
Genetic Programming for the Identification of

Nonlinear Input-Output Models

János Madár, János Abonyi∗ and Ferenc Szeifert
Department of Process Engineering, University of Veszprém,

P.O. Box 158, Veszprém 8201, Hungary

February 8, 2005

Abstract

Linear-in-parameters models are quite widespread in process en-
gineering, e.g. NAARX, polynomial ARMA models, etc. This pa-
per proposes a new method for structure selection of these models.
The method uses Genetic Programming (GP) to generate nonlinear
input-output models of dynamical systems that are represented in a
tree structure. The main idea of the paper is to apply Orthogonal
Least Squares algorithm (OLS) to estimate the contribution of the
branches of the tree to the accuracy of the model. This method
results in more robust and interpretable models. The proposed ap-
proach has been implemented as a freely available MATLAB Toolbox
www.fmt.veim.hu/softcomp. The simulation results show that the
developed tool provides an efficient and fast method for determining
the order and the structure for nonlinear input-output models.

Keywords: Structure identification, Genetic Programming, Orthogonal
Least Squares, Linear-in-parameters models

∗To whom correspondence should be addressed. Tel: +36 88 622793. Fax: +36 88
624171. E-mail: abonyij@fmt.vein.hu.

1



1 Introduction to Data-Driven System Identifica-
tion

In this paper, we focus on data-driven identification of nonlinear input-
output models of dynamical systems. The data-driven identification of these
models involves the following tasks [1]:

a, Structure selection. How to select the regressor (model order) and the
structure of the nonlinear static functions used to represent the model.

b, Input sequence design. Determination of the input sequence which is
injected into the modelled object to generate the output sequence that
can be used for identification.

c, Noise modelling. Determination of the dynamic model which generates
the noise.

d, Parameter estimation. Estimation of the model parameters from the
input-output sequence.

e, Model validation. Comparison of the output of the modelled object
and the model based on data not used in model development.

Most data-driven identification algorithms assume that the model struc-
ture is a priori known or that it is selected by a higher-level ‘wrapper’
structure-selection algorithm. Several information-theoretic criteria have
been proposed for structure selection of linear dynamic input-output mod-
els. Examples of the classical criteria are the Final Prediction-Error (FPE)
and the Akaike Information Criterion (AIC) [2]. Later, the Minimum De-
scription Length (MDL) criterion developed by Schwartz and Rissanen was
proven to produce consistent estimates of the structure of linear dynamic
models [3]. With these tools, determining the structure of linear systems is
a rather straightforward task.

Relatively little research has been done into the structure selection for
nonlinear models. In the paper of Aguirre and Billings [4] it is argued that
if a certain type of term in a nonlinear model is spurious. In [5] this ap-
proach is used to the structure selection of polynomial models. In [6] an
alternative solution to the model structure selection problem is introduced
by conducting a forward search through the many possible candidate model
terms initially and then performing an exhaustive all subset model selection
on the resulting model. A backward search approach based on orthogonal
parameter-estimation is also applied [7, 8].

2



As can be seen, these techniques are ‘wrapped’ around a particular model
construction method. Hence, the result of the estimate can be biased due to
the particular construction method used. To avoid this problem in the re-
cent research a ‘model free’ approach is followed where no particular model
needs to be constructed in order to select the model of the modeled system.
The advantage of this approach is that this estimate is based on geometri-
cal/embedding procedures and does not depend on the model representation
that will be used a posteriori, i.e. the results would have a rather general
character. This is an important advantage, as the construction of a NARX
model consists of the selection of many structural parameters which have
significant effect to the performance of the designed model: e.g. the model
order, type of the nonlinearity (Hammerstein or Wiener type system) [9],
scheduling variables, number of neurons in a neural network, etc. The si-
multaneous selection of these structural parameters is a problematic task.
The primary objective of this paper is to decompose this complex problem
by providing some useful guidance in selecting a tentative model with a cor-
rect model order. Deterministic suitability measures [10] and false nearest
neighbor (FNN) algorithms [11] have already been proposed for data-based
selection of the model order. These methods build upon similar methods
developed for the analysis of chaotic time series [12]. The idea behind the
FNN algorithm is geometric in nature. If there is enough information in the
regression vector to predict the future output, then for any two regression
vectors which are close in the regression space, the corresponding future
outputs are also close in the output space. The structure is then selected
by computing the percentage of false neighbors, i.e., vectors that violate the
above assumption. A suitable threshold parameter must be specified by the
user. For this purpose, heuristic rules have been proposed [10]. Unfortu-
nately, for nonlinear systems the choice of this parameter will depend on
the particular system under study [11]. The computational effort of this
method also rapidly increases with the number of data samples and the di-
mension of the model. To increase the efficiency of this algorithm, in [13] two
clustering-based algorithms have been proposed and the model structure is
then estimated on the basis of the cluster covariance matrix eigenvalues.

It should be kept in mind that there is no escape of performing a model-
driven structure selection, once a certain model representation is chosen.
For instance, suppose one of the above presented ”model-free” model order
selection algorithm is used to determine the correct model order. If a neural
network is used to model the process, the designer still need to decide on
the activation function, the number of nodes etc. Therefore, the model
order selection method that will be presented in the above mentioned papers

3



definitely not spare the user of having to go through some sort of structure
selection. However, this procedure can be fully automatized, since most of
these models proven universal representation abilities and it is often possible
to find some hybridization with advanced structure optimization techniques
that are able to automatically generate models with adequate structural
parameters.

