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ARTICLE

Genetic programming of macrophages generates
an in vitro model for the human erythroid island
niche
Martha Lopez-Yrigoyen 1, Cheng-Tao Yang1,5, Antonella Fidanza1, Luca Cassetta 2, A. Helen Taylor1,

Angela McCahill3, Erica Sellink4, Marieke von Lindern4, Emile van den Akker4, Joanne C. Mountford 3,

Jeffrey W. Pollard 2 & Lesley M. Forrester 1

Red blood cells mature within the erythroblastic island (EI) niche that consists of specialized

macrophages surrounded by differentiating erythroblasts. Here we establish an in vitro

system to model the human EI niche using macrophages that are derived from human

induced pluripotent stem cells (iPSCs), and are also genetically programmed to an EI-like

phenotype by inducible activation of the transcription factor, KLF1. These EI-like macrophages

increase the production of mature, enucleated erythroid cells from umbilical cord blood

derived CD34+ haematopoietic progenitor cells and iPSCs; this enhanced production is

partially retained even when the contact between progenitor cells and macrophages is

inhibited, suggesting that KLF1-induced secreted proteins may be involved in this enhance-

ment. Lastly, we find that the addition of three secreted factors, ANGPTL7, IL-33 and SER-

PINB2, significantly enhances the production of mature enucleated red blood cells. Our study

thus contributes to the ultimate goal of replacing blood transfusion with a manufactured

product.
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M
acrophages are key players within the innate immune
system, in the regulation of developmental processes
and in adult tissue homoeostasis, remodelling and

repair1,2. The vast range of macrophage functions is reflected in
their phenotypic heterogeneity and plasticity3.

Macrophages associated with the erythroblastic island (EI)
niche provide an environment throughout the stages of red blood
cell (RBC) proliferation and maturation in vivo and engulf free
nuclei as they are extruded from the cell4. The molecular inter-
actions between the EI macrophage and developing erythroid
cells are poorly understood because the human EI niche is
inaccessible and no appropriate culture models exist. This has
hampered the identification of factors that could be used to
diagnose and treat anaemia and/or in the production of RBCs
in vitro from renewable sources for cell therapy. This is becoming
increasingly important because, although blood transfusion
remains the most prominent means of treating chronic haema-
tological disorders and trauma, it faces serious problems with
donor supply, cell quality, infection transmission and immune
incompatibility5,6. Attempts have been made to produce RBCs
in vitro from different starting cell populations including CD34+

haematopoietic progenitor cells (HPCs), pluripotent stem cells
(PSCs) and more recently, immortalized erythroid progenitor
cells but production is relatively inefficient and final steps of RBC
maturation are variable7–12.

In the murine system it is known that the
macrophage–erythroblast interaction provides both positive and
negative regulators of cell differentiation and development
throughout the stages of erythroid proliferation and maturation4.
We reasoned that the production of an in vitro model for the
human EI niche in vitro would identify and characterize factors
associated with RBC production and maturation that could be
used to improve their production from renewable sources. The
first hurdle in this process was to generate a population of
macrophages that had a phenotype comparable to those of the EI
niche. Human monocyte-derived macrophages can promote
primary erythroblast proliferation and survival but differing

effects on maturation and enucleation have been reported13,14.
Discrepancies could reflect the source and heterogeneous phe-
notype of the macrophage cell populations that were used and
culture conditions15. Furthermore, as tissue resident macrophages
are thought to have a distinct developmental origin, primary
monocyte-derived macrophages might not accurately reflect the
EI niche16–19. Macrophages derived from PSCs in vitro have been
reputed to be more akin to tissue resident macrophages so we
reasoned that they might provide a renewable source of cells to
test factors that have been implicated with the EI niche17,18.

We previously demonstrated that activation of the transcrip-
tion factor KLF1 enhanced the maturation of iPSC-derived ery-
throid cells but this effect was only observed at a time point when
the differentiating culture consisted of a heterogeneous mixture of
haematopoietic cells20. As an extrinsic role of KLF1 within the
murine erythroid island (EI) niche had been reported21,22, we
hypothesized that the effect of KLF1 activation in differentiating
iPSCs could also be mediated by its action in macrophages that
might be acting as support cells in this context. To test this
hypothesis, we generated a pure population of macrophages from
the iPSC line carrying an inducible KLF1 transgene (iKLF1.2)20.

Here we demonstrate that KLF1 activation is able to pro-
gramme iPSC-derived macrophages into an EI-like phenotype as
assessed by their marker expression and their increased phago-
cytic activity. Our data show that EI-niche-like macrophages
enhance the production of functional, mature, enucleated RBCs
in vitro, and also identify three secreted factors associated with
this mechanism of action.

