Boukadi F (2014) Production

scheduling for continuous manufacturing systems with quality

constraints. Prod Manuf Res 2(1):95–111

49. Ho NB, Tay JC (2004) GENACE: An efficient cultural algo-

rithm for solving the flexible job-shop problem. In: Evolutionary

computation, 2004. CEC2004. Congress on, IEEE, vol 2, pp

1759–1766

50. Ho NB, Tay JC (2005) Evolving dispatching rules for solving

the flexible job-shop problem. In: IEEE congress on evolution-

ary computation, vol 3, pp 2848–2855. doi:10.1109/CEC.2005.

1555052

51. Holthaus O, Rajendran C (2000) Efficient jobshop dispatching

rules: further developments. Prod Plan Control 11(2):171–178

52. Hunt R (2016) Genetic programming hyper-heuristics for job shop

scheduling. PhD thesis, Victoria University of Wellington, http://

researcharchive.vuw.ac.nz/handle/10063/5219

53. Hunt R, Johnston M, Zhang M (2014) Evolving less-myopic

scheduling rules for dynamic job shop scheduling with genetic

programming. In: Igel C, Arnold DV (eds) GECCO ’14: Pro-

ceedings of the 2014 conference on genetic and evolutionary

computation. ACM Press, New York, pp 927–934

54. Hunt R, Johnston M, Zhang M (2014) Evolving machine-specific

dispatching rules for a two-machine job shop using genetic pro-

gramming. In: Liu D, Hussain A, Zeng Z, Zhang N (eds) 2014

IEEE congress on evolutionary computation (CEC). IEEE Press,

Piscataway, NJ, pp 618–625

55. Hunt R, Johnston M, Zhang M (2015a) Evolving dispatching rules

with greater understandability for dynamic job shop. Tech. Rep.

ECSTR15-06, Victoria University of Wellington

56. Hunt R, Johnston M, Zhang M (2015b) Using Local Search to

Evaluate dispatching rules in dynamic job shop scheduling. In:

Ochoa G, Chicano F (eds) Evolutionary computation in combi-

natorial optimization. Springer International Publishing, Lecture

notes in computer science, pp 222–233

57. Ingimundardottir H, Runarsson TP (2011) Supervised learn-

ing linear priority dispatch rules for job-shop scheduling. In:

Coello Coello CA (ed) Learning and intelligent optimization,

Springer, Berlin and Heidelberg, LNCS, vol 6683, pp 263–277

58. Jakobovi D, Marasovi K (2012) Evolving priority schedul-

ing heuristics with genetic programming. Appl Soft Comput

12(9):2781–2789

59. Jakobovic D, Budin L (2006) Dynamic scheduling with genetic

programming. In: Collet P, Tomassini M, Ebner M, Gustafson S,

Ekrt A (eds) Genetic programming, Springer, Berlin, LNCS, vol

3905, pp 73–84

60. Jakobovic D, Jelenkovic L, Budin L (2007) Genetic programming

heuristics for multiple machine scheduling. In: Ebner M, O’Neill

M, Ekrt A, Vanneschi L, Esparcia-Alczar AI (eds) Genetic pro-

gramming, Springer, Berlin, LNCS, vol 4445, pp 321–330

61. Jin Y (2006) Multi-objective machine learning (studies in com-

putational intelligence) (studies in computational intelligence).

Springer-Verlag New York Inc, Secaucus

62. Jin Y (2011) Surrogate-assisted evolutionary computation: recent

advances and future challenges. Swarm Evol Comput 1(2):61–70

63. Karunakaran D, Chen G, Zhang M (2016a) Parallel multi-

objective job shop scheduling using genetic programming. In:

Ray T, Sarker R, Li X (eds) Artificial life and computational

intelligence. Springer International Publishing, Lecture notes in

computer science, pp 234–245

64. Karunakaran D, Mei Y, Chen G, Zhang M (2016b) Dynamic job

shop scheduling under uncertainty using genetic programming.

