
Genetic Quantum Algorithm and its Application to
Combinatorial Optimization Problem

0-7803-6375-2/00/$10.00 02000 IEEE. 1354

Kuk-Hyun Han
Dept. of Electrical Engineering, KAIST,

373- 1, Kusong-dong Yusong-gu
Taejon, 305-701, Republic of Korea

kh han (9 vivaldi . kais t .ac.kr

Abstract- This paper proposes a novel evolutionary
computing method called a genetic quantum algorithm
(GQA). GQA is based on the concept and principles of
quantum computing such as qubits and superposition of
states. Instead of binary, numeric, or symbolic represen-
tation, by adopting qubit chromosome as a representation
GQA can represent a linear superposition of solutions due
to its probabilistic representation. As genetic operators,
quantum gates are employed for the search of the best
solution. Rapid convergence and good global search ca-
pability characterize the performance of GQA. The effec-
tiveness and the applicability of GQA are demonstrated
by experimental results on the knapsack problem, which
is a well-known combinatorial optimization problem. The
results show that GQA is superior to other genetic algo-
rithms using penalty functions, repair methods, and de-
coders.

1 Introduction

Many efforts on quantum computers have progressed actively
since the early 1990’s because these computers were shown
to be more powerful than classical computers on various spe-
cialized problems. But if there is no quantum algorithm that
solves practical problems, quantum computer hardware may
be useless. It could be considered as a computer without op-
erating system.

Although there would be significant benefit from new
quantum algorithms that could solve computational problems
faster than classical algorithms, to date, only a few quantum
algorithms are known. Nevertheless, quantum computing is
attracting serious attention, since its superiority was demon-
strated by a few quantum algorithms such as Shor’s quantum
factoring algorithm [l, 21 and Grover’s database search al-
gorithm [3, 41. Shor’s algorithm finds the prime factors of
an n-digit number in polynomial-time, while the best-known
classical factoring algorithms require time o 2n’ log(n)’ .
Grover’s database search algorithm can find an item in an un-
sorted list of n items in 0 (6) steps, while classical algo-
rithms require O(n).

Research on merging evolutionary computing and quan-
tum computing has been started by some researchers since
late 1990’s. They can be classified into two fields. One con-

(1

Jong-Hwan Kim
Dept. of Electrical Engineering, KAIST,

373- 1, Kusong-dong Yusong-gu
Taejon, 305-701, Republic of Korea

johkim @ vivaldi .kaist.ac.kr

centrates on generating new quantum algorithms using au-
tomatic programming techniques such as genetic program-
ming [SI. The absence of new quantum algorithms motivated
this work. The other concentrates on quantum-inspired evo-
lutionary computing for a classical computer [6], a branch of
study on evolutionary computing that is characterized by cer-
tain principles of quantum mechanics such as standing waves,
interference, coherence, etc.

This paper offers a novel evolutionary computing algo-
rithm called a genetic quantum algorithm (GQA). GQA is
characterized by principles of quantum computing including
concepts of qubits and superposition of states. GQA uses a
qubit representation instead of binary, numeric, or symbolic
representations. GQA can imitate parallel computation in
classical computers.

This paper is organized as follows. Section 2 describes
a novel evolutionary computing algorithm, GQA. Section 3
contains a description of the experiment with GAS and GQAs
for knapsack problems for comparison purpose. Section 4
summarizes and analyzes the experimental results. Conclud-
ing remarks follow in Section 5 .

2 Genetic Quantum Algorithm (GQA)

GQA is based on the concepts of qubits and superposition of
states of quantum mechanics. The smallest unit of informa-
tion stored in a two-state quantum computer is called a quan-
tum bit or qubit [7]. A qubit may be in the ‘1’ state, in the ‘0’
state, or in any superposition of the two. The state of a qubit
can be represented as

where a and ,8 are complex numbers that specify the proba-
bility amplitudes of the corresponding states. Ia12 gives the
probability that the qubit will be found in ‘0’ state and]PI2
gives the probability that the qubit will be found in the ‘1’
state. Normalization of the state to unity guarantees

If there is a system of m-qubits, the system can represent 2m
states at the same time. However, in the act of observing a
quantum state, it collapses to a single state [8].