Results
IPSC-DMs express low levels of KLF1. To address whether
induced pluripotent stem cell-derived macrophages (iPSC-DMs)
had a phenotype comparable to macrophages associated with the
EI niche, we assessed their expression of genes encoding the
transcription factors, MAF and KLF1 (Fig. 1a)22. C-MAF was
expressed at a significantly higher level in iPSC-DMs compared to
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cytospin preparations of iKLF1.2-derived macrophages (iKLF1.2MΦ) (scale bar, 20 μm). d Real-time PCR analysis of KLF1 in MDMs , control iPSC-DMs

(control Mϕ) and iKLF1.2-DMs (iKLF1.2MΦ) (n= 4 biologically independent samples) Kruskal–Wallis test with Dunn’s post-test). *p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001
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monocyte-derived macrophages (MDMs). As MAF is also
reported to be a marker for yolk sac macrophages, this supports
the idea that the phenotype of iPSC-DMs is comparable to tissue
resident macrophages17,18. KLF1 was expressed at lower levels in
iPSC-DMs compared to MDMs (Fig. 1a), and as EKLF (KLF1)
had been implicated in the function of murine EI macrophages22,
we hypothesized that enhancing the level of KLF1 might direct
iPSC-DMs into a more EI-like phenotype.

Generation of macrophages from the iKLF1.2 iPSC line. We
established an iPSC line carrying an inducible KLF1-ERT2

transgene targeted to the safe harbour AAVS1 locus (herein
named iKLF1.2) (Fig. 1b)20. IPSC-DMs were generated in a
stepwise protocol by first generating embryoid bodies (EBs) in the
presence of VEGF, BMP4 and SCF then EBs were transferred to
gelatin-coated plates and cultured in presence of IL-3 and CSF1.
From day 16, myeloid progenitor cells were harvested from the
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Fig. 2 Activation of KLF1 in iPSC-DMs alters macrophage phenotype. a Real time PCR analyses of EI macrophage related genes in iPSC-DM from iKLF1.2

iPSCs in the presence and absence of tamoxifen (Tam) (n= 4, non-parametric Wilcoxon test). b Flow cytometry analyses of EI-related cell surface markers

expression in control iPSC-DMs (control) and iKLF1.2-DMs (iKLF1.2) in the presence and absence of tamoxifen (n= 4 biologically independent samples,

non-parametric Kruskal–Wallis test and Dunn’s post-test). c Mean fluorescence intensity (MFI) of cell surface marker expression in parental iPSC-DMs

(control) and iKLF1.2-DMs in presence and absence of tamoxifen (n= 4 biologically independent samples, non-parametric Kruskal–Wallis test and Dunn’s

post-test). d Images captured at 175min after addition of Zymosan-green beads to control iPSC-DMs (Control Mϕ) and iKLF1.2 DMs (iKLF1.2 Mϕ) cells in

the presence and absence of tamoxifen (×40). e Phagocytic fraction analyses as measured by the proportion of cells containing green beads from 0 to

210min in control and iKLF1.2-DMs (−/+tamoxifen) (n= 5 biologically independent samples, two-way ANOVA and Bonferoni post-test). f Phagocytic

index as calculated by level of green fluorescence per phagocytic cell (n= 5 biologically independent samples, two-way ANOVA and Bonferoni post-test).

*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Fig. 3 KLF1-activated iPSC-DMs enhance erythroid maturation. a, b. Flow cytometry analyses of live CD235a+-gated cells of UCB-CD34+ erythroid cells

cultured alone or in co-culture with iKLF1.2-DMs in the presence and absence of tamoxifen at day 14 (a) and day 21 (b) stained with anti-CD71 antibody

and Hoechst dye (see Supplementary Fig. 3 for gating strategy and FMO controls). c Quantification and statistical analysis of absolute numbers of fully

mature enucleated erythroid cells of replicate co-culture experiments (n= 5 biologically independent samples; two-way ANOVA with Tukey’s post-test).

d Cytospin of co-culture of KLF1-activated macrophages and UCB CD34+ cells showing close association and a fully mature erythroid cell with biconcave

shape (arrow) (scale bar, 20 μm). e Cytospins of UCB CD34+ erythroid cells cultured alone or in co-culture with iKLF1.2-DM in the presence and absence

of tamoxifen at day 14 (upper panels) and day 21 (lower panels); arrows point to enucleated cells (scale bar, 20 μm). *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001
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supernatant and cultured in CSF1 for 9–12 days18. Tamoxifen
was added to iPSC-DMs for the last 4 days to induce nuclear
translocation and therefore activation of the KLF1 protein.
Macrophages derived from the iKLF1.2 iPSC line had a com-
parable morphology to those derived from the control, parental
iPSC line (known as SFCi55) (Fig. 1c, Supplementary Fig. 1A)
and this was not affected by the addition of tamoxifen (Fig. 1c).
As expected, macrophages generated from the iKLF1.2 iPSC line
demonstrated a higher expression of KLF1 mRNA expression
compared to macrophages derived from monocytes or control
iPSC-DMs (Fig. 1d). Using an anti-HA antibody, we demon-
strated that the KLF1-ERT2 fusion protein is expressed in the
cytoplasm of iKLF1.2-DMs and translocates to the nucleus upon
tamoxifen addition thus demonstrating that the fusion protein
activation strategy can function in terminally differentiated iPSC-
DMs and that the KLF1-ERT2 transgene is not silenced (Supple-
mentary Fig. 1B).