This paper proposes such hybridization of Genetic Programming (GP)
and the Orthogonal Least Squares (OLS) for the structure selection of non-
linear models that are linear-in-parameters. This method is based on a ”tree
representation” based symbolic optimization technique developed by John
Koza [14]. This representation is extremely flexible, since trees can represent
computer programs, mathematical equations or complete models of process
systems. This scheme has been already used for circuit design in electronics,
algorithm development for quantum computers, and it is suitable for gener-
ating model structures: e.g. identification of kinetic orders [15], steady-state
models [16], and differential equations [17]. Although these successful appli-
cations confirm the applicability of GP in chemical and process engineering,
GP cannot be directly used for the identification of nonlinear input-output
models. Hence, the aim of this paper is to tailor this GP based techniques
to the identification of linear-in-parameters dynamical models by extending
the GP operators by an Orthogonal Least Squares based model reduction
tool.

The paper is organized as follows: In Sect. 2 the structure of linear-in-
parameters models and the OLS are presented, in Sect. 3 a modified GP
algorithm is presented which is suitable for linear-in-parameters models and
polynomial models. Finally in Sect. 4 the application examples are shown.

2 Linear-in-Parameters Models

When the information necessary to build a fundamental model of dynamical
processes is lacking or renders a model that is too complex for an on-line
use, empirical modeling is a viable alternative. Empirical modeling and
identification is a process of transforming available input-output data into
a functional relation that can be used to predict future trends. In this
section, before the discussion of the GP based model structure identification
algorithm, the most widely used linear-in-parameters model structures will
be reviewed.

4



2.1 Introduction to Linear-in-parameters Models

The identification of a discrete input-output dynamical model is based on
the observed inputs {u(k)}k and outputs {y(k)}k [18],

{u(k)}k = [u (1) , u (2) , . . . , u (k)] , (1)

{y(k)}k = [y (1) , y (2) , . . . , y (k)] , (2)

Our aim is to find a relationship between past observations and future out-
put. Instead of using the whole previous input-output sequence, {u(k−1)}k

and {y(k − 1)}k, a finite-dimensional regression vector, x(k), can be used
which is a subset of the previous input and output variables of the f(.)
model

ŷ(k) = f(x(k), θ) . (3)

x(k) = (u(k − nd − 1), · · · , u(k − nd − nb),
y(k − nd − 1), · · · , y(k − nd − na), (4)

where the x(k) input vector of model consists of the lagged u input and y
output, while nd represents the dead-time, nb, na are the input- and output-
orders, respectively.

Many general nonlinear model structures (like neural networks) can be
used to represent such models, only the θ parameters of the model have to
be estimated based on the available input-output data. In some cases the
excessive number of unknown coefficients leads to ill-conditioned estimation
problem causing numerical difficulties and high sensitivity to measurement
errors. Furthermore, nonlinear optimization algorithms used to the identi-
fication of these parameters may get stuck in local minima.

To handle these difficulties this paper proposes an approach based on the
Gabor–Kolmogorov Analysis of Variance (ANOVA) decomposition a general
nonlinear function:

ŷ(k) = f(x(k), θ) ' f0 +
n∑

i=1

fi(xi) +
n∑

i=1

n∑

j=i+1

fij(xi, xj) + · · ·

+f1,2,...,n(x1, . . . , xn), (5)

where the f(x(k), θ) function is approximated by an additive decomposition
of simpler subfunctions; in which f0 is a bias term and fi(xi), fij(xi, xj), . . .
represent univariate, bivariate, . . . components. Any function, and hence
any reasonable dynamical system can be represented by this decomposition.

5



Therefore, this ANOVA approach can be easily used to the input-output
based modelling of dynamical systems

With the use of this definition all the linear-in-parameters models that
are used in process engineering can be obtained, such as Nonlinear Additive
AutoRegressive models (NAARX), Volterra models or Polynomial ARMA
models:

• NAARX Nonlinear Additive AutoRegressive models with eXogenous
inputs models are defined as [19]

ŷ(k) =
na∑

i=1

fi(y(k − i)) +
nb∑

j=1

gj(u(k − j)) + e(k) (6)

where the functions fi and gi are scalar nonlinearities, and e(k) repre-
sents the modeling error. As can be seen, this model does not permit
‘cross terms’ involving products of input and output values at different
times.

• Volterra models are defined as multiple convolution sums

ŷ(k) = y0 +
∑nb

i=1 biu(k − i)
+

∑nb
i=1

∑nb
j=1 biju(k − i)u(k − j) + · · ·+ e(k) . (7)

• Polynomial ARMA models are superior to Volterra series models in
the sense that the number of parameters needed to approximate a
system is generally much less with polynomial models [20] because of
the use of previous output values.

ŷ(k) = y0 +
na∑
i=1

a1,iy(k − i) +
nb∑
i=1

b1,iu(k − i)

+
na∑
i=1

i∑
j=1

a1,ijy(k − i)y(k − j)

+
nb∑
i=1

i∑
j=1

b2,iju(k − i)u(k − j) + . . . + e(k) . (8)

Since certain input and output interactions can be redundant, some com-
ponents of the ANOVA decomposition can be ignored that can result in
a more parsimonious and adequate representation. Hence, the aim of this
paper is to present an efficient method for the data-driven selection of the
model order (nd, na, nb) and the model structure that is member of the
above presented model classes.

