
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 1

Genetic Programming with Image-Related

Operators and A Flexible Program Structure for

Feature Learning in Image Classification
Ying Bi, Student Member, IEEE, Bing Xue, Member, IEEE, and Mengjie Zhang, Fellow, IEEE,

Abstract—Feature extraction is essential for solving image
classification by transforming low-level pixel values into high-
level features. However, extracting effective features from images
is challenging due to high variations across images in scale,
rotation, illumination, and background. Existing methods often
have a fixed model complexity and require domain expertise.
Genetic programming with a flexible representation can find
the best solution without the use of domain knowledge. This
paper proposes a new genetic programming-based approach to
automatically learning informative features for different image
classification tasks. In the new approach, a number of image-
related operators, including filters, pooling operators and feature
extraction methods, are employed as functions. A flexible pro-
gram structure is developed to integrate different functions and
terminals into a single tree/solution. The new approach can evolve
solutions of variable depths to extract various numbers and types
of features from the images. The new approach is examined
on 12 different image classification tasks of varying difficulty
and compared with a large number of effective algorithms. The
results show that the new approach achieves better classification
performance than most benchmark methods. The analysis of the
evolved programs/solutions and the visualisation of the learned
features provide deep insights on the proposed approach.

Index Terms—Genetic Programming; Feature Learning; Image
Classification; Representation; Evolutionary Computation.

I. INTRODUCTION

IMAGE classification aims to assign each image in the

dataset with a class label from a set of predefined class

labels based on the content in the image. Image classification

is an important task in computer vision and machine learning

with many real-world applications, such as medical diagnosis,

self-driving and biological identification [1, 2, 3, 4]. However,

many factors, including high image variations and high dimen-

sionality of image data, make this task very challenging.

To solve image classification effectively, feature extraction

is critical, where low-level pixel values are transformed into

high-level features. However, feature extraction is challenging

because of high inter-class and intra-class variations across

This work was supported in part by the Marsden Fund of New Zealand
Government under Contracts VUW1509 and VUW1615, the Science for
Technological Innovation Challenge (SfTI) fund under grant E3603/2903, the
University Research Fund at Victoria University of Wellington grant number
223805/3986, MBIE Data Science SSIF Fund under the contract RTVU1914,
and National Natural Science Foundation of China (NSFC) under Grant
61876169. This work of Ying Bi was supported by the China Scholarship
Council (CSC)/Victoria University Scholarship.

The authours are with School of Engineering and Computer
Science, Victoria University of Wellington, Wellington, New
Zealand (E-mail: Ying.Bi@ecs.vuw.ac.nz; Bing.Xue@ecs.vuw.ac.nz;
Mengjie.Zhang@ecs.vuw.ac.nz).

images in scale, rotation, background, and lighting conditions.

The desired features should contain invariant and discrimina-

tive information of the images so that the discrimination of

different classes and the similarity of the same class can be

preserved. These features could help build effective classifiers

for classification [5]. Many methods have been developed to

extract features from images [6], such as local binary patterns

(LBP) [7], histogram of oriented gradients (HOG) [8] and

scale-invariant feature transform (SIFT) [9]. These features

are known as hand-crafted features [10], which are typically

effective for particular tasks. For example, LBP features are

effective for texture classification. When applied to new tasks

with unknown types of images, these methods may not be

effective [2]. Therefore, feature learning methods have been

proposed to automatically learn features from images for

classification [2, 11]. With a learning process, the features

can be optimised or fine-tuned to achieve good performance.

e.g., the maximum classification accuracy on the training set

[11]. Compared with the hand-crafted features, the learned

features are often more effective for a wide range of im-

age classification [2, 12]. However, existing feature learning

methods such as convolutional neural networks (CNNs) have

limitations, e.g., requiring rich domain expertise to design the

model for solving a specific task and requiring a large amount

of computational resources and training data. Therefore, it

is necessary to develop new feature learning methods to

overcome these limitations for image classification.

Genetic programming (GP) is an evolutionary computation

(EC) technique and can automatically evolve computer pro-

grams to solve problems using the principles of biological

evolution and natural selection [13]. GP is well known for

its flexible representation, good global search ability and high

interpretability of the evolved solutions [14, 15, 16]. GP has

achieved promising results in many tasks, such as symbolic

regression, classification, scheduling, and image analysis [17].

Compared with other EC techniques, GP has a more flexible

representation, i.e., tree-based representation [13, 18]. In tree-

based GP, each individual is represented by a tree, where the

root and internal nodes are functions/operators, and the leaf

nodes are terminals [19]. Tree-based GP can evolve solutions

without predefined structures. In other words, it can find

solutions/models of various depths, i.e., shallow models for

easy tasks and complex models for difficult tasks.

GP has been applied to image feature learning and achieved

promising results [4]. In these methods, several image-related

operators, e.g., Gaussian filter, mean filter, min filter, Laplacian

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 2

filter, and Sobel filter, have been employed as GP functions to

evolve solutions that extract high-level image features [2, 20].

Besides, other image-related operators, e.g., existing feature

extraction methods, can be employed as GP functions to

form the internal nodes of GP trees. However, this has not

been extensively investigated. To effectively use image-related

operators in GP, a program structure is typically needed to

integrate different functions and terminals into a single tree.

Several GP methods with different program structures, e.g.,

multi-tier [21], two-tier [22] and multi-layer [2], have been

developed. But these program structures are often restricted

in a certain way and cannot be used when new image-related

operators are introduced in GP. More importantly, most of

these program structures are fixed [20, 21, 22, 23], and they

extract features in a predefined procedure, which may limit

their performance. Furthermore, most GP-based methods only

address binary image classification [20, 21, 22, 24]. In these

methods, the output of a GP tree from an image is a floating-

point number, which is often compared with a predefined

threshold to determine which class the image belongs to.

For example, if the output is smaller than zero, the image

belongs to the negative class. Otherwise, the image belongs to

the positive class. However, most image classification tasks

are multi-class classification so that these methods cannot

be directly used. In addition, multi-class classification often

involves more image variations and separations and is often

more difficult. Therefore, this paper proposes a new GP

approach, by addressing these limitations, to feature learning

for image classification, including multi-class classification.

The goal of this paper is to develop a new GP-based

approach with image-related operators and a flexible program

structure to feature learning for different image classification

tasks. The new approach is called FGP in short. A flexible

program structure, a new function set including image-related

operators, and a new terminal set will be developed in FGP.

The new approach will be evaluated on 12 benchmark datasets

of varying difficulty and compared with a large number of

state-of-the-art methods. Further analysis will be conducted to

provide an in-depth understanding of the new approach.

The characteristics of FGP can be summarised into the

following four aspects:

1) FGP can automatically evolve solutions/trees of variable

depths to extract features from the images. The com-

plexity of the FGP solutions for different tasks can be

different, which is more flexible than a predefined model

complexity, such as in CNNs.

2) FGP can produce various types and numbers of features

from images. The produced features may be generated

through filtering, pooling, or feature extraction using dif-

ferent image-related operators. The features can be from

filtering/pooling, or from feature extraction, or from

filtering/pooling and feature extraction simultaneously,

where current GP-based methods cannot achieve this.

3) FGP can be easily applied to different image classifi-

cation tasks to achieve good classification performance.

The experimental results on 12 benchmark datasets of

varying difficulty show that FGP can achieve better

performance than a number of effective algorithms.

4) The solutions evolved by FGP can be visualised to

understand what image-related operators are used in the

trees/solutions and what types of features are produced

by the trees. The visualisation of the learned features

provides further insights on the FGP approach.

II. BACKGROUND AND RELATED WORK

This section introduces the basics of commonly used image-

related operators. Then it discusses existing methods for

image classification, including traditional methods, NN-based

methods and GP-based methods. The current limitations of

these methods are summarised.

A. Image-Related Operators

1) Per-pixel Transformation: An image can be denoted as

PM×N if the image is gray-scale. Per-pixel transformation

represents that each pm,n in P is changed to xm,n to form a

new array XM×N . Many image-related operators can achieve

this, such as filtering or convolution.

Filtering is often used in image preprocessing such as using

a Gaussian filter to reduce the noise [6]. In this process,

a filter kernel F(2a+1)×(2b+1) with (2a + 1) × (2b + 1)
weights are employed to convolve the image P . The two-

dimensional discrete convolution process is denoted in Eq.

1. Commonly used filters are Gaussian filter, derivatives of

Gaussian, Laplacian filter, Laplacian of Gaussian (LoG) filter,

Gabor filter, and Sobel edge detector [6].

xm,n =

a∑

f1=−a

b∑

f2=−b

pm−f1,n−f2Ff1,f2 (1)

2) Image Feature Descriptors: Feature description trans-

forms an image into a set of features. Well-known methods

are LBP [7], HOG [8], SIFT [9], and Gabor features [3].

LBP is a simple but effective method for texture description.

LBP compares each central pixel in a small window with its

neighbour pixels to obtain a binary code. Then each central

pixel is changed to a decimal number according to the binary

code and predefined weights. In general, the histogram of the

LBP image is extracted as features. More details and other

versions of LBP can be seen in [7]. HOG is well known for

object shape and appearance description [8]. The main idea of

HOG is to extract locally normalised histograms of gradient

magnitudes and orientations in each overlapping block as

features. The SIFT method [9] is a popular method to describe

local features as it detects keypoints from the image. From

each detected keypoint, it extracts 128 histogram features of

gradient magnitude and direction. Without keypoint detection,

a dense SIFT method was developed for feature extraction to

reduce the computational complexity [25].