Activation of KLF1 in iPSC-DMs alters macrophage pheno-
type. We assessed the effect of KLF1 activation on the mRNA
expression of previously reported KLF1 target genes including
VCAM1, DNASE2A; cell adhesion molecules involved in
macrophage–erythroblast interaction (ITGAV, EMP/MAEA,
PECAM1, CD163 and CD169); EI macrophage markers (CD64,
CD68, CD11A, CD11B, CD11C) and extrinsic regulators of ery-
thropoiesis (PALD, IFN- and TNF-α)16,22–28. Activation of KLF1
by the addition of tamoxifen resulted in the increased expression
of a subset of these transcripts including CD163, CD169, CD11A,
CD11B, CD64, TNFα and PECAM1 in macrophages derived from
iKLF1.2 iPSCs (Fig. 2a). These genes were not upregulated upon
tamoxifen addition to control iPSC-DMs confirming that this
change in phenotype was associated with KLF1 activation rather
than a non-specific effect of tamoxifen (Supplementary Fig. 1C).
KLF1 activation increased the proportion of iPSC-DMs expres-
sing EI-associated cell surface markers (CD206, CD163, CD169
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and CCR5) (Fig. 2b) and the expression level of these markers as
measured by the mean fluorescent intensity (MFI) (Fig. 2c).
IPSC-DMs expressed the marker 25F9 irrespective of tamoxifen
treatment but the level of expression per cell was significantly
higher after KLF1 activation (Fig. 2b, c). To assess whether
activation of KLF1 altered iPSC-DM function, we used a quan-
titative assay of phagocytic activity29. Using a live cell imaging
strategy29, we measured the proportion of cells that had phago-
cytosed and the phagocytic activity of each cell with the intensity
of green fluorescence per cell correlating with the number of
ingested beads (Fig. 2d). Both the proportion of phagocytic cells
and the phagocytic activity per cell of tamoxifen-treated, iKLF1.2-
DMs was significantly higher compared to all controls including
control iPSC-DMs and iKLF1.2-DMs in the absence of tamoxifen
(Fig. 2e, f, respectively). To demonstrate the reproducibility of
this strategy to alter the functional phenotype of macrophages by
genetic programming, we generated macrophages from three
independently derived iPSC lines (iKLF1.6, iKLF1.7 and
iKLF1.12). Activation of KLF1 by the addition of tamoxifen to all
three cell lines resulted in a comparable increase in phagocytic
activity and an increase in expression of EI-related genes (Sup-
plementary Fig. 2A–C).

KLF1-activated iPSC-DMs enhance erythroid maturation.
Umbilical cord blood (UCB)-derived CD34+ HPCs can produce
enucleated RBCs in vitro with varying efficiency30. We hypo-
thesized that their maturation and enucleation efficiency could be
enhanced by co-culture with ‘EI-like’ iPSC-DMs. CD34+ UBC-
derived HPCs were cultured in SCF, EPO, IL3 and hydro-
cortisone for 7 days, then from day 8, the cells were co-cultured
with iKLF1.2 iPSC-DM in SCF, EPO and transferrin with or
without tamoxifen. Mature, enucleated cells were identified at day
14 and day 21 by assessing the number of CD235a-expressing
erythroid cells that were negative for CD71 and the nuclear, DNA
dye, Hoechst [18] (Supplementary Fig. 3A). The enucleated
phenotype of CD71−Hoechst− cells was confirmed by cell sorting
and comparing their morphology to Hoechst+ cells in cytospin
preparations (Supplementary Fig. 3B). The absolute number of
mature enucleated erythroid cells (CD235a+, CD71−, Hoechst−)
was higher in cells that were co-cultured with macrophages and
this was further increased when co-cultured with iKLF1.2-DMs-
that had been treated with tamoxifen (Fig. 3a, b). Quantification
of at least five replicate experiments demonstrated that co-culture
with iPSC-DMs resulted in a fourfold increase in the absolute
number of mature, enucleated cells. This was further increased to
10-fold when co-cultured with KLF1 -activated macrophages
(Fig. 3c, Supplementary Fig. 4E). The increase in absolute number
of cells is due to an increase in overall cell proliferation and
viability between days 8 and 21 as well as a significant increase in
the terminal differentiation of CD235a+ erythroid cells (Supple-
mentary Fig. 4). Quantitative RT-PCR analyses indicated that
macrophage co-culture did not alter erythroid specification of
CD34+ cells because the relative level of expression of GPYA,
KLF1, BCL11A and GATA1 were unaffected as was the globin
profile (Supplementary Fig. 5A, B). In contrast, co-culture with
KLF1-activated macrophages had a significant effect on the level
of expression of the terminally differentiated erythroid markers,
DMTN, AHSP and ANK1 supporting our flow cytometry data
(Supplementary Fig. 5C). Morphological analyses confirmed the
increase in the proportion of enucleated cells in a qualitative
manner and also demonstrated a close association between
macrophages and differentiating erythroid cells (Fig. 3d, e).

Paracrine mechanism involved in erythroid maturation. To
assess whether cell contact was required for the enhanced

maturation in iPSC-DM co-cultures, we used a trans-well assay
(0.4 μm pore size diameter) where media and secreted factors
could be exchanged but direct macrophage-erythroid cell contact
was prevented. The trans-well culture setup reduced the average
baseline level of enucleation but we noted a significant increase in
the absolute number of enucleated cells when KLF1-activated
macrophages were present on the other side of the trans-well
(Fig. 4a, Supplementary Fig. 6A, B). KLF1-activated macrophages
increased the absolute number of enucleated cells by five- and
threefold at day 14 and 21, respectively, and this was significantly
higher than control macrophages (Supplementary Fig. 6H). We
noted that the overall fold increase is not as high as that observed
in contact culture (Fig. 3) suggesting that both cell–cell contact
and secreted factors are involved in mediating the effects of KLF1.
Interestingly, when contact was inhibited we observed no effect of
KLF1 activation on the proliferation and viability of erythroid
cells compared to iPSC-DMs in the absence of tamoxifen (Sup-
plementary Fig. 6D, E) and thus the phenotypic effect of KLF1
activation appeared to be restricted to an effect on terminal dif-
ferentiation (Supplementary Fig. 6G).