6



2.2 Model Structure Selection for Linear-in-parameters Mod-
els

Linear-in-parameters models can be formulated as:

y(k) =
M∑

i=1

piFi (x(k)) , (9)

where F1, . . . , FM are nonlinear functions (they do not contain parameters),
and p1, . . . , pM are model parameters. The problem of model structure se-
lection for linear-in-parameters models is to find the proper set of nonlinear
functions. To attack this problem two approaches can be distinguished:

• The first approach generates all of the possible model structures and
selects the best.

• The second approach transforms the problem into an optimization
problem and solves it based on a (heuristic) search algorithm.

The bottleneck of the first approach is that there is a vast number of
possible structures, hence, in practice, it is impossible to evaluate all of them.
Even, if the set of the possible structures is restricted only to polynomial
models

y(k) = p0 +
m∑

i1=1

pi1xi1(k) +
m∑

i1=1

m∑

i2=i1

pi1i2xi1(k)xi2(k)

+ · · ·+
m∑

i1=1

· · ·
m∑

id=id−1

pi1···id
m∏

j=1

xij (k), (10)

the number of possible terms could be very large. If the number of regressors
is m and the maximum polynomial degree is d, the number of parameters
(number of polynomial terms) is

np =
(d + m)!

d!m!
. (11)

E.g. if m = 8 and d = 4, np = 495.
In case of reasonable number of regressors (submodels) the first approach

can be followed: the polynomial terms are sorted based on their error re-
duction ratio, and the best terms are selected.

In case of larger model orders and higher polynomial degree the first
approach cannot be followed due to the complexity of the initial model.

7



Hence, the second approach to the structure selection problem should be
used that transforms the structure selection problem into an optimization
problem, in which the search space consists of possible structures. This
method uses a search algorithm, which looks for the optimal structure. This
paper suggests the application of Genetic Programming to this task.

3 Genetic Programming for Linear-in-parameters
Models

Genetic Programming is a symbolic optimization technique, developed by
John Koza [14]. It is an evolutionary computation technique (like e.g. Ge-
netic Algorithm, Evolutionary Strategy) based on so called ”tree represen-
tation”. This representation is extremely flexible, since trees can represent
computer programs, mathematical equations or complete models of process
systems. Because the algorithm of Genetic Programming is well-known, we
will not present the details of the algorithm but focus here on the specific
details. It should be noted that there are several variants of Genetic Pro-
gramming, e.g. Gene Expression Programming [21], the [22] provides a good
general review of the GP algorithm we used in this paper.

3.1 Model Representation

Unlike common optimization methods, in which potential solutions are rep-
resented as numbers (usually vector of real numbers), the symbolic optimiza-
tion algorithms represent the potential solutions by structured ordering of
several symbols. One of the most popular method for representing struc-
tures is the binary tree. A population member in GP is a hierarchically
structured tree consisting of functions and terminals. The functions and
terminals are selected from a set of functions (operators) and a set of termi-
nals. For example, the set of operators F can contain the basic arithmetic
operations: F = {+,−, ∗, /}; however, it may also include other mathemat-
ical functions, Boolean operators, conditional operators or Automatically
Defined Functions (ADFs). ADFs [23] are sub-trees which are used as func-
tions in the main tree, and they are varied in the same manner as the main
trees. It is especially worth using of ADF if the problem is regularity-rich,
because the GP with ADF may solve these problems in a hierarchical way
(e.g. chip design). In this work we only used arithmetic operations and
mathematical functions (see Sect. 4). The set of terminals T contains the
arguments for the functions. For example T = {y, x, pi} with x and y be-

8



ing two independent variables, and pi represents the parameters. Now, a
potential solution may be depicted as a rooted, labeled tree with ordered
branches, using operations (internal nodes of the tree) from the function set
and arguments (terminal nodes of the tree) from the terminal set.

Generally, GP creates nonlinear models and not only linear-in-parameters
models. To avoid nonlinear in parameter models the parameters must be
removed from the set of terminals, i.e. it contains only variables: T =
{x1(k), · · · , xm(k)}, where xi(k) denotes the i-th regressor variable. Hence
a population member represents only the Fi nonlinear functions (9). The
parameters are assigned to the model after ’extracting’ the Fi function terms
from the tree, and they are determined using LS algorithm (14).

Figure 1: Decomposition of a tree to function terms

We used a simple method for the decomposition of the tree into function
terms. The subtrees, which represent the Fi function terms, were determined
by decomposing the tree starting from the root as far as reaching non-linear
nodes (nodes which are not ’+’ or ’-’). E.g. let us see Fig. 1. The root node
is a ’+’ operator, so it is possible to decompose the tree into two subtrees:
’A’ and ’B’ trees. The root node of the ’A’ tree is again a linear operator, so
it can be decomposed into ’C’ and ’D’ trees. The root node of the ’B’ tree is
a nonlinear node (’/’) so it cannot be decomposed. The root nodes of ’C’ and
’D’ trees are nonlinear too, so finally the decomposition procedure results
in three subtrees: ’B’, ’C’ and ’D’. Based on the result of the decomposition
it is possible to assign parameters to the functional terms represented by
the obtained subtrees. In the case of this example the resulted linear-in-
parameters model is: y = p0 + p1(x3 + x2)/x1 + p2x1 + p3x3. Certainly, one
may use other decomposition methods (which may lead different results, e.g.
y = p0+p1x3/x1+p2x2/x1+p3x1+p4x3), however this type of decomposition
would not use the benefits the GP and OLS reduction algorithms.