In: Asia-Pacific symposium on intelligent and evolutionary sys-

tems (IES) (to appear)

123

http://dx.doi.org/10.1016/S0377-2217(97)00019-2
http://dx.doi.org/10.1016/S0377-2217(97)00019-2
http://dx.doi.org/10.1162/EVCO_a_00183
http://dx.doi.org/10.1162/EVCO_a_00183
http://code.google.com/p/jasima/
http://dx.doi.org/10.1109/CEC.2005.1555052
http://dx.doi.org/10.1109/CEC.2005.1555052
http://researcharchive.vuw.ac.nz/handle/10063/5219
http://researcharchive.vuw.ac.nz/handle/10063/5219

64 Complex Intell. Syst. (2017) 3:41–66

65. Keijzer M, Babovic V (1999) Dimensionally aware genetic pro-

gramming. In: Banzhaf, W (ed) Proceedings of the first genetic

and evolutionary conference (GECCO 99), Morgan, pp 1069–

1076

66. Kofler M, Wagner S, Beham A, Kronberger G, Affenzeller M

(2009) Priority rule generation with a genetic algorithm to mini-

mize sequence dependent setup costs. In: Moreno-Daz R, Pichler

F, Quesada-Arencibia A (eds) Computer aided systems theory

EUROCAST 2009, Springer, Berlin, LNCS, vol 5717, pp 817–

824

67. Koza JR (1992) Genetic programming: on the programming of

computers by means of natural selection. MIT Press, Cambridge

68. Kuczapski AM, Micea MV, Maniu LA, Cretu VI (2010) Effi-

cient generation of near optimal initial populations to enhance

genetic algorithms for job-shop scheduling. Inf Technol Control

39(1):32–37

69. Langdon WB, Banzhaf W (2005) Repeated sequences in linear

genetic programming genomes. Complex Syst 15(4):285–306

70. Law AM, Kelton DM (1999) Simulation modeling and analysis.

McGraw-Hill Higher Education, Boston

71. Lawrence S (1984) Resource constrained project scheduling:

an experimental investigation of heuristic scheduling tech-

niques. PhD thesis, Graduate School of Industrial Administration,

Carnegie-Mellon University, Pittsburgh, Pennsylvania

72. Li D, Zhan R, Zheng D, Li M, Kaku I (2016) A hybrid evolution-

ary hyper-heuristic approach for intercell scheduling considering

transportation capacity. IEEE Trans Autom Sci Eng 13(2):1072–

1089

73. Li XY, Shao XY, Gao L (2008) Optimization of flexible process

planning by genetic programming. Int J Adv Manuf Technol 38(1–

2):143–153

74. Mascia F, Lopez-Ibanez M, Dubois-Lacoste J, Stutzle T (2013)

From grammars to parameters: automatic iterated greedy design

for the permutation flow-shop problem with weighted tardiness.

In: Nicosia G, Pardalos P (eds) Learning and intelligent optimiza-

tion, Springer, Berlin, LNCS, vol 7997, pp 321–334

75. Masood A, Mei Y, Chen G, Zhang M (2016a) Many-Objective

genetic programming for job-shop scheduling. In: CEC’16: IEEE

congress on evolutionary computation, pp 209–216

76. Masood A, Mei Y, Chen G, Zhang M (2016b) A PSO-based

reference point adaption method for genetic programming hyper-

heuristic in many-objective job shop scheduling. In: Australasian

conference on artificial life and computational intelligence

(ACALCI), (to appear)

77. Mckay RI, Hoai NX, Whigham PA, Shan Y, O’Neill M (2010)

Grammar-based genetic programming: a survey. Genetic Program

Evolv Mach 11(3–4):365–396

78. Mei Y, Zhang M (2016) A comprehensive analysis on reusability

of GP-evolved job shop dispatching rules. In: WCCI-CEC’16:

IEEE congress on evolutionary computation

79. Mei Y, Zhang M, Nyugen S (2016) Feature selection in evolving

job shop dispatching rules with genetic programming. In: Pro-

ceedings of the genetic and evolutionary computation conference

2016, GECCO ’16, pp 365–372

80. Miller JF, Thomson P (2000) Cartesian genetic programming.

European Conference on Genetic Programming. Springer, Berlin,

pp 121–132

81. Miyashita K (2000) Job-shop scheduling with genetic program-

ming. In: Whitley D, Goldberg D, Cantu-Paz E, Spector L, Parmee

I, Beyer HG (eds) GECCO 2000: Proceedings of the genetic and

evolutionary computation conference. Morgan Kaufmann, San

Francisco, pp 505–512

82. Montana DJ (1995) Strongly typed genetic programming. Evol

Comput 3(2):199–230

83. Mucientes M, Vidal JC, Bugarin A, Lama M (2008) Processing

times estimation in a manufacturing industry through genetic pro-

gramming. In: IEEE 2008 3rd international workshop on genetic

and evolving fuzzy systems (GEFS)

84. Nguyen S (2016) A learning and optimizing system for order

acceptance and scheduling. Int J Adv Manuf Technol. doi:10.

1007/s00170-015-8321-6

85. Nguyen S, Zhang M, Johnston M (2011) A genetic programming

based hyper-heuristic approach for combinatorial optimisation.

In: GECCO’11: Proceedings of the 13th annual conference on

genetic and evolutionary computation, ACM, pp 1299–1306

86. Nguyen S, Zhang M, Johnston M, Tan KC (2012a) A coevolu-

tion genetic programming method to evolve scheduling policies

for dynamic multi-objective job shop scheduling problems. In:

CEC’12: IEEE congress on evolutionary computation (CEC), pp

1–8

87. Nguyen S, Zhang M, Johnston M, Tan KC (2012b) Evolv-

ing reusable operation-based due-date assignment models for

job shop scheduling with genetic programming. In: EuroGP’12:

Genetic Programming, no. 7244 in Lecture notes in computer sci-

ence, pp 121–133

88. Nguyen S, Zhang M, Johnston M, Tan K (2013a) Learning

iterative dispatching rules for job shop scheduling with genetic

programming. Int J Adv Manuf Technol 67(14):85–100

89. Nguyen S, Zhang M, Johnston M, Tan KC (2013b) A computa-

tional study of representations in genetic programming to evolve

dispatching rules for the job shop scheduling problem. IEEE Trans

Evol Comput 17(5):621–639

90. Nguyen S, Zhang M, Johnston M, Tan KC (2013c) Dynamic

Multi-objective job shop scheduling: a genetic programming

approach. In: Uyar AS, Ozcan E (eds) Urquhart N (eds) Auto-

mated scheduling and planning, no. 505 in studies in computa-

tional intelligence, Springer, Berlin, pp 251–282

91. Nguyen S, Zhang M, Johnston M, Tan KC (2013d) Learning

reusable initial solutions for multi-objective order acceptance and

scheduling problems with genetic programming. In: Krawiec K,

Moraglio A, Hu T, Etaner-Uyar A, Hu B (eds) Genetic program-

ming, Springer, Berlin, LNCS, vol 7831, pp 157–168

92. Nguyen S, Zhang M, Johnston M (2014a) Enhancing branch-

and-bound algorithms for order acceptance and scheduling with

genetic programming. In: EuroGP’14: Genetic programming, no.