B. Related Work on Image Classification

1) Traditional Methods: Traditional methods use a feature

description method to extract features from images and feed

them into classification algorithms for classification. Chapelle

et al. [26] developed a heavy-tailed RBF’s kernel function

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 3

in support vector machines (SVMs) for image classification

based on histogram features. The results showed that the

classification performance can be improved by using the

developed kernel function in SVMs. Sergyan [27] extracted

simple histogram features and employed k-nearest neighbour

(KNN) for image classification, which achieved good perfor-

mance. Bosch et al. [28] developed a method to automatically

detect regions of interest and extract shape and appearance

features from the regions for object classification. However,

most of these methods cannot effectively solve other image

classification tasks since they use simple hand-crafted features.

2) Neural Network (NN)-based Methods: In recent decades,

NN-based methods, e.g., auto-encoders (AEs), CNNs, deep

belief networks (DBNs), and deep Boltzmann machines

(DBMs), have obtained promising results in image classifi-

cation. Among these methods, CNN is the most commonly

used method for image classification. Qian and Zhang [29]

developed a feedforward convolutional conceptor neural net-

work (FCCNN) by integrating components of CNN, principal

component analysis (PCA), binary thresholding (BT) and non-

temporal conceptor classifiers. The performance of FCCNN

has been examined on the MNIST variant datasets. Li and

Gong [30] proposed a self-paced CNN (SPCN) by assigning

weights to the training samples during the learning process

to enhance the learning robustness of CNN. The method has

gained better performance than a number of state-of-the-art

algorithms on six benchmark datasets. Bruna and Mallat [31]

proposed an invariant scattering convolution network (ScatNet)

for image classification by cascading wavelet transforms and

modulus pooling operators. This method has achieved better

performance than a Gaussian kernel SVM and a generative

PCA classifier on digital recognition and texture classification.

Based on the concept of PCA, Chan et al. [32] developed the

famous PCA network (PCANet) for feature learning, where a

set of filters generated by PCA were used in the convolutional

layer, and binary hashing and blockwise were employed to

obtain the final output features. PCANet has shown promising

results in many well-known benchmark datasets, including

face recognition and digit recognition. Rifai et al. [33] de-

veloped contractive auto-encoders (CAE) by using a new cost

function with a well-chosen penalty term. This method has

been examined on seven datasets and compared with other

types of AE, including three-layers stack AE (SAE-3) and

three-layers denoising AE with binary masking noise (DAE-b-

3). As variants of NNs, DBN and DBM have also been applied

by Larochelle et al. [34] to digit recognition. However, NNs

have limitations such as requiring a large number of computing

resources and training instances and requiring rich domain

knowledge to design the models.

3) GP-based Methods: GP has been applied to solve image

classification by simultaneously performing feature extraction

and feature construction. The multiple subtasks of dealing

with image classification, including region detection, feature

extraction, feature construction, and image classification, can

be integrated into a single GP tree using strongly typed GP

(STGP) [35]. The final output of a GP tree is a number/feature,

which can be used for classification using a predefined thresh-

old. To the best of our knowledge, the first method is the multi-

tier GP (known as 3TGP) proposed by Atkins et al. [21], where

high-level features are learned through an image filtering tier,

an aggregation tier and a classification tier. Al-Sahaf et al.

[22] improved 3TGP by simplifying the structure to an aggre-

gation tier and a classification tier (2TGP) to perform region

detection, feature extraction, feature construction, and image

classification, simultaneously. Bi et al. [20] developed a multi-

layer GP method (MLGP) with the utilisation of image-related

operators to extract and construct high-level features for image

classification. These methods have achieved good performance

on binary image classification, but their performance has not

been investigated on multi-class image classification.

Several GP methods have been developed to learn multiple

features from images and a traditional classification algorithm

have been employed for classification. Al-Sahaf et al. [36]

proposed a GP-based method to automatically produce a set

of features using an LBP-similar manner for texture image

classification. However, the number of features generated by

this method is fixed. To improve this, a dynamic method was

developed in [12] to learn a dynamic number of image features

for texture classification. In this method, a root function that

accepts a flexible number of child nodes was developed.

However, these two methods are for texture description and

their performance has not been examined on other types

of datasets. Shao et al. [2] proposed a multi-objective GP

(MOGP) method with an input layer, a filtering layer, a pooling

layer, and a concatenation layer to transform images into high-

level features. This method has achieved better performance

than the methods using hand-crafted features and simple CNNs

on four different datasets. But this method has a fixed program

structure to produce features from filtering and pooling, which

could not produce invariant features to achieve good perfor-

mance on difficult datasets. Bi et al. [37] developed a GP

method to automatically and simultaneously learn features and

evolve ensembles for image classification. This method built

an ensemble of classifiers to solve image classification. But

this method has shown inferior performance on large image

classification datasets. Bi et al. [38] proposed a GP algorithm

to simultaneously learn features and evolve ensemble for im-

age classification. This method uses classification algorithms

and image-related operators to evolve ensembles of classifiers

for classification. This method have achieved promising results

on several datasets. But this method focused on ensemble

learning and the models/solutions formed by a number of

various classifiers are complex and difficult to explain.

In summary, although many GP-based methods have been

developed for image classification [2, 36], most methods are

only for binary image classification due to easy implementa-

tion and the nature of the GP program’s output [1, 20, 21,

22, 24]. However, most image classification tasks are multi-

classification, which requires different algorithm designs to

solve it. The GP methods in [2, 12, 36, 39, 40] have shown

promising results on multi-class or binary image classification

by learning multiple features. However, these methods have

their limitations, such as have a fixed program structure and are

only for texture classification. Due to the current limitations,

the potential of GP in feature learning has not been extensively

investigated. Moreover, very few GP-based methods have been

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 4

examined on large benchmark datasets and compared with

state-of-the-art algorithms for image classification. Therefore,

this paper proposes a new GP approach to feature learning with

a flexible program structure and image-related operators for

different types of image classification tasks, including multi-

class classification of large datasets.

III. THE PROPOSED APPROACH

In this section, the proposed approach with a flexible

program structure, named as FGP in short, is described in

detail, including the algorithm overview, the flexible program

structure, the function set, and the terminal set.

A. Algorithm Overview

The framework of the FGP approach is outlined in Al-

gorithm 1. FGP starts with population initialisation, where

N (population size) individuals/trees are randomly generated

using a commonly used tree generation method: ramped half-

and-half. Each FGP individual/tree is built by selecting func-

tions from the new function set to construct internal/root nodes

and selecting terminals from the new terminal set to construct

the leaf nodes. Each individual is then evaluated through the

fitness evaluation process to have a fitness value. After fitness

evaluation, the best individual and a developed hash table,

Cache Table, are updated. The Cache Table is used to

avoid evaluating the individuals that have been evaluated in

past generations. More details about Cache Table will be

introduced in the following paragraph. At each generation,

the selection method and three genetic operators, i.e., subtree

crossover, subtree mutation and elitism, are used to generate

a new population to replace the current one. The evolutionary

process is terminated when the maximum number of genera-

tions is reached. Finally, the best individual is returned.

Algorithm 1: Framework of FGP

Input : X train: the training images; Y train: the labels of
the training images.

Output : Best Individual: the best individual.

1 Cache Table← ∅;
2 P0 ← Initialise the population using the ramped half-and-half

method according to the new program structure, the new function
and terminal sets;

3 Evaluate P0 using Algorithm 2;
4 Update Best Individual and Cache Table;
5 g ← 0;
6 while g < G do

7 I ← The best individuals of Pg using elitism operator;
8 S ← Individuals selected from Pg using tournament selection;
9 Og+1 ← Offspring generated from S using subtree crossover

and subtree mutation operators;
10 Evaluate the fitness of each individual p in Og+1 using

Algorithm 2;
11 Pg+1 ← Og+1 ∪ I;
12 Update Best Individual and Cache Table;
13 g ← g + 1
14 end

15 Return Best Individual.

A new fitness evaluation process is developed in FGP to

evaluate each individual, as described in Algorithm 2. On

image data, GP is often known as a computationally expensive

method, especially when the number of instances is large. To

avoid evaluating the same subtrees, subtree caching strategy

has been developed in GP on image data [41]. Inspired by

this, a hash table Cache Table is employed in FGP to

store individuals and their fitness values so that the repeated

individual can be directly assigned a fitness value without

evaluation using the training data. To balance the search time

in Cache Table and the evaluation time of an individual,

only Nc best individuals and the previous population (Pg)

are stored in Cache Table. With the Cache Table, the new

fitness evaluation process is described in Algorithm 2. It starts

with checking whether the individual is in the Cache Table.

If the individual is in the Cache Table, the fitness value is

directly assigned to the individual. Otherwise, the individual

is evaluated on a training set using a linear SVM. The linear

SVM is chosen because it is commonly used for image classi-

fication [2]. In this process, the FGP individual transforms

each image in X train to a number of features to form

X features. Then X features is normalised using the min-

max normalization method and fed into a linear SVM using

the stratified k-fold cross-validation method. The stratified k-

fold cross-validation method splits the dataset (X features
and class labels) into k folds by preserving the class ratio.

Each time k−1 folds are used to build an SVM classifier and

the classifier is tested on the remaining one fold. The average

test accuracy of the k folds is set as the fitness value to the

individual. In FGP, k is set to be 5 instead of 10 used in [2]

to reduce the computational cost of the fitness evaluation.

Algorithm 2: Fitness Evaluation

Input : Cache Table: the hash table to store evaluated
individuals and their fitness values; X train: the training
images; Y train: the labels of the training images; p: the
individual to be evaluated.

Output : The fitness value for p: f(p).

1 if p in Cache Table then

2 f(p)← the fitness value of p in Cache Table;
3 else
4 Use p to transform X train into features X features;
5 Normalise X features using the min-max normalisation

method;
6 Feed normalised X features and Y train into a linear SVM

using stratified k-fold cross-validation;
7 f(p)← average test accuracy of k folds
8 end

9 Return f(p).

Besides the above feature learning process, the main prop-

erties of FGP that lead to its success on feature learning

and difference from other GP-based methods are the flexible

program structure, the new function set and the new terminal

set. The following subsections will introduce these properties.