GP can be used for the selection from special model classes, such as

9



polynomial models. To achieve this goal, one has to restrict the set of
operators and introduce some simple syntactic rules. For example, if the
set of operators is defined as F = {+, ∗}, and there is a syntactic rule that
exchanges the internal nodes that are below a ’∗’-type internal nodes to
’∗’-type nodes; the GP generates models that are in the polynomial NARX
model class.

3.2 Fitness Function

Genetic Programming is an Evolutionary Algorithm. It works with a set of
individuals (potential solutions), and these individuals form a generation.
In every iteration, the algorithm evaluates the individuals, selects individu-
als for reproduction, generates new individuals by mutation, crossover and
direct reproduction, and finally creates the new generation.

In the selection step the algorithm selects the parents of the next gener-
ation and determines which individuals survive from the current generation.
The fitness function reflects the goodness of a potential solution which is
proportional to the probability of the selection of the individual. Usually,
the fitness function is based on the mean square error (MSE) between the
calculated and the measured output values,

χ2 =
1
N

N∑

k=1

(
y(k)−

M∑

i=1

piFi (x(k))

)
, (12)

where N is the number of the data-points used for the identification of
the model. Instead of MSE, in symbolic optimization often the correlation
coefficient, r, of the measured and the calculated output values are used [24].

A good model is not only accurate but simple, transparent and inter-
pretable. In addition, a complex over-parameterized model decreases the
general estimation performance of the model. Because GP can result in
too complex models, there is a need for a fitness function that ensures a
tradeoff between complexity and model accuracy. Hence, [16] suggests the
incorporation of a penalty term into the fitness function:

fi =
ri

1 + exp (a1(Li − a2))
, (13)

where fi is the calculated fitness value, ri is the correlation coefficient, Li is
the size of the tree (number of nodes), a1 and a2 are parameters of penalty
function.

10



In practice, a model which gives good prediction performance on the
training data may be over-parameterized and may contain unnecessary, com-
plex terms. The penalty function (13) handles this difficulty, because it
decreases fitness values of trees that have complex terms. However, parame-
ters of this penalty term are not easy to determine and the penalty function
does not provide efficient solution for this difficulty. An efficient solution
may be the elimination of complex and unnecessary terms from the model.
For linear-in-parameters models it can be done by the Orthogonal Least
Squares (OLS) algorithm.

3.3 Orthogonal Least Squares (OLS) Algorithm

The great advantage of using linear-in-parameters models is that the Least
Squares Method (LS) can be used for the identification of the model param-
eters, which is much less computationally demanding than other nonlinear
optimization algorithms, since the optimal p = [p1, . . . , pM ]T parameter
vector can be analytically calculated:

p =
(
F−1F

)T
Fy, (14)

where y = [y(1), . . . , y(N)]T is the measured output vector, and the F re-
gression matrix is:

F =




F1(x(1)) . . . FM (x(1))
...

. . .
...

F1(x(N)) . . . FM (x(N))


 . (15)

In case most of process systems certain input and output interactions will
be redundant and hence components in the ANOVA decomposition could be
ignored, which can result in more parsimonious representations. The OLS
algorithm [25, 26] is an effective algorithm to determine which terms are
significant in a linear-in-parameters model. The OLS introduces the error
reduction ratio (err) which is a measure of the decrease in the variance of
output by a given term.

The compact matrix form corresponding to the linear-in-parameters model
(9) is

y = Fp + e, (16)

where the F is the regression matrix (15), p is the parameter vector, e is the
error vector. The OLS technique transforms the columns of the F matrix

11



(15) into a set of orthogonal basis vectors in order to inspect the individual
contributions of each terms.

The OLS algorithm assumes that the regression matrix F can be orthog-
onally decomposed as F = WA, where A is an M × M upper triangular
matrix (it means Ai,j = 0 if i > j) and W is an N × M matrix with or-
thogonal columns in the sense that WTW = D is a diagonal matrix. (N
is the length of y vector and M is the number of regressors.) After this
decomposition one can calculate the OLS auxiliary parameter vector g as

g = D−1WTy, (17)

where gi is the corresponding element of the OLS solution vector. The
output variance (yTy)/N can be explained as

yTy =
M∑

i=1

g2
i w

T
i wi + eTe. (18)

Thus the error reduction ratio, [err]i of Fi term can be expressed as

[err]i =
g2
i w

T
i wi

yTy
. (19)

This ratio offers a simple mean for order and select the model terms of a
linear-in-parameters model according to their contribution to the perfor-
mance of the model.

3.4 GP and OLS

To improve the GP algorithm, this paper suggests the application of OLS
in the GP algorithm. During the operation of GP the algorithm generates
a lot of potential solutions in the form of a tree-structure. These trees may
have terms (subtrees) that contribute more or less to the accuracy of the
model.

The concept is the following: firstly the trees (the individual members
of the population) are decomposed to subtrees (function terms of the linear-
in-parameters models) in such a way it was presented in Sect. 3.1; then
the error reduction ratios of these function terms are calculated; finally
the less significant term(s) is/are eliminated. This ”tree pruning” method
is realized in every fitness evaluation before the calculation of the fitness
values of the trees. The main goal of the application of this approach is
to transform the trees to simpler trees which are more transparent, but

12



their accuracy are close to the original trees. Because the further goal is
to preserve the original structure of the trees as far as it possible (because
the genetic programming works with the tree structure) the decomposition
of trees was based on the algorithm presented in Sect. 3.1. This method
always guarantees that the elimination of one or more function terms of the
model can be done by ”pruning” the corresponding subtrees, so there is no
need for structural rearrangement of the tree after this operation.