8599 in Lecture notes in computer science, Springer, Berlin, pp

124–136

93. Nguyen S, Zhang M, Johnston M (2014b) A sequential genetic

programming method to learn forward construction heuristics for

order acceptance and scheduling. In: Liu D, Hussain A, Zeng Z,

Zhang N (eds) CEC’14: IEEE congress on evolutionary compu-

tation (CEC). IEEE Press, Piscataway, NJ, pp 1824–1831

94. Nguyen S, Zhang M, Johnston M, Tan K (2014c) Genetic pro-

gramming for evolving due-date assignment models in job shop

environments. Evol Comput 22(1):105–138

95. Nguyen S, Zhang M, Johnston M, Tan KC (2014d) Automatic

design of scheduling policies for dynamic multi-objective job

shop scheduling via cooperative coevolution genetic program-

ming. IEEE Trans Evol Comput 18(2):193–208

96. Nguyen S, Zhang M, Johnston M, Tan KC (2014e) Selec-

tion Schemes in surrogate-assisted genetic programming for job

shop scheduling. In: SEAL’14: simulated evolution and learning,

Springer International Publishing, pp 656–667

97. Nguyen S, Zhang M, Johnston M, Tan K (2015a) Automatic

programming via iterated local search for dynamic job shop

scheduling. IEEE Trans Cybern 45(1):1–14

98. Nguyen S, Zhang M, Tan KC (2015b) Enhancing genetic pro-

gramming based hyper-heuristics for dynamic multi-objective job

shop scheduling problems. In: CEC’15: IEEE congress on evolu-

tionary computation (CEC), pp 2781–2788

99. Nguyen S, Zhang M, Tan KC (2016) Surrogate-assisted genetic

programming with simplified models for automated design of

123

http://dx.doi.org/10.1007/s00170-015-8321-6
http://dx.doi.org/10.1007/s00170-015-8321-6

Complex Intell. Syst. (2017) 3:41–66 65

dispatching rules. IEEE Trans Cybern. doi:10.1109/TCYB.2016.