B. Flexible Program Structure

A flexible program structure is developed in FGP to inte-

grate functions and terminals into a single tree. The develop-

ment of the new program structure is based on three motiva-

tions. First, in state-of-the-art GP methods on feature learning

in [2, 39], the program structure has two main components, the

filtering layer and the pooling layer, connecting in a bottom-

up manner. This program structure is fixed, which may not

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 5

Input

Filtering

Output

Filtering/Pooling

Pooling

Concatenation

Input

Filtering

Feature Extraction

Filtering/Pooling

Pooling

Sobel_X

Image

LBP

Image

Root2

SIFT

Sobel_X

Image

MaxP

MaxP

Image

FeaCon2

LoG1

FeaCon2

LoG1

Med

Mean

MaxP

MaxP

Lap

Image

Image

4 2

Example Program 1 Example Program 2 Example Program 3

Root3

LoG1

Med

LBP

MaxP

HOG

Lap

Image

Image

2 2

Flexible Layer

Fixed Layer

OutputOutputOutput

2
4

2

2

4 4

Fig. 1. The program structure of the FGP approach (left) and three typical example programs that can be evolved by FGP (right).

be effective for learning invariant features as learned by CNN

using multiple layers’ transformations. To this end, we relax

this constraint to design a more flexible program structure,

which allows FGP to evolve programs with multiple layers

of filtering and pooling. Second, integrating feature extraction

functions into GP for feature learning has achieved promising

results in [40]. However, this method has a limitation of fixed

tree depth, and the learned features may not be invariant

to noise without filtering/denoising process. To address this,

a flexible filtering/pooling layer is added between the input

layer and the feature extraction layer. Third, hybrid fea-

tures/representations, i.e., combining features extracted from

filtering/pooling and features extracted from traditional feature

extraction methods, have been seen in CNN-based methods

with promising performance [42]. But no existing GP methods

can achieve this. Therefore, the flexible program structure

of FGP can combine the two different types of features to

produce hybrid features.

The program structure of FGP is based on STGP [35], which

has types constraint on functions (input types and output types)

and terminals (output types). In STGP, each function can only

use particular functions or terminals as child nodes, where its

input types must be the same as the output types of its child

nodes. Based on STGP, a program structure is developed in

FGP to integrate functions and terminals of different types into

trees. The new program structure and three typical example

programs are shown in Fig. 1. The new program structure has

several different layers, i.e., an input layer, filtering layers,

pooling layers, a feature extraction layer, a concatenation

layer, and an output layer. The input layer feeds the image

and ephemeral random constants into the FGP system. The

filtering layer performs filtering operations or other operations

on the image. The pooling layer conducts max-pooling to

the image with size reduction, which is in contrast to that in

[2, 39]. The feature extraction layer extracts features from the

image using several well-known feature extraction methods.

The concatenation layer concatenates/combines features from

different processes, i.e., filtering/pooling and feature extraction

into a feature vector to form the output of the FGP system.

More importantly, as shown in Fig. 1, the layers circled

with dash line are flexible, indicating that they may be in an

FGP program. These flexible layers allow the FGP program to

have multiple filtering and pooling layers to extract features,

which are similar to those in CNNs. The layers that are circled

with the line are fixed layers to make sure that there are feature

transformations from the input to the output. Using this flexible

program structure, three typically different types of features

can be produced by FGP. The first is to produce the combined

features from the feature extraction process as the Example

Program 1 shown in Fig. 1. The second is to produce the

combined features from the filtering and/or pooling processes

as the Example Program 2 shown in Fig. 1. The third is

to produce the combined features from the feature extraction

process and the filtering and pooling processes, as shown in

the Example Program 3 in Fig. 1.

This program structure allows FGP to evolve shallow trees

that contain a few functions or to evolve deep trees with

multiple layers of pooling and/or filtering. With this program

structure, FGP can produce various types and numbers of

features, which are flexible for solving different image classifi-

cation tasks. Associated with this program structure, a number

of functions and several terminals are employed in FGP, which

will be described in the following subsections.

C. Function Set

Many operators and methods have been developed for

feature detection and description. These operators can give

insights on what type of features are detected and why they

are effective. Therefore, a set of well-known image-related

operators is used in the function set of FGP. Based on the

program structure, these functions are classified into filtering

functions, pooling functions, feature extraction functions, and

feature concatenation functions.

1) Filtering Functions: There are 19 functions employed

in the filtering layer of FGP, as listed in Table I. The Gau
function takes an image and standard deviation σ as inputs

and returns an image convolved by a Gaussian kernel. GauD
has three parameters, i.e., standard deviation σ, o1 and o2. The

parameters o1 and o2 represent orders of the derivative along

the X and Y axis, respectively. The Gabor filter is generated

by a Gabor wavelet function. It has parameters θ and f ,

which indicate the orientation of the kernel and the wavelength

(λ = 1/f) of the sinusoid function in the Gabor wavelet

function. The Lap function is generated by discretising and

approximating the Laplacian operator, and it can detect the flat

areas or edges. The LoG1 and LoG2 functions convolve the

Laplacian filter with the Gaussian function, which can reduce

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 6

TABLE I
FILTERING FUNCTIONS

Function Input Output Function Description

Gau 1 image,
σ

1 image Gaussian filter with standard
deviation σ

GauD 1 image,
σ, o1, o2

1 image Derivatives of Gaussian filter

Gabor 1 image,
θ, f

1 image Gabor filter with θ orientation
and f frequency (1

λ
)

Lap 1 image 1 image Laplacian filter
LoG1 1 image 1 image Laplacian of Gaussian filter

with σ = 1

LoG2 1 image 1 image Laplacian of Gaussian filter
with σ = 2

Sobel 1 image 1 image Sobel edge detector
SobelX 1 image 1 image Sobel filter along the X axis
SobelY 1 image 1 image Sobel filter along the Y axis
Med 1 image 1 image 3× 3 median filter
Mean 1 image 1 image 3× 3 mean filter
Min 1 image 1 image 3× 3 min filter
Max 1 image 1 image 3× 3 max filter
LBP -F 1 image 1 image Return LBP image
HOG-F 1 image 1 image Return HOG image
W -Add 2 images,

n1, n2

1 image Add two weighted images

W -Sub 2 images,
n1, n2

1 image Subtract two weighted images

ReLU 1 image 1 image The rectified linear unit
Sqrt 1 image 1 image Sqrt an image

noise in the image. The standard deviation of the Gaussian

function in LoG1 and LoG2 is set as 1 and 2, respectively.

Among these filters, the Gau,Med and Mean filters are

often employed for image denoising and smoothing. The fil-

ters, including GauD,Lap, LoG1, LoG2, Sobel, SobelX , and

SobelY , can detect edges or flat areas in the image. The kernel

sizes for the Mean, Med, Min, and Max functions are 3×3,

which is a commonly used kernel size. The kernel sizes for the

other filters are based on their parameters or default settings.

For example, the kernel sizes of the Gau and GauD functions

are related to their parameter σ; and the kernel size of the

Sobel, SobelX and SobelY functions is 3× 3.

Besides the above filters, the LBP -F , HOG-F , W -Add,

W -Sub, ReLU , and Sqrt functions listed in Table I are also

employed. The LBP -F and HOG-F functions return a LBP

image and a HOG image for an input image, respectively.

The two functions produce high-level feature maps that may

be informative. The W -Add and W -Sub functions are used

to add or subtract two weighted images with different or the

same sizes, where the weights are n1 and n2. In the case

where the sizes of the two images are not the same, W -Add
and W -Sub overlap the image pixels at coordinates (0, 0),

cut the exceeding part of the larger images, and perform the

add or subtract operation. ReLU is the rectified linear unit.

Sqrt calculates the square root of each pixel value in an image

and is protected by returning 1 if the pixel value is negative.

ReLU and Sqrt can rescale the input image by transforming

the pixel values from the negative to non-negative.

2) Pooling Functions: Commonly used pooling functions

are max-pooling and average-pooling. Max-pooling returns

the maximum value of each sliding window, while average-

pooling returns mean value of the sliding window. The im-

portant features, e.g., edges, can be extracted by the max-

pooling function but may be smoothed by the average-pooling

function. Therefore, only max-pooling (simplified as MaxP)

function is employed. The MaxP function takes three argu-

ments as inputs, i.e., an image and the kernel sizes, k1, k2, and

returns a smaller image. The MaxP function in FGP not only

extracts important features but also reduces the dimensionality

of the features. Note that k1 and k2 are two parameters of

MaxP and are used as two ephemeral random constants of

FGP. The values of k1 and k2 are randomly selected from a

predefined range at the initialisation step and can be mutated

by mutation operator during the evolutionary process.

3) Feature Extraction Functions: The feature description

methods introduced in Section II-B1 can be employed as GP

functions to extract informative features. To reduce the search

space of FGP, the three most commonly used methods, i.e.,

HOG, LBP, and SIFT, are employed for feature extraction.

Table II lists the details of these functions.

TABLE II
FEATURE EXTRACTION FUNCTIONS

Function Input Output Description

SIFT 1 Image 1 Vector SIFT descriptor. 128 features are ex-
tracted from the image [25]

LBP 1 Image 1 Vector LBP descriptor. It extracts 59 uniform
LBP histogram features. In the LBP
method, the radius is 1.5 and the num-
ber of neighbours is 8 [7]

HOG 1 Image 1 Vector HOG descriptor. In HOG, the orienta-
tion is 9, the cell size is 8× 8 and the
block size is 3×3 [8]. The mean value
of each 4×4 grid is extracted from an
HOG image

4) Concatenation Functions: To concatenate features pro-

duced by different functions, five different concatenation func-

tions (Root2, Root3, Root4, FeaCon2, and FeaCon3) are

employed and developed. The descriptions of these functions

are listed in Table III. Each concatenation function can be used

as the root node of a program tree or a child node of another

concatenation function. This means that the tree depth of the

concatenation layer is flexible. With these functions, FGP trees

can output various numbers of features from an input image.