Let us see a simple example that illustrates how the proposed method
works. This example is taken from the Example I (see Sect. 4.2), where
the function, which must be identified, is y(k) = 0.8u(k − 1)2 + 1.2y(k −
1) − 0.9y(k − 2) − 0.2. After a few generation the GP algorithm found a
solution with four terms: u(k − 1)2, y(k − 1), y(k − 2), u(k − 1) ∗ u(k − 2)
(see Fig. 2). Table 1 shows the calculated error reduction ratio values for
these function terms and the mean square error of the linear-in-parameters
model represented by this tree. Based on the OLS, the subtree that had
the least error reduction ratio (F4 = u(k − 1) ∗ u(k − 2)) was eliminated
from the tree. After that the error reduction ratios and the MSE (and the
parameters) were calculated again. The results shows that the new model
has a little higher mean square error but it has more adequate structure.

Table 1: OLS example
Before OLS After OLS

[err]1 0.9170 0.7902
[err]2 0.0305 0.1288
[err]3 0.0448 0.0733
[err]4 0.0002 –
MSE 0.558 0.574

There are several possibilities to apply this pruning approach. The prun-
ing of the tree can be done in every fitness evaluation. In the application
examples an [err]limit parameter has been used which determines the mini-
mal allowed [err] values for valid function terms. According to this strategy
the algorithm eliminates the subtrees which has smaller error reduction ra-
tios than this parameter.

4 Application Examples

In this section the application of the proposed GP-OLS technique is illus-
trated. Firstly the developed MATLAB GP-OLS Toolbox is presented that

13



Figure 2: OLS example

was used in the case studies of the paper. In the first example, the structure
of a known input-output model is identified. This example illustrates that
the proposed OLS method improves the performance of GP and it is able
to correctly identify the structure of nonlinear systems that are member of
the class of linear-in-parameters models. In the second example the model
order of a continuous polymerization reactor is estimated. This example is
used for the illustration that the proposed approach is a useful tool for the
selection of the model order of nonlinear systems. Finally, a more detailed
example is given where both the order and the structure of the model of a
nonlinear unstable chemical reactor are estimated.

4.1 The MATLAB GP-OLS Toolbox

The proposed approach has been implemented in MATLAB that is the most
widely applied rapid prototyping system [27].

The aim of the toolbox is the data-based identification of static and
dynamic models, since the approach proposed in this paper is can also be
applied for static nonlinear equation discovery.

At the development of the toolbox special attention has been given to
the identification of dynamical input-output models. Hence, the generated
model equations can be simulated to get one- and/or n-step ahead predic-
tions.

The toolbox is freeware, and it is downloadable from the website of
the authors: www.fmt.veim.hu/softcomp. The toolbox has a very simple
and user-friendly interface. The user should only define the input-output
data, the set of the terminal nodes (the set of the variables of the model,
which in case of a dynamical system means the maximum estimate of the
input-output model orders), select the set of the internal nodes (the set of

14



mathematical operators) and set some parameters of the GP.
Based on our experiments we found that with the parameters given in

Table 2 the GP is able to find good solutions for various problems. Hence
these parameters are the default parameters of the toolbox that have not
been modified during the simulation experiments presented in this paper.

Table 2: Parameters of GP in the application examples
Population size 50
Maximum number of evaluated individuals 2500
Type of selection roulette-wheel
Type of mutation point-mutation
Type of crossover one-point (2 parents)
Type of replacement elitist
Generation gap 0.9
Probability of crossover 0.5
Probability of mutation 0.5
Probability of changing terminal – non-terminal
nodes (vica versa) during mutation

0.25

Since polynomial models play an important role in process engineering,
in this toolbox there is an option of generating polynomial models. If this
option is selected the set of operators is defined as F = {+, ∗}, and after ev-
ery mutation and cross-over the GP algorithm validates the model structure
whether is in the class of polynomial models. If it is necessary, the algo-
rithm exchanges the internal nodes that are below a ’∗’-type internal node
to ’∗’-type nodes. This simple trick transforms every tree into a well-ordered
polynomial model.

The OLS evaluation is inserted into the fitness evaluation step. The
OLS calculates the error reduction ratio of the branches of the tree. The
terms that have error reduction ratio bellow a threshold value are eliminated
from the tree. With the help of the selected branches the OLS estimates
the parameters of the model represented by the reduced tree. After this
reduction and parameter estimation step the new individual proceeds on its
way in the classical GP algorithm (fitness evaluation, selection, etc.).

15



4.2 Example I: Nonlinear Input-Output Model

In the first example a simple nonlinear input-output model which is linear
in its parameters is considered:

y(k) = 0.8u(k − 1)2 + 1.2y(k − 1)− 0.9y(k − 2)− 0.2, (20)

where u(k) and y(k) are the input and the output variables of the model
at the k-th sample time. The aim of the experiment is the identification of
the model structure from measurements. The measurements was generated
by simulation of the system and 4% relative normal distributed noise was
added to the output (Fig. 3 shows input and output data).

0 20 40 60 80 100
−2

−1

0

1

2

3

4

time

in
pu

t/o
ut

pu
t

u (input)
y (output)

Figure 3: Input-output data for model structure identification (Example I.)

During the identification process the function set F contained the basic
arithmetic operations F = {+,−, ∗, /}, and the terminal set T contained the
following arguments T = {u(k−1), u(k−2), y(k−1), y(k−2)}. Based on the
OLS method, the terms of every model terms were sorted by error reduction
ratio values. In this application example maximum four terms were allowed,
which means that the OLS procedure eliminated the worst terms and only
the best four terms remained. (Certainly, this also means that if the original
model does not contain more than four terms, this procedure will not change
the model.) Three different approaches were compared:

• Method 1.: Classical GP (without penalty function and OLS).