KLF1 upregulates cell communication and protein-binding
factors. To identify KLF1 target genes in iKLF1.2-DMs that are
potential mediators of the observed effect on erythroid matura-
tion, we carried out RNA sequencing of iKLF1.2-DMs in the
presence and absence of tamoxifen. We identified 803 and 593
genes that were up- and downregulated upon KLFI activation,
respectively (Supplementary Fig. 7A, B). Gene ontology analysis
was performed on 803 upregulated genes using the Panther
ontology web-tool31–33. When genes were classified according to
molecular function, 35% of them were associated to a binding
function and of those, over 75% fell into a protein-binding
category with the vast majority being annotated as receptor
binding. When classified according to biological function, the
largest fraction (25%) fell into the category of cellular process
with the majority being annotated as cell–cell communication-
related genes (Supplementary Fig. 7C, D).

We validated the top-15 upregulated genes by qRT-PCR of
RNA isolated from control and iKLF1.2-DMs (−/+tamoxifen)
and demonstrated that the upregulation was due to KLF1
activation and not the addition of tamoxifen (Supplementary
Fig. 7E, F).

Identification and characterization of secreted factors. As co-
culture of KLF1-activated macrophages had a significant effect on
the maturation and enucleation of co-cultured UCB-CD34+

erythroid cells when contact was prevented, we focused on
characterizing KLF1-upregulated (>3 log2 fold change) genes that
encode secreted factors. We first validated their upregulation by
qRT-PCR and identified 20 genes encoding secreted factors that
were upregulated by KLF1 activation in iKLF1-DMs but not upon
the addition of tamoxifen in control iPSC-DMs (Supplementary
Fig. 8A, B).

For functional studies we selected genes encoding the secreted
factors ANGPTL7, IL33 and SERPINB2 that, at the time of study,
were the top-3 secreted factors commercially available as human
recombinant proteins that had been functionally validated
(Fig. 4b). By qRT-PCR we validated that they were also
upregulated in macrophages derived from the iKLF1.6, iKLF1.7
and iKLF1.12 iPSC lines (Supplementary Fig. 8C). We first
assessed whether differentiating UCB-CD34+ cells had the
potential to be responsive to these selected cytokines by testing
whether their putative receptors were expressed (Fig. 4c). Genes
encoding the receptors for ANGPTL7 (NEURL1 and NEURL1),
IL33 (IL1R1) and SERPINB2 (PLAUR) were expressed in

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-08705-0

6 NATURE COMMUNICATIONS |          (2019) 10:881 | https://doi.org/10.1038/s41467-019-08705-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


differentiating (day 14) UCB-CD34+ cells and the level was
higher when cells were cultured in the presence of the three
cytokines (Fig. 4c).

We next assessed the combined effect of ANGPTL7, IL33 and
SERPINB2 on the differentiation and maturation of UCB-
CD34+ cells in the absence of macrophages. When all three
cytokines were included in the differentiation protocol, the
absolute number of mature, enucleated cells (CD235a+

CD71−Hoescht−), was significantly higher compared to control
cultures and this was apparent at all stages of the differentiation
protocol (day 11, 14 and 21) (Fig. 4d). To assess the contribution
of individual cytokines, we used an elimination strategy and
calculated the absolute number of mature cells at day 11, 14 and
21 (Fig. 4e). At day 14, the number of cells was reduced when
IL33 was removed compared to cultures with all three cytokines
(Fig. 4e). We noted that the decrease was specifically due to the
loss of CD71 expression at a stage prior to the enucleation
process (Supplementary Fig. 9A, B) suggesting that IL33
enhanced the timing of maturation. At day 21, the highest
number of CD71− enucleated cells was observed in cultures
when all three cytokines were included and a significant
reduction was observed when each one of the three cytokines
was removed. Statistical analyses indicate that IL33 is the most
important player because the effect of its removal at day 21 was
more significant (p < 0.0001) than the removal of either
ANGPTL7 (p= 0.0259) or SERPINB2 (p= 0.0089) (Fig. 4e).
Based on these findings we tested the effect of IL33 alone, but
surprisingly the absolute number of enucleated cells was
comparable to control cultures with no secreted factors added,
suggesting that the factors act in synergy (Fig. 4f).

Functional assessment of cultured RBCs. To confirm that our
novel culture methods did not affect the functionality of the
resultant erythroid cells, we assessed their ability to bind and
release oxygen. UCB-CD34+ cells that were differentiated for
21 days in co-culture with macrophages in the presence and
absence of tamoxifen or in the presence of ANGPTL7, IL33 and
SERPINB2 had comparable O2 association and dissociation
curves compared to control cultures and to adult peripheral blood
erythrocytes (Supplementary Fig. 10).