TABLE III
CONCATENATION FUNCTIONS

Function Input Output Description

RootX 2/3/4 Vectors 1 Vector Concatenate vectors to a vector
FeaConY 2/3 Images 1 Vector Convert images to a vector by

concatenating each row

D. Terminal Set

The terminal set of FGP contains the input image (Image)

and the parameters for the functions, i.e., σ, o1, o2, θ, f ,

n1, n2, k1, and k2. More details of them are listed in Table

IV. The Image terminal represents the input image, which

is a 2D array and the values in the array are normalised

into [0, 1] dividing by 255. The other terminals are ephemeral

random constants of FGP and only appear in the trees where

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 7

the corresponding functions are used. The values of these

terminals are randomly selected from a predefined range at

the initialisation step and can be modified by the mutation

operator during the evolutionary process.

TABLE IV
TERMINAL SET

Terminal Type Description

Image Image The input gray-scale image (2D array containing
image pixel values in the range of [0, 1])

σ Integer The standard deviation of the Gaussian filter. It is
randomly initialised in the range of {1, 2, 3}

o1, o2 Integer The order of the Gaussian derivatives. They are
randomly initialised in the range of {0, 1, 2}

θ Float The orientation of the Gabor filter. It is in the range
of [0, 7π/8] with a step of π/8 [3]

f Float The frequency of the Gabor filter. It equals to
π

2
√

2
v ,

where v is an integer in the range of {0, 1, 2, 3, 4}
[3]

n1, n2 Float The parameters for the W−Add and W−Sub func-
tions. They are randomly generated in the range of
[0, 1)

k1, k2 Integer The kernel size of the MaxP function. They are in
the range of {2, 4}

IV. EXPERIMENT DESIGN

In this section, the design of the experiments is described,

including benchmark datasets, benchmark methods, parameter

settings, and test process.

A. Benchmark Datasets

Twelve widely used image classification datasets are em-

ployed to examine the performance of the FGP approach. The

details of the datasets are listed in Table V. These datasets

represent different types of image classification tasks, i.e.,

facial expression classification (FEI 1 [43] and FEI 2 [43]),

face recognition (ORL [44]), texture classification (KTH [45]),

scene classification (FS [46]), digit recognition (MB [34],

MRD [34], MBR [34], and MBI [34]), and object classification

(Rectangle [34], RI [34] and Convex [34]). The images in

these datasets are gray-scale or converted to gray-scale images

to reduce the computational cost. The example images from

the 12 datasets are shown in Fig. 2–4. The main reason

for selecting these datasets is that they represent a wide

range of classification tasks or different challenges in image

classification, such as background change or additional noise.

These datasets are very suitable for evaluating the performance

of the proposed approach on different types of images. It is

noticeable that the MB, MRD, MBR, MBI, Rectangle, RI,

and Convex datasets are large datasets with 50000 images for

testing. Very few GP-based methods have been tested on these

datasets. In addition, the performance of the proposed FGP

approach has not been tested on the well-known large datasets

such as ImageNet due to the high computational cost.

The FEI 1 and FEI 2 datasets are facial expression classi-

fication tasks [43], containing facial images with smiling or

natural expressions sampled from 200 different people. The

ORL dataset [44] has 40 classes of different facial images and

each class only has 10 image, which is very small. The KTH

dataset [45] is a texture classification dataset, containing 810

images equally in 10 classes. The images are sampled on nine

different scales with three poses under four illumination con-

ditions, which indicates the difficulty of classification. The FS

dataset [46] includes 3859 natural scene images belonging to

13 classes, such as the scene of the forest, street, highway, and

coast, respectively. FS is a challenging task of understanding

the context of the complex scene.

 FEI_1 FEI_2 ORL

 KTH FS

Fig. 2. Example images from the FEI 1, FEI 2, ORL, KTH, and FS
benchmark datasets, respectively.

TABLE V
SUMMARY OF THE 12 BENCHMARK DATASETS

No. Dataset Image Size Training
Set Size

Test Set
Size

#Class

1 FEI 1 60×40 150 (75) 50 2
2 FEI 2 60×40 150 (75) 50 2
3 ORL 50×55 240 (6) 160 40
4 KTH 50×50 480 (48) 330 10
5 FS 55×55 1300 (100) 2559 13
6 MB 28×28 12000 50000 10
7 MRD 28×28 12000 50000 10
8 MBR 28×28 12000 50000 10
9 MBI 28×28 12000 50000 10
10 Rectangle 28×28 1200 50000 2
11 RI 28×28 12000 50000 2
12 Convex 28×28 8000 50000 2

 0 4 1 6 5 9 7 8

Fig. 3. Example images from the MB, MRD, MBR, and MBI benchmark
datasets, respectively. Each dataset has two example images and the corre-
sponding class labels (digits) are under these images.

 Rectangle RI Convex

Fig. 4. Example images from the Rectangle, RI and Convex benchmark
datasets, respectively. The first row shows the negative class, and the second
row shows the positive class.

The datasets 1-5 do not have public training and test sets so

that they are split using commonly used proportions, as shown

in Table V. In contrast, the MB, MRD, MBR, MBI, Rectangle,

RI, and Convex datasets [34] have separated training and test

sets 1, which can be directly used in experiments. The MB

dataset is a subset of the famous MNIST benchmark dataset.

1The training and test sets can be downloaded from
http://www.iro.umontreal.ca/ lisa/twiki/bin/view.cgi/Public/PublicDatasets

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 8

The training set of MB has 12000 images, and the test set has

50000 images. The MRD, MBR and MBI datasets are variants

of MB by adding additional factors of variations, including

rotation, random background and image background. MRD

contains digit images with rotation by an angle generated

uniformly between 0 and 2π. MBR has images with random

background, and MBI has images with adding random images

as their background. The MRD, MBR and MBI datasets are

more difficult than MB due to these additional variations. The

Rectangle, RI and Convex datasets are object classification.

Rectangle and RI have images with rectangle objects, and the

tasks are to recognise whether each rectangle in an image has

a larger width or length. RI is more difficult than Rectangle

due to an additional random background. The Convex dataset

has images with convex or non-convex, i.e., two classes.

B. Benchmark Methods

To show the effectiveness of the proposed FGP approach, a

large number of benchmark methods are used for comparisons.

Because the datasets 1-5 do not have public training and

test sets, we need to split them and run all the experiments

of the benchmark methods to make sure that the reported

classification results are on the same test sets. For the datasets

6-12, the results of many methods have been reported on

the same public test sets. These results can be directly used

for comparisons. Therefore, the benchmark methods on the

datasets 1-5 are different from those on the datasets 6-12.

On datasets 1-5, 13 different methods are used as bench-

mark methods. They are the EGP method [37], the IEGP

method [38], six commonly used classification algorithms

using raw pixels, three SVM methods using different pre-

extracted features, and two CNN-based methods with dif-

ferent architectures. The EGP and IEGP methods are able

to automatically learn features from images and evolve an

ensemble of classifiers for classification [37, 38]. The six com-

monly used classification algorithms are linear SVMs, KNN,

logistic regression (LR), RF, adaptive boosting (AdaBoost),

and extremely randomised trees (ERF). These methods use

the normalised raw pixel values of images as inputs to

train the classifiers. The three SVM methods are LBP+SVM,

HOG+SVM and SIFT+SVM [11], which use LBP, HOG,

or SIFT features as inputs of SVMs for classification. The

LBP, HOG and SIFT features are extracted by the methods

described in Table II. The final two benchmark methods are a

five-layer CNN (CNN-5) [2] and an eight-layer CNN (CNN-

8) [47]. CNNs are well known for image classification so that

it is necessary to compare FGP with CNNs.

On datasets 6-12, 20 existing methods are used as bench-

mark methods. These methods have been reported recently

or are representative methods for image classification. The

classification results of these 20 methods are collected from

the corresponding papers. These methods are SVM+RBF [34],

SVM+Poly [34], SAE-3 [33], DAE-b-3 [33], CAE-2 [33],

SPAE [48], RBM-3 [33], ScatNet-2 [31, 32], RandNet-2 [32],

PCANet-2 (softmax) [32], LDANet-2 [32], NNet [34], SAA-

3 [34], DBN-3 [34], FCCNN [29], FCCNN (with BT) [29],

SPCN [30], EvoCNN [49], EGP [37], and IEGP [38]. Most

of these methods are NN-based methods, which have been

introduced in Section II-B2. Note that in several methods,

including SVM+RBF, SVM+Poly, NNet, SAA-3, and DBN-3,

model selection has been conducted to find the best parameters

using a training set and a validation set. Then these methods

with the best parameters were trained using the training set

and tested on the test set. The EvoCNN method and the IEGP

method have achieved the best performance on some of these

benchmark datasets. The EvoCNN method is a deep learning

method, which uses an evolutionary algorithm to automatically

search for the best architectures of CNNs. The IEGP method is

an ensemble method for image classification, which includes

a number of difference classifiers.

C. Parameter Settings

The parameter settings for FGP are based on the commonly

used settings in the community of GP [50]. In FGP, the

maximum number of generations G is 50 and the population

size N is 500. The crossover rate Pc is 0.8, the mutation rate

Pm is 0.19, and the elitism rate Pe is 0.01. The selection

method is the tournament selection with size 7. The tree depth

is between 2-6 at the initialisation step, and the maximum tree

depth is 8. Note that in FGP, which is based on STGP, the

type constraint is more important than the depth constraint.