• Method 2.: GP with penalty function and without OLS.

16



• Method 3.: GP with penalty function and OLS.

Because GP is a stochastic optimization algorithm ten independent runs
were executed for each methods, while the maximum number of function
evaluation in every run was constrained to 1000.

Table 3: Results of Example I. (average of ten independent runs)
Method 1 Method 2 Method 3

Found perfect solution 0 6 7
Found non-perfect solution 10 4 3
Average number of function
evaluation to found a proper
solution

1000 880 565

Average runtime (sec) 33.3 33.3 39.5
Remark: average runtime: 1000 fun.evaluations, P4 2.4 GHz PC

As Table 3 shows, Method 3. proved the best, it was able to find the
perfect model structure seven times, and found the perfect structure in the
shortest time (averagely this method needed the smallest number of function
evaluations to find the perfect solution). The average runtime values illus-
trates that the OLS technique slows down the algorithm (because it needs
extra computations), but the improvement in the efficiency compensates this
small disadvantage.

4.3 Example II: Continuous Polymerization Reactor

In the previous example the structure of the identified model was perfectly
known. In this experiment the perfect model structure does not exist, but
the correct model order is known. This experiment demonstrates that the
proposed GP-OLS technique is a useful tool for model order selection.

This model order selection example is taken from [11]. The input-output
dataset is generated by a simulation model of a continuous polymerization
reactor. This model describes the free-radical polymerization of methyl-
methacrylate with azo-bis(isobutyro-nitrile) as an initiator and toluene as
a solvent. The reaction takes place in a jacketed CSTR. The first-principle
model of this process is given in [28]:

ẋ1 = 10(6− x1)− 2.4568x1
√

x2

ẋ2 = 80u− 10.1022x2

ẋ3 = 0.024121x1
√

x2 + 0.112191x2 − 10x3

ẋ4 = 245.978x1
√

x2 − 10x4

17



y =
x4

x3
. (21)

The dimensionless state variable x1 is the monomer concentration, and x4/x3

is the number-average molecular weight (the output y). The process input u
is the dimensionless volumetric flowrate of the initiator. According to [11], a
uniformly distributed random input over the range 0.007 to 0.015 is applied
and the sampling time was 0.2 s.

With four states, a sufficient condition for representing the dynamics is
a regression vector that includes four delayed inputs and outputs. In this
case, however, the system has two states that are weakly observable. This
week observability leads to a system that can be approximated by a smaller
input–output description [29]. This is in agreement with the analysis of
Rhodes [11] who showed that a nonlinear model with m = 1 and n = 2 orders
is appropriate; in other words the model can be written in the following form:

y(k) = G (y(k − 1), u(k − 1), u(k − 2)) , (22)

if the discrete sample time T0 = 0.2.
To estimate the model structure, 960 data points were generated by

computer simulation. In this example, we examined four methods:

• Method 1. generates all of the possible polynomials with degree d = 2.
The model consists of all of these terms.

• Method 2. generates all of the possible polynomials with degree d = 2,
but the model only consists of the terms which have greater error
reductions ratios than 0.01.

• Method 3. is the polynomial GP-OLS technique. The operator set is
F = {∗, +}. The OLS threshold value is 0.02.

• Method 4.: Polynomial GP-OLS technique. The operator set is F =
{∗, +, /,

√}. The OLS threshold value is 0.02.

Table 4 shows the mean square errors (MSE) of resulted models for one-step
ahead and for free-run predictions. Since GP is a stochastic algorithm, 10
identical experiments were performed for the third and fourth method, and
the table contains the minimum, the maximum and the mean of the results
of these experiments. The input and output order of the models were limited
to four: u(k − 1), · · · , u(k − 4), y(k − 1), · · · , y(k − 4).

In the first method, the model consisted of 45 polynomial terms (m =
8, d = 2). This model was very accurate for one-step ahead prediction, but

18



Table 4: Results of Example II.
Free-run MSE One-step-ahead MSE

min mean max min mean max
Method 1 Inf 7.86
Method 2 26.8 30.3
Method 3 1.65 10.2 23.7 1.66 9.23 22.1
Method 4 0.95 7.15 20.6 0.84 6.63 17.8

Remark: MSE in 10−3

it was unstable in free-run prediction. Hence, this model can not be used in
free-run simulation.

In the second method, the error reduction ratios were calculated for the
45 polynomial terms, and the terms which have very small error reduction
values (below 0.01) were eliminated. After this reduction only three terms
were remained:

u(k − 1), y(k − 1), y(k − 2) ;

all of the bilinear terms were eliminated by OLS. This model is a simple
linear model, that is stable in free-run simulation, but its performance is
quite week.

The third method resulted different models in the 10 experiments, due
to its stochastic nature. All of resulted models were stable in free-run. The
most accurate model contained the next terms:

u(k − 1) ∗ u(k − 1), y(k − 1), u(k − 2), u(k − 1) ∗ y(k − 1) ;

which has correct model order (see (22)). This method found the correct
model order in six cases from the ten.

The fourth method (GP-OLS) resulted correct model orders in three
cases from the ten. This method found the most accurate model and all of
resulted models were stable in free-run. Statistically, this method generated
the most accurate models, but the third method was better at finding the
correct model order.