KLF1 activation enhances iPSC-derived erythroid cell pro-
duction. We next assessed whether EI-like iPSC-derived macro-
phages could enhance the production of erythroid cells from the
limitless iPSC source. We previously demonstrated that activation
of the transcription factor KLF1 enhanced the maturation of iPSC-
derived erythroid cells but we had not considered that part of the
effect could have been due to the effect of KLF1 within the niche of
the heterogenous population of differentiating iPSCs20. We used a
four-step erythroid differentiation protocol involving mesoderm
specification (day 0–3), haematopoietic induction (day 4–14),
erythropoietic induction (day 15–21) and erythroid maturation
(day 22–28) as described8,20. We demonstrate that co-culture with
control iPSC-derived macrophages from day 18 of erythroid dif-
ferentiation, increased the absolute number of mature enucleated
erythroid cells by twofold. When co-cultured with KLF1-activated
macrophages this increased to fourfold (Fig. 5). The increase in the
absolute number of mature erythroid cells is, in part, due to an
increase in cell proliferation and viability (Fig. 5a, b) as well as an
effect on maturation per se (Fig. 5c–e).
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Fig. 5 KLF1 activation enhances iPSC-derived erythroid cell production. a Total cell number of iPSC-derived erythroid cells cultured alone or in co-culture

with iKLF1.2-DMs in the presence and absence of tamoxifen (Tam) from day 18–28 of differentiation (n= 4 biologically independent samples, one-way

ANOVA with Tukey’s post-test). b Viability of iPSC-derived erythroid cells at day 28 following above culture conditions (n= 4 biologically independent

samples, one-way ANOVA with Tukey’s post-test). c Live CD235a+-gated iPSC-derived erythroid cells that are negative for CD71 and Hoechst staining

following above culture conditions (n= 4 biologically independent samples; one-way ANOVA with Tukey’s post-test). d Quantification and statistical

analysis of the absolute number of mature, enucleated erythroid cells in replicate experiments as described above (n= 4 biologically independent samples;

one-way ANOVA with Tukey’s post-test). e Fold change of mature, enucleated iPSC-derived erythroid cells following co-culture with iKLF1.2-DMs

(−/+tamoxifen) compared to iPSC-derived erythroid cells cultured alone (− tamoxifen) (n= 4 biologically independent samples; one-way ANOVA with

Tukey’s post-test). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Discussion
The production of RBCs in vitro could solve problems associated
with blood transfusion such as limitations in supply, transfusion
transmitted infections, and immune incompatibility. Culture
protocols have been developed for the production of RBC in vitro
from human CD34+ HPCs, PSCs and immortalized erythroid
progenitor cell lines7–12. However, regardless of the cell source,
the protocols are relatively inefficient and a variable number of
cells from the different sources undergo the enucleation process
that marks the final steps of erythroid maturation. Development
of improved protocols to generate mature RBCs in vitro will
benefit from a deeper understanding of the cellular and molecular
interactions involved erythroid maturation, particularly in the
communication between erythroid island macrophages and the
surrounding developing erythroblasts.

Attempts to recreate the human EI niche in vitro have involved
co-culture with monocyte-derived macrophages (MDMs) with
the addition of glucocorticoid promoting their differentiation into
an EI-like phenotype and promoting erythroblast expansion and
survival14,15. Our strategy represents a significant improvement
in the modelling of the EI niche in vitro for a number of reasons.
Firstly, IPSC-derived macrophages have been reported to have a
tissue resident-like phenotype17,18 and in keeping with this, we
noted that iPSC-DMs have a higher level of MAF compared to
MDMs. Secondly, iPSC-DMs provide a limitless source of either
healthy or patient-derived macrophages and thus are not
dependent on repeated collection of peripheral blood monocytes.
Finally, the ability to expand iPSCs indefinitely makes then
amenable to the vast arsenal of genetic tools, including over-
expression and gene targeting strategies that allows for the testing
of novel factors involved in their action.

We noted that KLF1 was expressed at a low level by both iPSC-
DMs and MDMs and, given that KLF1 has been implicated in the
murine EI niche, we speculated that enhanced expression of this
transcription factor might programme macrophages into an EI-
like phenotype. We used an inducible KLF1-ERT2 transgene
targeted to the AAVS1 locus to allow temporally controlled
activation during macrophage differentiation. We have previously
shown that the production and function of macrophages from
iPSCs is unaffected by AAVS1 targeting per se and is resistant to
epigenetic silencing29. Thus, this provides an ideal platform for
testing the specific effect of transcription factor activation that
can be applied to any iPSC line of choice. Activation of KLF1 in
four independently derived iPSC lines carrying an inducible
KLF1-ERT2 increased the expression of EI-associated genes and
cell surface markers. Interestingly, not all the genes previously
identified as KLF1 targets are activated in this system, which
likely reflects the fact that transcriptional control by KLF1 is
context dependent and its numerous known protein partners are
cell type specific. We demonstrate that KLF1-activated macro-
phages have an enhanced rate of phagocytosis, a feature of EI
macrophages that has presumably evolved in the first instance to
clear free nuclei. In our co-culture experiments, KLF1-activated
EI-like macrophages increased the production of mature and
enucleated erythroid cells from human UCB-CD34+ HPCs and
iPSCs, implying that EI macrophages have also evolved to provide
a supportive and/or instructive role for maturing RBCs. Indeed,
this is consistent with studies in the murine system where an
extrinsic role for KLF1 in the EI niche has been reported21,22.