Therefore, a tree may have a depth of over eight. As a

new parameter, Nc, the number of individuals stored in the

Cache Table is set to 6 ∗N (N for the previous population

and 5 ∗ N for the best individuals at the past generations)

based on the assumption that 6∗N is efficient and effective. In

general, the value of Nc can be any number but a too big one

may lead to a long searching time in Cache Table, and a too

small one only stores very limited individuals, which makes

the Cache Table not very useful. Note that the parameter

settings for FGP are the same on the 12 different datasets

for generality, although performing parameter tuning for FGP

could further improve its performance on these datasets. The

analysis of the parameter settings for FGP is presented in the

supplementary materials due to the page limit.

The parameter settings for the six classification algorithms

SVM, KNN, LR, RF, AdaBoost, and ERF refer to [51, 52].

In KNN, the number of nearest neighbours is set to 1 [12]. In

SVM and LR, the penalty parameter C is set to 1 [51]. In RF,

ERF and AdaBoost, the number of trees is set to 500, and the

maximum tree depth is set to 100 [52]. In CNN-5 and CNN-8,

the commonly used ReLU function is used as the activation

function and softmax is used for classification [47]. To avoid

overfitting, dropout is added after the pooling layer and the

first fully connected layer with 0.25 and 0.5 probabilities,

respectively [53]. The maximum number of epochs is set to

500, and the batch size is set to 128, which is commonly used.

The implementation of FGP is based on the DEAP (Dis-

tributed Evolutionary Algorithm in Python) [54] package. The

implementations of the classification algorithms are based on

the scikit-learn [55] package and the implementations of CNNs

are based on Keras [47]. The experiments of FGP on each

dataset conduct 30 independent runs to avoid the experimental

bias, which follows the conventions of the EC communities.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 9

Each of the benchmark methods has been run 30 times on

datasets 1-5 to obtain the classification results.

D. Test Process

The test procedure of the best individual/tree found by FGP

is shown in Fig. 5. In the process, the training set and the

test set are used (note that only the training sets are employed

during the evolutionary process). The best FGP individual/tree

is used to transform the training and test images into features.

Then the transformed training and test sets are normalised

using the min-max normalisation method to scale the features

[56]. Note that the normalisation of the test set is based on the

minimal and maximum values of each feature in the training

set. The normalised training set is used to train a linear SVM

classifier. The trained classifier is tested on the normalised test

set to obtain the classification error rate.

Transformed
training set

Transformed
 test set

Test set

Training set
Min-max

normalisation

Min-max
normalisation

Best tree

Best tree

Train

Test

Linear SVM

Classifier
Classification

error rate

Fig. 5. The test procedure of the best individual/tree found by FGP on the
test set.

V. RESULTS AND DISCUSSIONS

In this section, the experimental results of FGP on the 12

benchmark datasets are analysed and compared with that of a

large number of benchmark methods.

A. Classification Results on Datasets 1-5

The classification results on datasets 1-5, i.e., FEI 1, FEI 2,

ORL, KTH, and FS, are listed in Table VI. The results

are the minimal classification error rate (Min), the average

classification error rate of 30 runs and the standard deviation

(Mean±St.dev). To show the significance of performance

improvement, the Wilcoxon rank-sum test with a 95% sig-

nificance interval is used to compare FGP with a benchmark

method. In Table VI, the symbols “+” and “–” indicate that

FGP achieves significantly better and worse results than the

compared method. The symbol “=” denotes that FGP achieves

similar results to the compared method. In Table VI, the

best error rate and the average error rate on each dataset are

highlighted in bold. The final row of each bock in the table

summaries the overall results of the significance test.

From Table VI, it can be found that FGP achieves sig-

nificantly better performance in 52 comparisons out of the

65 comparisons. More importantly, FGP achieves significantly

better or similar results than any of the 13 benchmark methods

on the ORL and KTH datasets, which are the face recognition

and texture classification tasks. On the FEI 1 and FEI 2

datasets, which are facial expression classification tasks, FGP

is significantly better than seven methods on FEI 1 and than

nine methods on FEI 2. On the ORL dataset, FGP not only

obtains the minimal error rate but also achieves the best mean

error rate among all the methods. The ORL dataset is a small

dataset with six training images per class. The results indicate

that FGP is more effective than IEGP when learning from a

small number of training images. On the KTH dataset, FGP

achieves the best minimal error rate and slightly worse mean

error rate (0.36% higher) than the best error rate obtained by

IEGP. On the FS dataset, which is a difficult dataset, FGP

achieves better results than any of the 13 benchmark methods

except for IEGP. IEGP is an ensemble method using multiple

classifiers for classification. Compared with IEGP, FGP only

uses one classifier so that its performance may be limited on

some difficult datasets. The experimental results show that

FGP is very effective for dealing with different types of image

classification tasks.

Compared with SVM, KNN, LR, RF, AdaBoost, and ERF,

which use raw pixels for classification, FGP is more effective

by automatically learning a number of high-level features

for classification of different datasets. The results show that

feature extraction is more important for texture and scene

classification since FGP achieves better results than any of

these methods on scene and texture datasets. Comparing the

results obtained by FGP with that by LBP+SVM, HOG+SVM

and SIFT+SVM, it is clear that the features learned by FGP are

more effective than the LBP, SIFT and HOG features for image

classification, especially for texture classification and scene

classification. This shows that automatically learning features

is more effective than manually extracting features for image

classification. Feature extraction methods often require domain

expertise, while feature learning methods do not. There are

two advantages: effectiveness and no domain knowledge re-

quirement, of FGP as a feature learning method in contrast to

traditional feature extraction methods. Compared with CNN-

5 and CNN-8, the FGP approach achieves comparable or

significantly better performance on the five datasets. Compared

with EGP and IEGP, which use ensembles to solve image

classification, FGP uses a single classifier but achieves similar

or slightly worse performance. As a result, FGP is an effective

approach to learning informative features for different types of

image classification tasks.

B. Classification Results on Datasets 6-12

On datasets 6-12, 20 baseline methods with published

results are used for comparisons. Note that some of the 20

methods have not been examined on the Rectangle, RI, and

Convex datasets so that there are 17 benchmark methods on

Rectangle, 16 benchmark methods on RI and 12 benchmark

methods on Convex. Table VII lists the classification error

rates (%) of FGP and 20 benchmark methods. Each column

of Table VII shows the results on one dataset and the minimal

error rate is highlighted in bold. The results of FGP, including

the minimal error rate (best), the mean error rate (mean)

and the standard deviation (std), are listed at the bottom of

Table VII. Since the benchmark methods only have the best

classification results, we compare the FGP approach with them

using the best error rate. The symbol “+” in the table denotes

that FGP is better than the compared method in terms of the

best error rate. The final row of Table VII summaries the

ranking results of FGP among all the methods on each dataset.

From Table VII, it can be found that FGP achieves a

smaller error rate than any of the benchmark methods on two

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 10

TABLE VI
CLASSIFICATION ERROR RATES (%) OBTAINED BY THE FGP APPROACH AND THE BENCHMARK METHODS ON DATASETS 1-5

FEI 1 FEI 2 ORL KTH FS

Methods Min Mean±St.dev Min Mean±St.dev Min Mean±St.dev Min Mean±St.dev Min Mean±St.dev

SVM 10.00 10.00±0.00+ 12.00 12.00±0.00+ 5.62 5.62±0.00+ 53.03 55.41±2.83+ 79.37 79.71±0.15+
KNN 68.00 68.00±0.00+ 92.00 92.00±0.00+ 5.62 5.62±0.00+ 65.76 65.76±0.00+ 75.65 75.65±0.00+
LR 8.00 8.00±0.00+ 12.00 12.00±0.00+ 6.25 6.25±0.00+ 51.21 51.21±0.00+ 76.51 76.51±0.00+
RF 2.00 2.93±1.01– 10.00 10.80±1.13+ 6.88 7.67±0.63+ 40.00 42.19±0.83+ 62.64 63.47±0.49+
AdaBoost 20.00 21.33±1.32+ 20.00 24.00±3.44+ 40.62 47.73±4.00+ 62.12 66.56±1.37+ 82.53 86.96±1.47+
ERF 6.00 6.73±0.98+ 8.00 9.40±0.93+ 2.50 3.29±0.59+ 38.48 40.17±0.86+ 62.06 62.85±0.36+
LBP+SVM 34.00 43.27±3.66+ 32.00 37.47±3.52+ 12.50 12.58±0.21+ 21.21 26.71±4.18+ 50.21 66.73±8.90+
HOG+SVM 4.00 4.00±0.00– 18.00 18.00±0.00+ 8.75 8.75±0.00+ 42.73 44.04±0.64+ 87.89 92.09±2.47+
SIFT+SVM 44.00 44.00±0.00+ 38.00 38.00±0.00+ 6.25 6.25±0.00+ 34.24 34.24±0.00+ 39.08 39.08±0.00+
CNN-5 2.00 4.60±1.30= 2.00 4.73±1.62– 3.12 4.71±1.06+ 14.24 17.44±1.87+ 49.86 51.97±1.16+
CNN-8 2.00 4.67±1.32= 4.00 9.07±1.87= 5.00 6.96±1.09+ 23.64 28.37±3.18+ 50.84 53.21±1.01+
EGP [37] 0.00 3.80±2.02= 0.00 1.93±1.67– 0.62 2.56±1.24+ 12.12 22.47±5.08+ 32.83 38.93±2.87+
IEGP [38] 0.00 3.33±2.59– 0.00 3.79±3.73– 0.00 1.71±0.98= 1.51 3.57±5.08= 7.46 10.37±1.50–
FGP 2.00 5.53±2.67 4.00 8.67±3.36 0.00 1.37±1.04 1.21 3.93±1.13 25.52 29.41±1.74