4.4 Example III: Van der Vusse Reactor

The process considered in this section is a third order exothermic van der
Vusse reaction

A → B → C (23)
2A → D

19



placed in a cooled Continuously Stirred Tank Reactor (CSTR). It is a
strongly nonlinear process with a non-minimum-phase behavior and input
multiplicity. The model of the system is given by

ẋ1 = −x1k1e
−E1

x3 − x2
1k3e

−E3
x3 + (x10 − x1) u1 (24)

ẋ2 = x1k1e
−E1

x3 − x2k2e
−E2

x3 − x2u1

ẋ3 = − 1
%cp

[
∆H1x1k1e

−E1
x3 + ∆H2x2k2e

−E2
x3

+ ∆H3x
2
1k3e

−E3
x3

]
+ (x30 − x3) u1 +

u2

%cpV
y = x2,

where x1[mol/l] is the concentration of the A component, x2[mol/l] is the
concentration of the B component, x3[K] is the temperature in the reactor,
u1[1/s] is the dilution rate of the reactor, u2[J/s] is the heat exchanged
between the CSTR and the environment, x10 is the concentration of A in
the inlet stream and x30 is the temperature of the inlet stream. From the
application point of view the u1 input flow rate is chosen as the input of the
system while u2 is kept constant through the experiments [30].

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y(
k)

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Time [sec]

u(
k)

Figure 4: Collected input–output data of the van der Vusse reactor (Example
III.)

To estimate the model structure, 960 data points were used (see Fig. 4).
In this example, the same four methods were used as in the previous example.

20



Table 5: Results of Example III.
Free-run MSE One-step-ahead MSE

min mean max min mean max
Method 1 Inf 0.002
Method 2 20.3 0.31
Method 3 5.30 9.65 Inf 0.088 0.24 0.62
Method 4 2.44 11.5 Inf 0.15 0.53 0.99

Remark: MSE in 10−3

In the first method the model consisted of 45 polynomial terms (m =
8, d = 2). Similar to previous experience, this model was very accurate for
one-step ahead prediction, but it was unstable in free-run prediction.

In the second method the error reduction ratios were calculated for the
45 polynomial terms, and the terms which have very small values (below
0.01) were eliminated. After that, seven terms remained:

y(k − 2), y(k − 3), u(k − 1), u(k − 2), y(k − 4), u(k − 3), y(k − 1);

all of the bilinear terms were eliminated by OLS. This model is a linear
model, it was stable in free-run, but it was not accurate.

Contrast to previous example, the third method results in free-run un-
stable models in five cases from the ten experiments. It is due to that the
van der Vusse process has complex nonlinear behavior, so this example is
more difficult than the previous. The model which had the smallest MSE
value in one-step ahead prediction was unstable in free-run prediction, too.
The best model (free-run MSE) consisted of the next terms:

u(k − 2), u(k − 1), u(k − 1)u(k − 1)u(k − 4), y(k − 4),

u(k − 4)u(k − 3), u(k − 4) + u(k − 3).

The simplest model consisted of the

u(k − 1), u(k − 2), u(k − 1)u(k − 1), u(k − 3)y(k − 1), y(k − 4)

terms.
In the fourth method, three models were unstable from the ten. The

most accurate model contained the following terms:

y(k − 3), y(k − 1)u(k − 1), y(k − 2)
√

u(k − 3),

(y(k − 3) + u(k − 2))(y(k − 4) + y(k − 1)), y(k − 2).

21



The simplest model contained the

y(k − 1), y(k − 2), u(k − 1)/u(k − 2), u(k − 2), u(k − 1)

terms.

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

t

y

Figure 5: Free-run simulation of resulted models. Solid line: original output,
Dotted line: estimated output by Method 2., Dashed line: estimated output
by Method 4 (best model).

As these results show the model that gives the best free run modelling
performance is given by the GP-OLS algorithm (see Fig. 5), and the struc-
ture of this model is quite reasonable comparing to the original state-space
model of the system.

5 Conclusions

This paper proposed a new method for the structure identification of nonlin-
ear input-output dynamical models. The method uses Genetic Programming
(GP) to generate linear-in-parameters models represented by tree structures.
The main idea of the paper is the application of Orthogonal Least Squares
algorithm (OLS) for the estimation of the contributions of the branches of
the tree to the accuracy of the model. Since the developed algorithm is
able to incorporate information about the contributions of the model terms
(subtrees) into the quality of the model into GP, the application of the
proposed GP-OLS tool results in accurate, parsimonious and interpretable
models. The proposed approach has been implemented as a freely available

22



MATLAB Toolbox. The simulation results show that this tool provides an
efficient way for model order selection and structure identification of non-
linear input-output models.

23



List of captions (graphics)

Fig. 1: Decomposition of a tree to function terms

Fig. 2: OLS example

Fig. 3: Input-output data for model structure identification (Example

I.)

Fig. 4: Collected input–output data of the van der Vusse reactor (Ex-

ample III.)

Fig. 5: Free-run simulation of resulted models. Solid line: original out-

put, Dotted line: estimated output by Method 2., Dashed line: estimated

output by Method 4 (best model).

24



References

Ljung87 1. Ljung, L. System Identification, Theory for the User ; Prentice–Hall: New

Jersey, 1987.

Akai74 2. Akaike, H. A new look at the statistical model identification. IEEE Trans.

Automatic Control 1974, 19, 716–723.

Liang93 3. Liang, G.; Wilkes, D.; Cadzow, J. ARMA model order estimation based

on the eigenvalues of the covariance matrix. IEEE Trans. on Signal Pro-

cessing 1993, 41(10), 3003–3009.