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 02:14 from IEEE Xplore. Restrictions apply.

2.1 Representation

It is possible to use a number of different representations to

putation. The classical representations can be broadly classi-
fied as: binary, numeric, and symbolic [9]. GQA uses a novel
representation that is based on the concept of qubits. One
qubit is defined with a pair of complex numbers, (a, @), as

store the best solution among P(t)
while (not termination-condition) do
begin

encode the solutions onto chromosomes in evolutionary com- t t t + l
make P(t) by observing Q (t - 1) states
evaluate P(t)
update Q(t) using quantum gates U (t)
store the best solution among P(t)

end
end

which is chzacterized by (1) and (2) . And an m-qubits rep-
resentation is defined as

GQA is a probabilistic algorithm which iS SimikU to a ge-
netic algorithm. GQA maintains a population of qubit chro-
mosomes, Q(t) = {qt, q:, . , qk} at generation t, where
n is the size of population, and q$ is a qubit chromosome
defined as

(3)

where laiI2 + lfliI2 = 1, i = 1,2, . . . , m. This representation
has the advantage that it is able to represent any superposition

[;; I ;: I ::: I ;;] ’
(6)

of states. If there is, for instance, a three-qubits system with
three pairs of amplitudes such as where m is the number of qubits, i.e., the string length of the

qubit chromosome, and j = 1,2, . , n. . . .
1 In the step of ‘initialize Q(t),’ ai and pit, i = 1,2, - - , m,

of all q$, j = 1,2 , . . . ,n , in Q(t) are initialized with -&.
It means that one qubit chromosome, q$ it=^ represents the
linear superposition of all possible statevwith the same prob-
abilitv:

(4) [g I ;::I $ 1 ’
the state of the system can be represented as

The above result means that the probabilities to represent the
state (OOO), IOOl), IlOO), and 1101) are i, $, i, and i, re-
spectively. By consequence, the three-qubits system of (4)
has four states information at the same time.

Evolutionary computing with the qubit representation has
a better characteristic of diversity than classical approaches,
since it can represent superposition of states. Only one qubit
chromosome such as (4) is enough to represent four states, but
in classical representation at least four chromosomes, (000),
(OOl), (loo), and (101) are needed. Convergence can be
also obtained with the qubit representation. As /ail2 or I & I 2
approaches to 1 or 0, the qubit chromosome converges to a
single state and the property of diversity disappears gradu-
ally. That is, the qubit representation is able to possess the
two characteristics of exploration and exploitation, simulta-
neously.

2.2 GQA

The structure of GQA is described in the following.

procedure GQA
begin

t t o
initialize Q (t)
make P(t) by observing &(t) states
evaluate P(t)

om

where Sk is the k-th state represented by the binary string
(q z z . . -zm), where zi, i = 1,2, -. e , m, is either 0 or 1.
The next step makes a set of binary solutions, P(t), by ob-
serving Q(t) states, where P(t) = {xi, xi, - - - , xk} at gen-
eration t. One binary solution, xi, j = 1,2, .. . ,n, is a
binary string of the length m, and is formed by selecting
each bit using the probability of qubit, either]ail2 or I @ 1 2 ,
i = 1,2, . , m, of qi. Each solution xi is evaluated to give
some measure of its fitness. The initial best solution is then
selected and stored among the binary solutions, P(t).