Overall 7+, 3=, 3– 9+, 1=, 3– 12+, 1= 12+, 1= 12+, 1–

TABLE VII
CLASSIFICATION ERROR RATES (%) OF FGP AND BENCHMARK METHODS ON DATASETS 6-12

Methods MB MRD MBR MBI Rectangle RI Convex

SVM+RBF [34] 3.03(+) 11.11(+) 14.58(+) 22.61(+) 2.15 (+) 24.04(+) 19.13(+)
SVM+Poly [34] 3.69(+) 15.42(+) 16.62(+) 24.01(+) 2.15(+) 24.05(+) 19.82(+)
SAE-3 [33] 3.46(+) 10.30(+) 11.28(+) 23.00(+) 2.14(+) 24.05(+) –
DAE-b-3 [33] 2.84(+) 9.53(+) 10.30(+) 16.68(+) 1.99(+) 21.59(+) –
CAE-2 [33] 2.48(+) 9.66(+) 10.90(+) 15.50(+) 1.21(+) 21.54(+) –
SPAE [48] 3.32(+) 10.26(+) 9.01(+) 13.24(+) – – –
RBM-3 [33] 3.11(+) 10.30(+) 6.73(+) 16.31(+) 2.60(+) 22.50(+) –
ScatNet-2 [31, 32] 1.27(+) 7.48(+) 12.30(+) 18.40(+) 0.01(+) 8.02(+) 6.50(+)
RandNet-2 [32] 1.25(+) 8.47(+) 13.47(+) 11.65(+) 0.09(+) 17.00(+) 5.45(+)
PCANet-2 (softmax) [32] 1.40(+) 8.52(+) 6.85(+) 11.55(+) 0.49(+) 13.39(+) 4.19(+)
LDANet-2 [32] 1.05 7.52(+) 6.81(+) 12.42(+) 0.14(+) 16.20(+) 7.22(+)
NNet [34] 4.69(+) 18.11(+) 20.04(+) 27.41(+) 7.16(+) 33.20(+) 32.25(+)
SAA-3 [34] 3.46(+) 10.30(+) 11.28(+) 23.00(+) 2.41(+) 24.05(+) 18.41(+)
DBN-3 [34] 3.11(+) 10.30(+) 6.73(+) 16.31(+) 2.60(+) 22.50(+) 18.63(+)
FCCNN [29] 2.43(+) 8.91(+) 6.45 13.23(+) – – –
FCCNN (with BT) [29] 2.68(+) 9.59(+) 6.97(+) 10.80(+) – – –
SPCN [30] 1.82(+) 9.81(+) 5.84 9.55(+) 0.19(+) 10.60(+) –
EvoCNN (best) [49] 1.18 5.22 2.80 4.53 0.01(+) 5.03 4.82(+)
EGP (best) [37] 2.81(+) – – – 0.09(+) – 6.03(+)
IEGP (best) [38] 1.18 5.72 6.41 10.59(+) 0.00 5.12 1.74(+)
FGP (best) 1.18 7.37 6.54 7.48 0.00 6.10 1.54

FGP (mean) 1.30 8.44 7.34 10.35 0.12 7.34 1.84
FGP (std) 0.06 0.6 0.42 1.41 0.11 0.61 0.19

Rank 2/21 3/20 5/20 2/20 1/18 3/17 1/13

datasets, i.e., Rectangle and Convex. Note that these datasets

have been used by many effective methods (such as the deep

learning method EvoCNN and the ensemble method IEGP)

so that even 1% improvement in error rate is very difficult

to achieve. On MB, the FGP approach achieves 1.18% error

rate, which is better than any of the 20 benchmark methods

except for LDANet-2. The LDANet-2 method achieves 1.05%

error rate on MB, which is slightly better than FGP’s 1.18%

error rate. Although FGP is worse than LDANet-2 on MB, it

is better than LDANet-2 on the other six datasets. The MRD,

MBR and MBI datasets are three variants of MB obtained by

adding additional factors to make it more difficult. On MRD,

FGP achieves an error rate of 7.37%, which is better than 17

benchmark methods and worse than EvoCNN and IEGP. On

MBR, FGP ranks fifth among all the benchmark methods. On

MBI, FGP achieves an error rate of 7.48%, which is better than

19 methods and only worse than EvoCNN. On the Rectangle

and Convex datasets, FGP achieves better results than any of

the benchmark methods. It is noticeable that FGP finds the

perfect solution on Rectangle, which the CNN-based or NN-

based methods such as SPCN, NNet, SAE-3, and EvoCNN are

not able to find. RI is an extension of the Rectangle dataset

and it is more difficult. On RI, most methods perform worse

with respect to Rectangle, e.g., LDANet-2 obtains 16.20%

error rate, SPCN obtains 10.60% error rate, and NNet obtains

33.20% error rate. FGP obtains an error rate of 6.10%. On the

Convex dataset, FGP achieves the best error rate of 1.54%,

which is better than that of any benchmark method.

Compared with EvoCNN, which is a state-of-the-art deep

learning algorithm, FGP achieves better or the same error rates

on the MB, Rectangle and Convex datasets. FGP is a non-

neural network-based algorithm, while EvoCNN is a CNN-

based algorithm, where an evolutionary algorithm is used to

search for the best architecture. EvoCNN was designed to find

a more complex CNN-based solution for image classification

so that it can achieve better performance on the other four

difficult datasets. Compared with EvoCNN, FGP has a smaller

search space and can find simpler solutions with several image-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 11

related operators. These advantages enable FGP to be an

alternative to effective feature learning.

Compared with IEGP, which is an effective ensemble

method, FGP achieves better or the same performance on

four datasets and worse performance on three datasets. FGP

only uses a single classifier for classification, while IEGP

constructs an ensemble of accurate and diverse classifiers

for classification. The results confirm the effectiveness of

the features learned by FGP, since the latter can achieve

comparable performance even if it uses a single classifier

instead of an ensemble. Compared with IEGP, FGP is much

faster in training and testing, as discussed in the supplementary

materials. Besides, the solutions evolved by FGP are easy to

explain, while the solutions of IEGP include a number of

classifiers and are difficult to explain.

The comparisons demonstrate that FGP achieves results that

are better or comparable to the 20 existing effective algorithms

for object classification. Compared with the state-of-the-art

deep learning and ensemble methods, FGP achieves better

or similar results on several datasets. These results indicates

that the features learned by FGP are effective for image

classification. FGP has a flexible program structure and a

function set including many image-related operators, which

enables it to various types and numbers of effective features

for image classification.

VI. FURTHER ANALYSIS

This section further analyses the FGP approach to provide

insights on why it achieves better results. First, the evolved

example programs/solutions of FGP are analysed to under-

stand what features are learned. Second, the datasets with the

learned features are visualised and compared with the original

raw pixels. This provides insights on how the hidden structures

of the datasets are changed by the solutions of FGP.

A. Evolved Programs/Solutions

1) An Example Program on FEI 1: An example program

evolved by FGP on the FEI 1 dataset is visualised in Fig. 6. To

show how the program extracts features, two example images

from the natural and smile classes are used for visualisation,

as shown in Fig. 7. The example program has filtering and

pooling functions to describe the features from the input

image. The edge filters, i.e., SobelY and GauD, are used

as nodes in the two branches of the example program. These

operators can extract edges from the images before applying

the pooling operators. The two example images only have

a difference in facial expressions. From Fig. 7, it is clear

that using different filters can obtain informative features that

enlarge the difference between classes. Finally, the example

program with 24 nodes produces 750 features from an input

60 × 40 image, i.e., 600 features by the left branch and 150

features by the right branch.

2) Example Programs on Rectangle: Three example pro-

grams of FGP on the Rectangle dataset are visualised in

Fig. 8. The three programs achieve 100% accuracy on both

the training and test sets, respectively. In contrast to the

example program in Fig. 6, which describes features using

Image

GauD

MaxP

Min

MaxP

SobelY

FeaCon2

Nodes: 24

Features: 750

2 2

W-Add

Image 0.107 Image 0.631

W-Add

Image 0.988 Image 0.226

4 4

2 3 4

Fig. 6. Example program evolved by FGP on the FEI 1 dataset. It achieves
98% accuracy on both the training and test sets.

* 0.988 + * 0.226 * 0.988 + * 0.226

* 0.107 + * 0.631 * 0.107 + * 0.631

Fig. 7. Features produced by the example program in Fig. 6 on two images
from different classes.

filtering and pooling functions, the three example programs

generate features using feature extraction, filtering and pooling

functions. The three example programs extract SIFT and

LBP features from the input image or the images after the

filtering functions such as Med, LoG1, Gau, and LoG2.

Since the Rectangle dataset has images with rotation and scale

variations, the features that are invariant to these variations

are more discriminative than the other types of features.

Therefore, the LBP and SIFT features are extracted using the

example programs. It is noticeable that the LBP and SIFT
functions/nodes in the three example programs have different

child nodes, which indicate that each LBP or SIFT function

extracts different features.

By analysing the example programs on FEI 1 and Rectan-

gle, it is clear what types of features can be extracted by FGP

and how the features are extracted. Owning to the flexible

program structure and the new function set, FGP evolves

programs that are able to extract various numbers and types

of features for effective classification. Moreover, FGP can find

multiple optimal solutions of variable depths for a task.