We demonstrate that erythroid maturation of UCB-CD34+

HPCs can be enhanced to some extent when cell contact was
inhibited indicating that this action of KLF1 target genes is in part
mediated by secreted factors. We identified a number of secreted
factors that were upregulated in KLF1-activated macrophages and
have shown that a combination of three of these, ANGPTL7, IL33
and SERPINB2 had a significant impact on the maturation of

UBC-CD34+ HPCs. The presence of all three cytokines provided
the best maturation conditions with removal of each of the
cytokines resulting in a significant reduction in the number of
mature cells. IL33 appeared to be the most important player
because its removal resulted in the most significant decrease but
addition of IL33 alone did not enhance the maturation process.
This indicates that IL33 must act in concert with the other
cytokines and/or amplify their signals in keeping with studies that
have reported an amplifying effect of IL33 on macrophage
polarization34. Interestingly, IL33 is expressed in erythroid pro-
genitor cells and released during haemolysis [30]35. In light of our
result, we propose that IL33 could be amplifying the action of
other cytokine signalling pathways providing a feedback
mechanism to stimulate the maturation of new RBCs. We have
shown that the IL33 receptor (IL1R1) is expressed in differ-
entiating UCB-CD34+ cells and upregulated upon addition of
IL33. Furthermore, IL1R1 and a predicted downstream target,
GATA336, were among the most upregulated genes when KLF1
was activated (Supplementary Fig. 11). Together, these findings
suggest that IL-33 plays a role in the erythroblastic island niche,
in both erythroid cells and in the central macrophage possibly
activating different downstream targets in the two cell types.

Many angiopoietin-like proteins are expressed by stromal cells
and involved in supporting the activity and engraftment of
HSPCs with ANGPTL7 being shown to increases the expansion
of human HSPCs ex vivo37. In the murine system, Angptl7-
deficient HSPCs were able to repopulate irradiated recipients but
Angptl7-null mice were unable to provide the supportive envir-
onment for wild-type HSPC transplantation demonstrating an
extrinsic rather than a cell-autonomous role38. A role for
ANGPTL7 in HSPC differentiation has not been reported, but
our experiments indicate its role in the maturation and differ-
entiation of the erythroid lineage.

The serine protease inhibitor, SERPINB2, is a coagulation
factor known to be present in macrophages and plays a key role
in preventing apoptosis39. In the murine system Serpinb2−/−

macrophages promote IFN-ϒ production and secretion40. IFN-β
activation contributes to the impaired erythropoiesis of Klf1 and
DNAse1 deficient mice41,42 thus predicting that the addition of
SERPINB2 would reduce IFN-β expression. However, we were
unable to test this hypothesis because IFN-β transcripts were not
detectable in UCB-CD34+ erythroid cells.

In summary, we report that human macrophages can been
manipulated through the enforced expression of a transcription
factor resulting in significant alterations in their phenotype. The
AAVS1 targeting strategy provides a solid reproducible platform
for the introduction of genes or factors that are predicted to
modulate or stabilize macrophage phenotype and function. We
have used this system to establish an in vitro model of the human
erythroblastic island niche and to study the molecular processes
involved in the final steps of erythroid maturation that are
otherwise inaccessible to study. Future application of this tech-
nology could allow the generation of tissue-resident macrophages
associated with other tissues using transcription factors that have
been defined for these populations43.

Methods
Maintenance of human iPSC lines. The human iPSCs lines SFCi55 (parental,
control) and SFCi55-iKLF1.2 were generated in house20. The SFCi55 iPSC line was
originally generated using fibroblasts obtained from blood group O Rhesus nega-
tive individuals by R Biomedical under REC 1/AL/0020 ethical approval and
programmed to iPSCs using Yamanaka factors on episomal vectors. Both lines
were confirmed to be pluripotent and have normal karyotype20. All IPSC lines were
routinely tested for mycoplasma and maintained in StemPro hESC SFM media
(Gibco) with 20 ng/ml bFGF (R&D) (Maintenance media). Wells were pre-coated
with CELLstart (Gibco) for 1 h before. Cells were passaged using the StemPro
EZPassage tool (Thermo Fisher Scientific). Media change was performed every day
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and cells passaged at a ratio of 1:4 every 3–4 days, when cells reached 70%
confluency.

Generation of human iPSC-derived macrophages. We adapted the previously
published differentiation protocol that resulted in optimal macrophage
production18,44. Maintenance media on one confluent well of a six-well plate was
replaced with 1.5 ml of day 0 mix, which consisted of StemPro hESC SFM (Gibco)
supplemented with BMP4 (50 ng/ml), VEGF (50 ng/ml) and SCF (20 ng/ml).
Colonies were cut using the EZPassage tool into two wells with 2.25 ml of day 0
mix cultured in Ultralow Attachment 6-well plates (Greiner) for 4 days to induce
embryoid body (EB) formation. In total, 10–15 EBs were transferred to each
gelatin-coated well tissue-culture-grade six-well plates in 3 ml day 4 mix (X-
VIVO15 media supplemented with M-CSF (100 ng/ml), IL3 (25 ng/ml), Penicillin-
Streptomycin, Glutamax (2 mM) and β-mercaptoethanol (0.055 mM) and media
was changed every 3–4 days. After 3 weeks, non-adherent monocyte-like pre-
cursors were harvested from the supernatant and plated into untreated bacter-
iological plates or six-well plates in Maturation mix (X-VIVO15 media
supplemented with M-CSF (100 ng/ml), Glutamax (2 mM) and Penicillin-
Streptomycin (1%)) for 9–11 days. Harvesting was repeated very 3–4 days for up to
3 months. To activate KLF1 in iKLF1.2-DMs, tamoxifen (100 nM) was added to the
adherent macrophage population for the last 4 days of the differentiation process.