Aguirre95 4. Aguirre, L.A.; Billings, S.A. Improved Structure Selection for Nonlin-

ear Models Based on Term Clustering. International Journal of Control

1995, 62, 569–587.

Aguirre96 5. Aguirre, L.A.; Mendes, E.M.A.M. Global Nonlinear Polynomial Mod-

els: Structure, Term Clusters and Fixed Points. International Journal of

Bifurcation and Chaos 1996, 6, 279–294.

Mendes01 6. Mendes, E.M.A.M.; Billings, S.A. An alternative solution to the model

structure selection problem. IEEE Transactions on Systems Man and

Cybernetics part A - Systems and Humans 2001, 31(6), 597–608.

Korenberg88

7. Korenberg, M.; Billings, S.A.; Liu, Y.; McIlroy, P. Orthogonal

Parameter-Estimation Algorithm for Nonlinear Stochastic-Systems. In-

ternational Journal of Control 1988, 48, 193–210.

Abonyi03 8. Abonyi, J. Fuzzy Model Identification for Control ; Birkhauser: Boston,

2003.

25



Pearson03 9. Pearson, R. Selecting nonlinear model structures for computer control.

Journal of Process Control 2003, 13(1), 1–26.

Bomberger98

10. Bomberger, J.; Seborg, D. Determination of model order for NARX

models directly from input–output data. Journal of Process Control

1998, 8, 459–468.

Rhodes98 11. Rhodes, C.; Morari, M. Determining the model order of nonlinear in-

put/output systems. AIChE Journal 1998, 44, 151–163.

Kennen92 12. Kennen, M.; Brown, R.; Abarbanel, H. Determining embedding di-

mension for phase-space reconstruction using a geometrical construction.

Physical Review 1992, A, 3403–3411.

Abonyi04 13. Feil, B.; Abonyi, J.; Szeifert, F. Model order selection of nonlinear

inputoutput models a clustering based approach. Journal of Process

Control 2004, 14(6), 593–602.

Koza92 14. Koza, J. Genetic Programming: On the programming of Computers by

Means of Natural Evolution; MIT Press: Cambridge, 1992.

Cao99 15. Cao, H.; Yu, J.; Kang, L.; Chen, Y. The kinetic evolutionary modeling

of complex systems of chemical reactions. Computers and Chem. Eng.

1999, 23, 143–151.

McKay97 16. McKay, B.; Willis, M.; Barton, G. Steady-state modelling of chemical

process systems using genetic programming. Computers and Chem. Eng.

1997, 21, 981–996.

26



Sakamoto01
17. Sakamoto, E.; Iba, H. Inferring a System of Differential Equations for

a Gene Regulatory Network by using Genetic Programming. In Proceed-

ings of the 2001 Congress on Evolutionary Computation CEC2001 ; IEEE

Press: COEX, World Trade Center, 2001, 720–726.

Sjoberg95 18. Sjoberg, J.; Zhang, Q.; Ljung, L.; Benvebiste, A.; Delyon, B.; Glo-

rnnec, P.; Hjalmarsson, H.; Judutsky, A. On the use of regularization

in system identification. Automatica 1995, 31, 1691–1724.

Pearson97 19. Pearson, R.; Ogunnaike, B. Nonlinear Process Identification. Chapter

2 in Nonlinear Process Control ; Henson, M.A.; Seborg, D.E., Eds.;

Prentice–Hall: Englewood Cliffs, NJ, 1997.

Hernandez93
20. Hernandez, E.; Arkun, Y. Control of Nonlinear Systems Using Polyno-

mial ARMA Models. AICHE Journal 1993, 39(3), 446–460.

Ferreira01

21. Ferreira, C. Gene expression programming: a new adaptive algorithm

for solving problems. Complex Syst 2001, 13, 87–129.

Sette01 22. Sette, S.; Boullart, L. Genetic Programming: principles and appli-

caionts. Engineering Applications of Artificial Intelligence 2001, 14, 727–

736.

Koza94II 23. Koza, J. Genetic programming II: automatic discovery of reusable pro-

grams; MIT Press, 1994.

South94 24. South, M. The application of genetic algorithms to rule finding in data

27



analysis, PhD. thesis; Dept. of Chemical and Process Eng.: The Uni-

veristy of Newcastle upon Tyne, UK, 1994.

Billings88
25. Billings, S.; Korenberg, M.; Chen, S. Identification of nonlinear output-

affine systems using an orthogonal least-squares algorithm International

Journal of Systems Science 1988, 19, 1559–1568.

Chen89 26. Chen, S.; Billings, S.; Luo, W. Orthogonal least squares methods and

their application to non-linear system identification. International Jour-

nal of Control 1989, 50, 1873–1896.

Matlab02 27. MATLAB Optimization Toolbox; MathWorks Inc.: Natick, MA, 2002.

Doyle95 28. Doyle, F.; Ogunnaike, B.; Pearson, R. K. Nonlinear model-based con-

trol using second-order volterra models. Automatica 1995, 31(5), 697–

714.

Letellier02
29. Letellier, C.; Aguirre, L. Investigating Nonlinear Dynamics from Time

Series: The Influence of Symmetries and the Choice of Observables.

Chaos 2002, 12, 549–558.

Braake99 30. Braake, H.A.B.; Roubos; J.A. Babuska, R. Semi-mechanistic modeling

and its application to biochemical processes. In Fuzzy Control: Advances

in Applications; Verbruggen, H.B.; Babuska, R. eds.; World Scientific:

Singapore 1999, pp. 205–226

28