B. Data Visualisation

A popular visualisation method, t-distributed stochastic

neighbour embedding (t-SNE) [57], is employed to visualise

the features learned by FGP. The t-SNE method is a nonlinear

dimension reduction technique by mapping high-dimensional

data into two- or three-dimensional data. The resulting low-

dimensional data can be easily visualised in a scatter plot,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 12

LBP-F

Image

LBP

W-Sub

Root2

SIFT

MaxP

Image

SIFT

HOG-F

Root3

LBP

2 2

Image

Med

LBP

Image

Root2

Image 0.626 Image 0.478

LBPSIFT

Image

Root2

MaxP

2 2
LBP-F

Image

LoG2

Image

SIFT

Gau

Root3

LBP

Image

LoG1

LBP

Image

2

Example Program 1 Example Program 2 Example Program 3

Nodes: 23

Features: 433

Nodes: 9

Features: 187

Nodes: 11

Features: 246

Fig. 8. Example programs evolved by FGP on the Rectangle dataset. They achieve 100% accuracy on both the training and test sets. The three programs
learn 433, 187 and 246 features, respectively. Meanwhile, their tree sizes (the number of nodes) are 23, 9 and 11, respectively.

which shows how well the similarities within each class is

preserved. Compared with other visualisation methods, t-SNE

produces better visualisation results [57].

Three large datasets, i.e., MB, MBI and Rectangle, are

used to run the experiments for visualisation. To reduce the

computational cost, each experiment randomly selects 5,000

images from each dataset for visualisation. To show how

the hidden structure of the data is changed by the FGP

program, the original data are visualised for comparisons. The

comparisons with the other features: LBP, HOG and SIFT

features, are shown in the supplementary materials due to the

page limit. The visualisation results are plotted in a scatter, and

the class label of each point is used to give a specific colour

to the point in the plot. The parameter settings for t-SNE are

the same as those in [57].

(a) Original data (MB) (b) Learned features by FGP

Fig. 9. The visualisation results of the ten classes from the MB dataset (each
colour represents one class). The left figure shows the original subset of MB
with raw pixels. The right figure shows the transformed subset of MB with
the learned features by FGP.

(a) Original data (MBI) (b) Learned features by FGP

Fig. 10. The visualisation results of the ten classes from the MBI dataset
(each colour represents one class). The left figure shows the original subset of
MBI with raw pixels. The right figure shows the transformed subset of MBI
with the learned features by FGP.

Fig. 9 shows that the ten classes of the original MB data

and the transformed MB data with the learned features by FGP

are well clustered after 1000 iterations using t-SNE. In Fig.

9(a), there are still some points being clustered into wrong

classes as each cluster of points contains other points with

different colours. In contrast, Fig. 9(b) shows clearer clusters

of the data transformed by an example program of FGP. This

figure shows that fewer points have been clustered into wrong

classes, and each cluster is clearer than that in Fig. 9(a). The

visualisation results of the original MBI data (Fig. 10(a)) show

a high mixture of different classes as it is very difficult to

distinguish a cluster from the scatter plot. The reason is that

the images of MBI are noisy, which makes the visualisation of

MBI more difficult than that of MB. The visualisation of the

transformed MBI data (Fig. 10(b)) has a clearer plot than that

of the original data. It can be observed that several clusters of

points exist in Fig. 9 even some points are not well clustered.

Comparing the visualisation results in Fig. 9 with the results

in Fig. 10, it is obvious that the hidden structure of the MBI

data is more complex than that of the MB data so that MBI

is more difficult than MB. The results reveal that the evolved

programs of FGP transform the original data into a space that

the new data can be easily clustered by t-SNE, and the hidden

structure can be well captured.

The visualisation of the Rectangle dataset is simpler than

that of MB and MBI, as Rectangle only has two classes.

Fig. 11 shows the visualisation results of the original data

and the learned features by FGP using three different evolved

programs, respectively. Fig. 11(a) has a clear scatter plot,

where the two classes are shown in two different colours.

However, it is obvious that many points are clustered into the

wrong class in Fig. 11(a). The scatter plots are clearer in Fig.

11(b)-(d) than that in Fig. 11(a). It is noticeable that all the

points are clustered into the correct classes by t-SNE using the

transformed data (1-3). The visualisation results confirm the

search ability and superiority of FGP on finding the optimal

solutions to transform the data into a new feature space where

the new data can be easily classified.

VII. CONCLUSIONS

The goal of this paper was to develop a new GP-based

approach with image-related operators to feature learning for

different types of image classification tasks. This goal has

been successfully achieved by developing the FGP approach

with a flexible program structure, a new function set and a

new terminal set, and examining it on 12 different image

classification datasets of varying difficulty. The proposed FGP

approach can evolve solutions of variable depths for a target

task. The solutions of FGP can produce various numbers and

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 13

(a) Original data (Rectangle) (b) Learned features by FGP (c) Learned features by FGP (d) Learned features by FGP

Fig. 11. The visualisation results of the Rectangle dataset (each colour represents one class). The left figure shows the original subset of Rectangle with raw
pixels. The other three figures show the transformed subsets of Rectangle with the learned features by FGP using the example programs in Fig. 8, respectively.

types of features from raw images. The experimental results

showed that FGP achieved significantly better performance

than the 12 commonly used methods on five different types

of image classification datasets. Furthermore, the performance

of FGP has been examined on seven large datasets, including

MNIST variants. The experimental results showed that FGP

achieved better classification performance than the existing

methods to which it has been compared. To conclude, FGP

is an effective and promising approach to feature learning for

different types of image classification tasks.

In addition to the encouraging results achieved by FGP,

further analysis provided more insights on why it achieves

good performance. The solutions found by FGP can be easily

visualised as trees to show how and what features are ex-

tracted. The visualisation technique, t-SNE, was employed to

further understand the features learned by FGP in comparison

to raw pixel values. The results revealed that the FGP solutions

transform raw pixel values of images into a new feature space

so that each class can be effectively distinguished.

The FGP approach is an example of showing the potential of

GP-based methods for feature learning in image classification.

In the future, the scalability of GP-based methods for large-

scale datasets will be investigated. To achieve this, other effec-

tive approaches, such as surrogate models, may be needed to

improve the computational cost of GP on large-scale datasets.

REFERENCES

[1] A. R. Burks and W. F. Punch, “Genetic programming for tuberculosis
screening from raw x-ray images,” in Proc. GECCO. ACM, 2018, pp.
1214–1221.

[2] L. Shao, L. Liu, and X. Li, “Feature learning for image classification via
multiobjective genetic programming,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 25, no. 7, pp. 1359–1371, 2014.
[3] C. Liu and H. Wechsler, “Gabor feature based classification using the

enhanced fisher linear discriminant model for face recognition,” IEEE

Trans. Image Process., vol. 11, no. 4, pp. 467–476, 2002.
[4] Y. Bi, B. Xue, and M. Zhang, “A survey on genetic programming to

image analysis,” J. Zhengzhou Uni. (Eng. Sci.), vol. 39, no. 06, pp. 3–
13, 2018.

[5] W. A. Albukhanajer, J. A. Briffa, and Y. Jin, “Evolutionary multiob-
jective image feature extraction in the presence of noise,” IEEE Trans.

Cybern., vol. 45, no. 9, pp. 1757–1768, 2015.
[6] A. I. Awad and M. Hassaballah, “Image feature detectors and descrip-

tors,” Stud. Comput. Intell., Springer International Publishing, Cham.
2016.

[7] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987,
2002.

[8] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. IEEE CVPR, vol. 1, 2005, pp. 886–893.

[9] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[10] L. Nanni, S. Ghidoni, and S. Brahnam, “Handcrafted vs. non-handcrafted
features for computer vision classification,” Pattern Recognit., vol. 71,
pp. 158–172, 2017.

[11] Y. Bi, B. Xue, and M. Zhang, “A gaussian filter-based feature learning
approach using genetic programming to image classification,” in Proc.

Austra. Joint Conf. Art. Intell. Springer, 2018, pp. 251–257.
[12] H. Al-Sahaf, M. Zhang, A. Al-Sahaf, and M. Johnston, “Keypoints de-

tection and feature extraction: A dynamic genetic programming approach
for evolving rotation-invariant texture image descriptors,” IEEE Trans.

Evol. Comput., vol. 21, no. 6, pp. 825 – 844, 2017.
[13] J. R. Koza, Genetic Programming: On the Programming of Computers

by Means of Natural Selection. MIT press, Cambridge, 1992.
[14] A. Agapitos, R. Loughran, M. Nicolau, S. Lucas, M. O’Neill, and

A. Brabazon, “A survey of statistical machine learning elements in
genetic programming,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp.
1029–1048, 2019.

[15] K. Kim, R. B. McKay, and N. X. Hoai, “Recursion-based biases in
stochastic grammar model genetic programming,” IEEE Trans. Evol.

Comput., vol. 20, no. 1, pp. 81–95, 2016.
[16] Q. N. Huynh, S. Chand, H. K. Singh, and T. Ray, “Genetic programming

with mixed-integer linear programming-based library search,” IEEE

Trans. Evol. Comput., vol. 22, no. 5, pp. 733–747, 2018.
[17] H. Al-Sahaf, Y. Bi, Q. Chen, A. Lensen, Y. Mei, Y. Sun, B. Tran, B. Xue,

and M. Zhang, “A survey on evolutionary machine learning,” J. Roy. Soc.

New Zeal., vol. 49, no. 2, pp. 205–228, 2019.
[18] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic

programming. Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, 2008, (With contri-
butions by J. R. Koza).

[19] E. Kieffer, G. Danoy, M. R. Brust, P. Bouvry, and A. Nagih, “Tackling
large-scale and combinatorial bi-level problems with a genetic program-
ming hyper-heuristic,” IEEE Trans. Evol. Comput., pp. 1–13, 2019.

[20] Y. Bi, B. Xue, and M. Zhang, “An automatic feature extraction approach
to image classification using genetic programming,” in Proc. Int. Conf.

Appl. Eov. Comput., 2018, pp. 421–438.
[21] D. Atkins, K. Neshatian, and M. Zhang, “A domain independent

genetic programming approach to automatic feature extraction for image
classification,” in Proc. IEEE CEC, 2011, pp. 238–245.