In the while loop, one more step, ‘update Q(t),’ is in-
cluded to have fitter states of the qubit chromosomes. A set of
binary solutions, P(t) , is formed by observing Q(t - 1) states
as with the procedure described before, and each binary so-
lution is evaluated to give the fitness value. In the next step,
‘update Q(t).’ a set of qubit chromosomes Q(t) is updated
by applying some appropriate quantum gates’ U (t) , which is
formed by using the binary solutions P(t) and the stored best
solution. The appropriate quantum gates can be designed in
compliance with practical problems. Rotation gates, for in-
stance, will be used for knapsack problems in the next sec-

lQuantuni gates are reversible gates and can be represented as unitary
operators acting on the qubit basis states: UtU = U U t , where Ut is the
hermitian adjoint of U. There are several quantum gates, such as NOT gate,
Controlled NOT gate, Rotation gate, Hadamard gate, etc.[7].

1355

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 02:14 from IEEE Xplore. Restrictions apply.

tion, such a$ based on repair methods, and algorithms based on decoders
[lo].

In all algorithms based on penalty functions, a binary
string of the length m represents a chromosome x to the prob-

(7) sin(8) cos(8) 1 ' cos(8) - sin(8) U (8) =

where 8 is a rotation angle. This step makes the qubit chromo-
somes converge to the fitter states. The best solution among
P(t) is selected in the next step, and if the solution is fitter
than the stored best solution, the stored solution is changed
by the new one. The binary solutions P(t) are discarded at
the end of the loop.

It should be noted that some genetic operators can be ap-
plied, such as mutation which creates new individuals by a
small change in a single individual, and crossover which cre-
ates new individuals by combining parts from two or more
individuals. Mutation and crossover can make the probability
of linear superposition of states change. But as GQA has di-
versity caused by the qubit representation, there is no need to
use the genetic operators. If the probabilities of mutation and
crossover are high, the performance of GQA can be decreased
notably.

In GQA, the population size, i.e., the number of qubit
chromosomes is kept the same all the time. This is caused by
conservation of qubits based on quantum computing. GQA
with the qubit representation can have better convergence
with diversity than conventional GAS which have fixed 0 and
1 information.

3 Experiment

The knapsack problem, a kind of combinatorial optimization
problem, is used to investigate the performance of GQA. The
knapsack problem can be described as selecting from among
various items those items which are most profitable, given
that the knapsack has limited capacity. The 0-1 knapsack
problem is described a$: given a set of m items and a knap-
sack, select a subset of the items so as to maximize the profit

m
f (4:

= C p i x i ,
i= 1

subject to
m

i= 1

where x = (X I . x m) , zi is 0 or 1, pi is the profit of item
i, zvi is the weight of item i, and C is the capacity of the
knapsack.

In this section, some conventional GA methods are de-
scribed to experiment with the 0-1 knapsack problem, and the
detailed algorithm of GQA for the knapsack problem follows.

lem. The profit f (x) of each string is determined as
m

f (x) = C p i x i - ~ e n (x) ,
i=l

where Pen(x) is a penalty function. There are many possible
strategies for assigning the penalty function [l 1, 121. Three
types of penalties are considered, such as logarithmic penalty,
linear penalty, and quadratic penalty:

Penl (x) = log, (1 + p (Ccl wixi - C)) ,
Penz(x) = p(Ccl w i z i - C) ,
P e n d x) = (p (ELl wixi - C)) , 2

where p is maxi=l ...m{ p i / w i } -

each string is determined as
In algorithms based on repair methods, the profit f (x) of

m

where x' is a repaired vector of the original vector x . Orig-
inal chromosomes are replaced with a 5% probability in the
experiment. The two repair algorithms considered here dif-
fer only in selection procedure, which chooses an item for
removal from the knapsack:

Rep1 (random repair): The selection procedure selects a ran-
dotn element from the knapsack.
RepfL (greedy repair): All items in the knapsack are sorted
in the decreasing order of their profit to weight ratios. The
selection procedure always chooses the last item for deletion.