Culture of umbilical cord blood-derived CD34+ cells. Frozen Umbilical cord
blood (UCB)-derived CD34+ cells were purchased from Stemcell Technologies (Cat
No. 70008.5) from consenting donors with protocols approval by either the Food
and Drug Administration (FDA) or an Institutional Review Board (IRB). UCB cells
were expanded and differentiated using a stepwise protocol12,45. Briefly cells were
cultured (1–6 × 104 cells/ml) in ISHI base media (Iscove’s basal media (Biochrom
AG), human AB+ serum (5%), heparin (3 U/ml) and insulin (10 μg/ml)) supple-
mented with SCF (60 ng/ml), IL3 (5 ng/ml), EPO (3 U/ml), Hydrocortisone (1 μM)
and holo-Transferrin (200 μg/ml) for 6 days when this expanded cell population
could be frozen in batches of 106 cells/ml in a mix of ISHIT media (60%), knockout
serum replacement (30%) and DMSO (10%). Upon thawing, cells were recovered in
the above media (day 0–6) for 2 days (now considered ‘day 8’). Cell density was
adjusted to 105 cells/ml in ISHI media supplemented with SCF (10 ng/ml), EPO (3
U/ml), and holo-Transferrin (300 μg/ml), cultured for a further 3 days then cultured
at a density of 106 cells/ml in ISHI medium supplemented with EPO (3 U/ml) and
holo-Transferrin (300 μg/ml) until day 21. Media was changed every 3–4 days
throughout the protocol. The same media was used in co-culture experiments that
were set up from day 8 at a ratio of 3:1 (iPSC-DM:CD34+-derived cells). To test cell
contact vs. paracrine mechanisms, we used trans-wells with 0.4 μm diameter pore
size (Bioscience). For experiments where secreted factors were tested, they were
added from day 8 onwards every 2 days. The final concentration of ANGPTL7
(Preprotech Cat# 130-22), IL33 (Preprotech Cat# 200-33) and SERPINB2 also
known as PAI 2 (Preprotech Cat# 140-06) were 60, 75 and 75 ng/ml, respectively.

Erythroid differentiation of iPSCs. iPSCs were differentiated in a stepwise
manner consisting of four stages: mesoderm specification, haematopoiesis induc-
tion, erythropoiesis induction and erythroid maturation as described previously20.
Maintenance media on one confluent well (six-well plate) was replaced with 1.5 ml
of Stemline II medium (Sigma), supplemented with 10 ng/ml BMP4 (R&D), 10 ng/
ml VEGF (R&D), 10 ng/ml Wnt3A (R&D) and 5 ng/ml Activin A (R&D), and 2
μM GSK-3β inhibitor VIII (Merck). Colonies were cut using the EZPassageTM,
then transferred to two wells of a low attachment plate (Greiner) to induce EB
formation. EBs were topped up with 0.5 ml of Stemline II media with same
cytokine concentrations. EBs were then dissociated to a single cell suspension using
StemPro Accutase (Thermo Fisher) on day 3. Cells were seeded at a cell density of
2 × 105 cells per well in 3 ml of Stemline II hematopoietic stem cell expansion
media supplemented with 20 ng/ml BMP4, 30 ng/ml VEGF, 10 ng/ml FGFa, 30 ng/
ml SCF, 10 ng/ml IGF2 (R&D), 10 ng/ml TPO (R&D), 5 μg/ml Heparin (Sigma),
50 μM IBMX (Sigma) and 0.4 ng/ml β-estradiol. Cytokines were topped up at days
5, 7 and 9. Differentiating suspension cells were harvested at day 10 and seeded at a
density of 1 × 105 cells/ml in Stemline media in the presence of 50 ng/ml SCF, 16.7
ng/ml Flt3L (Preprotech), 6.7 ng/ml IL-3, 6.7 ng/ml (Preprotech), 3 U/ml EPO and
50 μM IBMX. Cytokines were topped up at days 12, 14 and 16. At day 18, dif-
ferentiating cells were cultured at a density of 5 × 105 cells/ml in IBIT media, made
up by 240 ml of Iscove’s basal medium (Merck Millipore) supplemented by 1%
BSA (Gibco), 10 μg/ml insulin (Sigma), 0.2 μg/ml transferrin and 0.5 ml of β-
mercaptoethanol; supplemented with 20 ng/ml SCF, 20 ng/ml IGF1 (Preprotech),
6.7 ng/ml IL3, 6.7 ng/ml IL11 and 3U/ml EPO. Fresh cytokines were topped up in
0.5 ml of IBIT medium per well of a six-well plate at days 20, 22 and 24. At day 25,
the differentiating cells were harvested and seeded at a cell density of 1 × 106 cells/
ml in IBIT medium supplemented with 3 U/ml EPO, 6.7 ng/ml IL-1β (R&D), 6.7
ng/ml IL-6 (R&D), 5% AB plasma (Sigma), and 2 ng/ml sodium selenite (Sigma).
Cytokines were topped up at day 27. Differentiating cells were co-cultured with
iKLF1.2-DMs (−/+tamoxifen) (100 nM) from day 18 at a ratio of 3:1 (macro-
phage:erythroid cells). Tamoxifen was topped up very 2 days and erythroid
maturation status was assessed by flow cytometry at day 28.