[22] H. Al-Sahaf, A. Song, K. Neshatian, and M. Zhang, “Two-tier genetic
programming: Towards raw pixel-based image classification,” Expert

Syst. Appl., vol. 39, no. 16, pp. 12 291–12 301, 2012.
[23] M. Suganuma, D. Tsuchiya, S. Shirakawa, and T. Nagao, “Hierarchical

feature construction for image classification using genetic program-
ming,” in Proc. IEEE Sys. Man Cybern., 2016, pp. 001 423–001 428.

[24] A. Lensen, H. Al-Sahaf, M. Zhang, and B. Xue, “Genetic programming
for region detection, feature extraction, feature construction and classi-
fication in image data,” in Proc. EuroGP. Springer, 2016, pp. 51–67.

[25] A. Vedaldi and B. Fulkerson, “Vlfeat: An open and portable library of
computer vision algorithms,” in Proc. 18th ACM Int. Conf. Multimedia,
2010, pp. 1469–1472.

[26] O. Chapelle, P. Haffner, and V. N. Vapnik, “Support vector machines
for histogram-based image classification,” IEEE Trans. Neural Netw.,
vol. 10, no. 5, pp. 1055–1064, 1999.

[27] S. Sergyan, “Color histogram features based image classification in
content-based image retrieval systems,” in Proc. 6th Int. Sym. Appl.

Mach. Int. Inform. IEEE, 2008, pp. 221–224.
[28] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using

random forests and ferns,” in Proc. IEEE ICCV, 2007, pp. 1–8.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, MONTH YEAR 14

[29] G. Qian and L. Zhang, “A simple feedforward convolutional conceptor
neural network for classification,” Appl. Soft Comput., vol. 70, pp. 1034–
1041, 2018.

[30] H. Li and M. Gong, “Self-paced convolutional neural networks,” in Proc.

IJCAI, 2017, pp. 2110–2116.
[31] J. Bruna and S. Mallat, “Invariant scattering convolution networks,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1872–1886,
2013.

[32] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “Pcanet: A
simple deep learning baseline for image classification?” IEEE Trans.

Image Process., vol. 24, no. 12, pp. 5017–5032, 2015.
[33] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive

auto-encoders: Explicit invariance during feature extraction,” in Proc.

ICML. Omnipress, 2011, pp. 833–840.
[34] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,

“An empirical evaluation of deep architectures on problems with many
factors of variation,” in Proc. ICML. ACM, 2007, pp. 473–480.

[35] D. J. Montana, “Strongly typed genetic programming,” Evol. Comput.,
vol. 3, no. 2, pp. 199–230, 1995.

[36] H. Al-Sahaf, A. Al-Sahaf, B. Xue, M. Johnston, and M. Zhang,
“Automatically evolving rotation-invariant texture image descriptors by
genetic programming,” IEEE Trans. Evol. Comput., vol. 21, no. 1, pp.
83–101, 2017.

[37] Y. Bi, B. Xue, and M. Zhang, “An automated ensemble learning
framework using genetic programming for image classification,” in Proc.

GECCO. ACM, 2019, pp. 365–373.
[38] ——, “Genetic programming with a new representation to automatically

learn features and evolve ensembles for image classification,” IEEE

Trans. Cybern., 2020. DOI: 10.1109/TCYB.2020.2964566.
[39] L. Liu, L. Shao, X. Li, and K. Lu, “Learning spatio-temporal represen-

tations for action recognition: A genetic programming approach,” IEEE

Trans. Cybern., vol. 46, no. 1, pp. 158–170, 2016.
[40] Y. Bi, B. Xue, and M. Zhang, “Genetic programming for automatic

global and local feature extraction to image classification,” in Proc. IEEE

CEC, 2018, pp. 1–8.
[41] M. E. Roberts, “The effectiveness of cost based subtree caching mecha-

nisms in typed genetic programming for image segmentation,” in Proc.

Workshop Appl. Evol. Comput. Springer, 2003, pp. 444–454.
[42] L. Cai, J. Zhu, H. Zeng, J. Chen, C. Cai, and K.-K. Ma, “Hog-assisted

deep feature learning for pedestrian gender recognition,” J. Franklin

Inst., vol. 355, no. 4, pp. 1991–2008, 2018.
[43] C. E. Thomaz, “Fei face database,” online:

http://fei.edu.br/˜cet/facedatabase.html, 2012.
[44] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model

for human face identification,” in Proc. Sec. IEEE Workshop Appl.

Comput. Vis., 1994, pp. 138–142.
[45] P. Mallikarjuna, A. T. Targhi, M. Fritz, E. Hayman, B. Caputo, and J.-

O. Eklundh, “The kth-tips2 database,” Computational Vision and Active

Perception Laboratory, Stockholm, Sweden, pp. 1–10, 2006.
[46] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning

natural scene categories,” in Proc. IEEE CVPR, vol. 2, 2005, pp. 524–
531.

[47] F. Chollet et al., “Keras,” https://keras.io, 2015.
[48] T. Yu, C. Guo, L. Wang, S. Xiang, and C. Pan, “Self-paced autoencoder,”

IEEE Signal Proc. Let., vol. 25, no. 7, pp. 1054–1058, 2018.
[49] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, “Evolving deep convolutional

neural networks for image classification,” IEEE Trans. Evol. Comput.,
vol. 24, no. 2, pp. 1–14, 2019.

[50] M. Iqbal, B. Xue, H. Al-Sahaf, and M. Zhang, “Cross-domain reuse of
extracted knowledge in genetic programming for image classification,”
IEEE Trans. Evol. Comput., vol. 21, no. 4, pp. 569–587, 2017.

[51] S. Young, T. Abdou, and A. Bener, “Deep super learner: A deep
ensemble for classification problems,” in Proc. 31st Can. Conf. Art.

Intell. Springer, 2018, pp. 84–95.
[52] Z.-H. Zhou and J. Feng, “Deep forest,” Natl. Sci. Rev., vol. 6, no. 1, pp.

74–86, 2018.
[53] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, 2014.

[54] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné, “DEAP: Evolutionary algorithms made easy,” J. Mach. Learn.

Res., vol. 13, no. Jul, pp. 2171–2175, 2012.
[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res.,
vol. 12, pp. 2825–2830, Oct 2011.

[56] R. Herbrich and T. Graepel, “A pac-bayesian margin bound for linear
classifiers,” IEEE Trans. Inf. Theory, vol. 48, no. 12, pp. 3140–3150,
2002.

[57] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” J. Mach.

Learn. Res., vol. 9, pp. 2579–2605, Nov 2008.

Ying Bi (S’17) is pursuing the Ph.D degree in com-
puter science with the School of Engineering and
Computer Science, Victoria University of Wellington
(VUW), Wellington, New Zealand. She has over
20 journal and conference papers and her current
research interests include evolutionary computation,
computer vision and machine learning. She is a
member of the IEEE Computational Intelligence
Society and has been severing as reviewers for top
international journals and conferences in this field.

Bing Xue (M’10) received the B.Sc. degree from
the Henan University of Economics and Law,
Zhengzhou, China, in 2007, the M.Sc. degree in
management from Shenzhen University, Shenzhen,
China, in 2010, and the PhD degree in computer
science in 2014 at Victoria University of Wellington
(VUW), New Zealand. She is currently an Associate
Professor and Program Director of Science in School
of Engineering and Computer Science at VUW. She
has over 200 papers published in fully refereed inter-
national journals and conferences and her research

focuses mainly on evolutionary computation, machine learning, classification,
symbolic regression, feature selection, evolving deep neural networks, image
analysis, transfer learning, multi-objective machine learning. Dr Xue is
currently the Chair of IEEE Computational Intelligence Society (CIS) Data
Mining and Big Data Analytics Technical Committee, and Vice-Chair of IEEE
Task Force on Evolutionary Feature Selection and Construction, Vice-Chair of
IEEE CIS Task Force on Transfer Learning & Transfer Optimization, and of
IEEE CIS Task Force on Evolutionary Deep Learning and Applications. She is
also served as associate editor of several international journals, such as IEEE
Computational Intelligence Magazine and IEEE Transactions of Evolutionary
Computation.

Mengjie Zhang (M’04-SM’10-F’19) received the
B.E. and M.E. degrees from Artificial Intelligence
Re- search Center, Agricultural University of Hebei,
Hebei, China, and the Ph.D. degree in computer
science from RMIT University, Melbourne, VIC,
Australia, in 1989, 1992, and 2000, respectively. He
is currently Professor of Computer Science, Head
of the Evolutionary Computation Research Group,
and the Associate Dean (Research and Innovation)
in the Faculty of Engineering. His current research
interests include evolutionary computation, particu-

larly genetic programming, particle swarm optimization, and learning classifier
systems with application areas of image analysis, multi-objective optimization,
feature selection and reduction, job shop scheduling, and transfer learning. He
has published over 500 research papers in refereed international journals and
conferences. Prof. Zhang is a Fellow of Royal Society of New Zealand and
have been a Panel member of the Marsden Fund (New Zealand Government
Funding), a Fellow of IEEE, and a member of ACM. He was the chair of
the IEEE CIS Intelligent Systems and Applications Technical Committee,
and chair for the IEEE CIS Emergent Technologies Technical Committee
and the Evolutionary Computation Technical Committee, and a member of
the IEEE CIS Award Committee. He is a vice-chair of the IEEE CIS Task
Force on Evolutionary Feature Selection and Construction, a vice-chair of
the Task Force on Evolutionary Computer Vision and Image Processing, and
the founding chair of the IEEE Computational Intelligence Chapter in New
Zealand. He is also a committee member of the IEEE NZ Central Section.