A possible decoder for the knapsack problem is based on
an integer representation. Each chromosome is a vector of
m integers; the i-th component of the vector is an integer in
the range from 1 to m - i + 1. The ordinal representation
references a list L of items; a vector is decoded by selecting
appropriate item from the current list. The two algorithms
based on decoders considered here differ only in the proce-
dure of building a list L of items:

Decl (random decoding): The build procedure creates a list
L of items such that the order of items on the list corresponds
to the order of i t em in the input file which is random.
Decz (greedy decoding): The build procedure creates a list
L of items in the decreasing order of their profit to weight
ratios.

3.1 Conventional GA methods

Three types of conventional algorithms are described and
tested: algorithms based on penalty functions, algorithms

3.2 GQA for the knapsack problem

The algorithm of GQA for the knapsack problem is based
on the StruChiTe of GQA proposed and it contains a repair

1356

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 02:14 from IEEE Xplore. Restrictions apply.

algorithm. The algorithm can be written as follows:

.
O false

procedure GQA
begin

t t o
initialize Q(t)
make P(t) by observing Q(t) states
repair P(t)
evaluate P(t)
store the best solution b among P(t)
while (t < MAX-GEN) do
begin

t t t + l
make P(t) by observing Q(t - 1) states
repair P(t)
evaluate P(t)
update Q(t)
store the best solution b among P(t)

end
end

A qubit string of the length m represents a linear superposi-
tion of solutions to the problem as in (6). The length of a qubit
string is the same as the number of items. The i-th item can be
selected for the knapsack with probability I/3ilz or (1 - lail').
Thus, a binary string of the length m is formed from the qubit
string. For every bit in the binary string, we generate a ran-
dom number T from the range [0..1]; if r > laiI2, we set the
bit of the binary string. The binary string xf, j = 1,2, , n,
of P(t) represents a j-th solution to the problem. For nota-
tional simplicity, x is used instead of xf in the following. The
i-th item is selected for the knapsack iff xi = 1, where xi is
the i-th bit of x. The binary string x is determined as follows:

,
I 0 1 0 1 0 1 0 1 0 1

procedure make (x)
begin

i t 0
while (i < m) do
begin

i t i + l
if randomlo, 1) > Iai12
thenzi t 1
else xi t 0

end
end

The repair algorithm of GQA for the knapsack problem is
implemented as follows:

procedure repair (x)
begin

knapsack-overfilled t false

then knapsack-overfilled t true
while (knapsack-overfilled) do
begin

ifCE1 wixi > C

0 0 true
0 1 false
0 1 true
1 0 false
1 0 true
1 1 f a l se
1 1 true

0
0

0 . 0 5 ~
0.01T
0.025~
0 . 0 0 5 ~
0 . 0 2 5 ~

0
0
-1
-1
+1
$1
+1 -

0
0
+1
+1
-1
-1
-1

0
0
fl
fl
0
0
0 -

I :
0
0
f l
f l
f l -

Table 1: Lookup table of O i , where f (,) is the profit, s(ai@i)
is the sign of Bi , and bi and x i are the i-th bits of the best
solution b and the binary solution x, respectively.

select an i-th item from the knapsack
xi t 0
ifCL1 wixi <_ c
then knapsack-overfilled c false

end
while (not knapsack-overfilled) do
begin

select a j - th item from the knapsack
x j t 1
if CL1 wixi > C
then knapsack-overfilled t Vue

end
xj t 0

end

The profit of a binary solution x is evaluated by pixi ,
and it is used to find the best solution b after the update of qi,
j = 1,2, . . . , n. A qubit chromosome sj is updated by using
the rotation gate U (0) of (7) in this algorithm. The i-th qubit
value (ai, P i) is updated as