Cytospin preparation and Rapid-Chrome Kwik-Diff staining. Cytospin pre-
parations of macrophages or erythroid cells were performed by re-suspending 5 ×
104 or 1 × 105 cells in 200 μl of PBS, respectively. Cells were cyto-centrifuged onto
polylysine slides at 72 × g for 8 min in a Thermo Shandon Cytospin 4, air-dried
overnight then stained according to manufacturer’s instructions (Thermo Fisher
#9990702).

Immunocytochemistry. To assess HA-KLF1-ERT2 sub-cellular localization, 6 ×
104 macrophages were cultured in a gelatin-coated Nunc® Lab-Tek® Chamber Slide
System (Sigma), fixed in 4% PFA in PBS at room temperature for 10 min, per-
meabilized in PBS-T (PBS with 0.4% Triton-X100) for 20 min and blocked in PBS-
T with 1% BSA and 3% goat serum for 2 h and incubated in anti-HA 1:500
(Clontech #631207) for 1.5 h. Cells were washed with PBS-T thrice for 15 min,
incubated in Alexa488 anti-rabbit 1:1000 (Thermo Fisher Scientific #A-11008) for
1.5 h in the dark, washed with PBS-T thrice for 15 min then counter-stained with
DAPI 1:1000 (Sigma) for 5 min.

Flow cytometry. Single cell suspensions were prepared using StemPro Accutase
Cell Dissociation Reagent (Gibco) and re-suspended in PBS with 1%BSA and 5
mM EDTA. Cells were blocked with MACS FcR Blocking Reagent (#130-059-901)
for 40 min on ice according to manufacturer instructions. In total, 1 × 105 cells
were washed and stained with appropriate antibodies (Supplementary Table 1) for
20 min at room temperature. Dead cells were gated out using DAPI. To assess
enucleation, single cell suspensions were stained with Hoechst33342 1:20
(Thermo Fisher #R37605) for 20 min, washed with PBS 1%BSA and 5mM EDTA
then stained with CD71-APC 1:200 (Thermo Fisher, 17-0719-42), CD235a-FITC
1:1000 (EBioscience #11-9987) and LIVE/DEAD™ Fixable Near-IR Dead Cell Stain
1:100 (Thermo Fisher #L10119) for 20 min at room temperature. Cells were
washed with PBS with 1%BSA and 5mM EDTA and kept on ice prior to analysis
using LSR Fortessa Analyser (BD) and FlowJo Software.

Phagocytosis assay. In total, 8 × 104 iPSC-DMs were plated in tissue-culture-
grade 96-well plates (CellCarrier, Perkin Elmer) at least 2 days before assessing
their phagocytic activity as previously described18. Briefly cells were stained with
the nuclear stain, Hoechst33342 and CellMaskTM deep red plasma membrane stain
then pHrodoTM Green Zymosan A BioParticles were applied immediately prior to
live imaging using the Operetta High-Content Imaging System (Perkin Elmer). The
number of iPSC-DMs that had ingested beads (phagocytic cell fraction) and the
average number of beads that each cell had ingested (phagocytic index) was
quantified using Columbus Image data storage and analysis system.

Gene expression analyses. Total RNA extraction was carried out using the
RNAeasy Mini Kit (Qiagen); cDNA was generated from 500 ng of total RNA using
the high capacity cDNA synthesis kit (Applied Biosystem). Two nanograms of
cDNA were amplified per reaction and each reaction was performed in technical
triplicates using the LightCycler 384 (Roche) with SYBR Green Master Mix II
(Roche). GADPH, β-actin and B2M were used as reference genes and the geo-
metrical mean was used to normalize the data. Primer sequences and efficiencies
are reported (Supplementary Table 2). RNA sequencing was performed by Edin-
burgh Genomics and data deposited in in NCBI’s Gene Expression Omnibus
(accession number GSE125150)46,47.

Hemox analyses. The oxygen carrying potential of cultured erythroid cells and
adult blood was determined using a Hemox analyser (TCS, New Hope, USA)
according to manufacturer’ instructions. In short, ~2.5 × 107 pelleted cells or 50 μl
of peripheral blood control erythrocytes were diluted in 5 ml HEMOX solution
(PBS supplemented with 0.5% human serum albumin and 0.01% Y-30 (A5768,
Sigma)). Simultaneous duel wavelength spectrophotometry at 560 and 576 nm
was measured to calculate the oxyhemoglobin fraction at different oxygen
tensions48.

Statistical analyses. Data are expressed as mean ± standard error mean (SEM).
Statistical tests that were used are indicated in figure legends and were performed
using Graph Pad software version 6.0c. P-values <0.05 were considered statistically
significant (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
RNA sequencing data that support the findings of this study deposited in NCBI’s Gene

Expression Omnibus and are accessible through GEO Series accession number

GSE125150.
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