2562674

100. Nie L, Shao X, Gao L, Li W (2010) Evolving scheduling rules

with gene expression programming for dynamic single-machine

scheduling problems. Int J Adv Manuf Technol 50(58):729–747

101. Nie L, Gao L, Li P, Wang X (2011) Multi-Objective optimization

for dynamic single-machine scheduling. In: Tan Y, Shi Y, Chai

Y, Wang G (eds) Advances in swarm intelligence: second inter-

national conference, ICSI 2011, Chongqing, China, June 12–15,

2011. Proceedings, Part II, Springer, Berlin, pp 1–9

102. Nie L, Gao L, Li P, Zhang L (2011) Application of gene expression

programming on dynamic job shop scheduling problem. In: Pro-

ceedings of the 2011 15th international conference on computer

supported cooperative work in design. IEEE Press, Piscataway,

NJ, pp 291–295

103. Nie L, Bai Y, Wang X, Liu K (2012) Discover scheduling strategies

with gene expression programming for dynamic flexible job shop

scheduling problem. In: Tan Y, Shi Y, Ji Z (eds) Advances in

swarm intelligence, Springer, Berlin, LNCS, vol 7332, pp 383–

390

104. Nie L, Gao L, Li P, Li X (2013a) A GEP-based policies construct-

ing approach for dynamic flexible job shop scheduling problem

with job release dates. J Intell Manuf 24(4):763–774

105. Nie L, Gao L, Li P, Shao X (2013b) Reactive scheduling in a job

shop where jobs arrive over time. Comput Ind Eng 66:389–405

106. Nowicki E, Smutnicki C (1996) A fast taboo search algorithm for

the job shop problem. Manag Sci 42(6):797–813

107. Olafsson S, Li X (2010) Learning effective new single machine

dispatching rules from optimal scheduling data. Int J Prod Econ

128(1):118–126

108. Ong Y, Gupta A (2016) Evolutionary multitasking: a computer

science view of cognitive multitasking. Cognit Comput 8(2):125–

142

109. Ouelhadj D, Petrovic S (2008) A survey of dynamic scheduling

in manufacturing systems. J Sched 12(4):417

110. Park J, Nguyen S, Johnston M, Zhang M, (2013a) Evolving

Stochastic dispatching rules for order acceptance and scheduling

via genetic programming. In: AI, (2013) Advances in artificial

intelligence. Springer International Publishing, Lecture notes in

computer science

111. Park J, Nguyen S, Zhang M, Johnston M (2013) Genetic pro-

gramming for order acceptance and scheduling. In: Coello Coello

CA, De la Fraga LG (eds) 2013 IEEE congress on evolutionary

computation (CEC). IEEE Press, Piscataway, NJ, pp 1005–1012

112. Park J, Nguyen S, Zhang M, Johnston M (2014) Enhancing

heuristics for order acceptance and scheduling using genetic

programming. In: SEAL’14: Simulated evolution and learning,

Springer International Publishing, pp 723–734

113. Park J, Nguyen S, Zhang M, Johnston M (2015a) Evolving Ensem-

bles of dispatching rules using genetic programming for job shop

scheduling. In: EuroGP’15: Genetic programming, Springer Inter-

national Publishing, pp 92–104

114. Park J, Nguyen S, Zhang M, Johnston M (2015b) A single pop-

ulation genetic programming based ensemble learning approach

to job shop scheduling. In: GECCO’15: Proceedings of the 2015

on genetic and evolutionary computation conference companion,

pp 1451–1452

115. Park J, Mei Y, Chen G, Zhang M (2016a) Niching genetic pro-

gramming based hyper-heuristic approach to dynamic job shop

scheduling: an investigation into distance metrics. In: GECCO’16:

Proceedings of the 2016 on genetic and evolutionary computation

conference companion, pp 109–110

116. Park J, Mei Y, Nguyen S, Chen G, Johnston M, Zhang M (2016b)

Genetic programming based hyper-heuristics for dynamic job

shop scheduling: cooperative coevolutionary approaches. In:

Genetic programming, no. 9594 in Lecture notes in computer

science, Springer International Publishing, pp 115–132

117. Pickardt C, Branke J, Hildebrandt T, Heger J, Scholz-Reiter B

(2010) Generating dispatching rules for semiconductor manufac-

turing to minimize weighted tardiness. In: Johansson B, Jain S,

Montoya-Torres J, Hugan J, Ycesan E (eds) Proceedings of the

2010 winter simulation conference. IEEE Press, Piscataway, NJ,

pp 2504–2515

118. Pickardt CW, Hildebrandt T, Branke J, Heger J, Scholz-Reiter B

(2013) Evolutionary generation of dispatching rule sets for com-

plex dynamic scheduling problems. Int J Prod Econ 145(1):67–77

119. Pinedo ML (2008) Scheduling: theory, algorithms, and systems,

3rd edn. Springer, New York

120. Poli R (1998) Discovery of symbolic, neuro-symbolic and neu-

ral networks with parallel distributed genetic programming. In:

Artificial neural nets and genetic algorithms, pp 419–423

121. Potter MA, De Jong KA (2000) Cooperative coevolution: an

architecture for evolving coadapted subcomponents. Evol Com-

put 8(1):1–29

122. Qin W, Zhang J, Sun Y (2013) Multiple-objective scheduling for

interbay amhs by using genetic-programming-based composite

dispatching rules generator. Comput Ind 64:694–707

123. Riley M, Mei Y, Zhang M (2016) Improving job shop dispatching

rules through terminal weighting and adaptive mutation in genetic

programming. In: IEEE congress on evolutionary computation, pp

3362–3369

124. Schmidt M, Lipson H (2009) Distilling free-form natural laws

from experimental data. Science 324(5923):81–85

125. Sels V, Gheysen N, Vanhoucke M (2011) A comparison of priority

rules for the job shop scheduling problem under different flow

time- and tardiness-related objective functions. Int J Prod Res

50(15):4255–4270

126. Sha DY, Hsu CY (2006) A hybrid particle swarm optimization for

job shop scheduling problem. Comput Ind Eng 51(4):791–808

127. Shahzad A, Mebarki N (2016) Learning dispatching rules

for scheduling: a synergistic view comprising decision trees,

tabu search and simulation. Computers 5(1):3. doi:10.3390/

computers5010003. http://www.mdpi.com/2073-431X/5/1/3

128. Shi W, Song X, Sun J (2015) Automatic heuristic generation with

scatter programming to solve the hybrid flow shop problem. Adv

Mech Eng 7(2):1–9

129. Shiue YR (2009) Data-mining-based dynamic dispatching rule

selection mechanism for shop floor control systems using a sup-

port vector machine approach. Int J Prod Res 47(13):3669–3690

130. Sim K, Hart E (2015) A novel heuristic generator for jssp using

a tree-based representation of dispatching rules. In: GECCO’15:

Proceedings of the companion publication of the 2015 on genetic

and evolutionary computation conference

131. Sim K, Hart E, Paechter B (2015) A lifelong learning hyper-

heuristic method for bin packing. Evol Comput 23(1):37–67

132. Taillard E (1993) Benchmarks for basic scheduling problems. Eur

J Oper Res 64(2):278–285

133. Tan K, Lee T, Khor E (2002) Evolutionary algorithms for

multi-objective optimization: performance assessments and com-

parisons. Artif Intell Rev 17(4):251–290

134. Tay JC, Ho NB (2007) Designing dispatching rules to minimize

total tardiness. In: Dahal KP, Tan KC, Cowling PI (eds) Evolu-

tionary scheduling, studies in computational intelligence, vol 49.

Springer, Berlin, pp 101–124

135. Tay JC, Ho NB (2008) Evolving dispatching rules using genetic

programming for solving multi-objective flexible job-shop prob-

lems. Comput Ind Eng 54(3):453–473

136. Vazquez-Rodriguez JA, Ochoa G (2011) On the automatic dis-

covery of variants of the NEH procedure for flow shop scheduling

using genetic programming. J Oper Res Soc 62(2):381–396

123

http://dx.doi.org/10.1109/TCYB.2016.2562674
http://dx.doi.org/10.1109/TCYB.2016.2562674
http://dx.doi.org/10.3390/computers5010003
http://dx.doi.org/10.3390/computers5010003
http://www.mdpi.com/2073-431X/5/1/3

66 Complex Intell. Syst. (2017) 3:41–66

137. Wang X, Nie L, Bai Y (2015) Discovering scheduling rules with

a machine learning approach based on GEP and PSO for dynamic

scheduling problems in shop floor. In: Computational intelligence

in industrial application, pp 365–370

138. Weckman GR, Ganduri CV, Koonce DA (2008) A neural network

job-shop scheduler. J Intell Manuf 19(2):191–201

139. Whigham PA (1995) Grammatically-based genetic programming.

In: Rosca JP (ed) Proceedings of the workshop on genetic pro-

gramming: from theory to real-world applications, pp 33–41

140. Wu SX, Banzhaf W (2011) Rethinking multilevel selection in

genetic programming. In: Proceedings of the 13th annual confer-

ence on genetic and evolutionary computation, ACM, New York,

NY, USA, GECCO ’11, pp 1403–1410

141. Yang JW, Cheng HC, Chiang TC, Fu LC (2008) Multiobjective lot

scheduling and dynamic OHT routing in a 300-mm wafer fab. In:

2008 IEEE international conference on systems, man and cyber-

netics, pp 1608–1613

142. Yin WJ, Liu M, Wu C (2003) Learning single-machine scheduling

heuristics subject to machine breakdowns with genetic program-

ming. In: Sarker R, Reynolds R, Abbass H, Tan KC, McKay B,

Essam D, Gedeon T (eds) The 2003 congress on evolutionary

computation (CEC 2003), IEEE Press, Piscataway, NJ, vol 2, pp

1050–1055

123

	Genetic programming for production scheduling: a survey with a unified framework
	Abstract
	Introduction
	Background
	Production scheduling
	Genetic programming
	Genetic programming for production scheduling

	Unified framework
	Production scheduling problems
	Meta-algorithm of scheduling heuristics
	Component(s) to be evolved
	Representations, function sets, and terminal sets
	Evolving priority function
	Evolving multiple components

	Estimate quality of evolved scheduling heuristics
	Evaluation models
	Fitness function
	Surrogate-assisted models

	Search mechanisms
	Evolutionary multi-objective optimisation
	Coevolution
	Other search mechanisms

	Post-processing
	Evaluating GP methods

	Connections with other artificial intelligence (AI) and operations research (OR) techniques
	Machine learning
	Operations research

	Current issues and challenges
	Dynamic changes
	Multiple decisions
	Multiple conflicting objectives
	Other challenges

	Conclusions
	References