In this knapsack problem 0, is given as s(aipi)A&. The
parameters used are shown in Table 1. For example, if the
condition, f (x) 2 f (b), is satisfied and xi and bi are 1 and
0, respectively, we can set the value of At$ as 0 . 0 2 5 ~ and
s(aipi) as +1, -1, or 0 according to the condition of a& so
as to increase the probability of the state 11). The value of AOi
has an effect on the speed of convergence, but if it is too big,
the solutions may diverge or have a premature convergence to
a local optimum. The sign s(aipi) determines the direction
of convergence to a global optimum. The lookup table can be
used as a strategy for convergence. This update procedure
can be described as follows:

procedure update (9)
begin

i t 0

1357

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 02:14 from IEEE Xplore. Restrictions apply.

ll of
items

100

250

250

while (i < m) do
begin

i t i + l
determine Bi with the lookup table
obtain (ai, P f) as:

[ai = q e ,) [ai
end
q + q'

end

CGAs GQAs
Pen1 Pen2 Pen3 Repl Rep2 Decl Dec2 P 2 + R 1 GQA(1) GQA(10)

b. 557.7 581.4 566.0 561.1 560.2 514.7 511.0 582.2 597.5 612.5
profits m. 545.4 569.7 556.1 546.5 546.3 503.9 500.0 571.1 583.7 603.9

w. 535.1 562.6 551.1 537.3 536.6 496.3 493.3 562.3 562.5 592.7
t(sec/run) 1.329 1.333 1.323 1.142 1.151 3.510 10.51 1.360 0.054 0.382

b. 1391.9 1444.9 1480.3
profits m. 1382.1 1412.4 1467.1

W. 1364.8 1385.8 1443.8
t (s ec / run) - 3.292 0.141 1.380

b. 2744.2 2824.1 2860.0
profits m. 2720.8 2771.5 2841.3

W. 2699.2 2744.3 2812.5
t (s ec / run) - 6.532 0.324 3.994

The update procedure can be implemented in various meth-
ods with appropriate quantum gates. It depends on a given
problem.

4 Results

In all experiments strongly correlated sets of data were con-
sidered:

wi = uniformly random[l, 10)
pi = Wi + 5 ,

the average knapsack capacity was used:

i=l

and the data files were unsorted. The population size of the
eight conventional genetic algorithms (CGAs) was equal to
100. Probabilities of crossover and mutation were fixed: 0.65
and 0.05, respectively, as in [lo]. The population size of
GQA(1) was equal to 1, and the population size of GQA(10)
was equal to 10, this being the only difference between
GQA(1) and GQA(10). As a performance measure of the al-
gorithm we collected the best solution found within 500 gen-
erations over 25 runs, and we checked the elapsed time per

one run. A Pentium-III 500MHz was used, running Visual
C++ 6.0.

Table 2 shows the experimental results of the knapsack
problems with 100, 250, and 500 items. In the case of 100
items, GQA yielded superior results as compared to all the
other CGAs. The CGA designed by using a linear penalty
function and random repair algorithm outperformed all other
CGAs, but is behind GQA(1) as well as GQA(10) in perfor-
mance. The results show that GQA performs well in spite
of small size of population. Judging from the results, GQA
can search solutions near the optimum within a short time
as compared to CGAs. In the cases of 250 and 500 items, the
CGA that outperforms all the other CGAs was tested for com-
parison purpose with GQA. The experimental results again
demonstrate the superiority of GQA.

Figure 1 shows the progress of the mean of best prof-
its and the mean of average profits of population found by
GQA(l), GQA(lo), and CGA over 25 runs for 100,250, and
500 items. GQA performs better than CGA in terms of con-
vergence rate and final results. In the beginning of the plot-
ting of the best profits, GQA(1) shows a slower convergence
rate than GQA(10) and CGA due to its small population num-
ber. After 50 generations, GQA(10) and GQA(1) maintain a
nearly constant convergence rate, while CGA's convergence
rate reduces substantially. After 200 generations, even though
convergence rate of GQA reduces, GQAs show a faster con-
vergence rate than CGA due to its better global search ability.
GQAs' final results are larger than CGA's in 1000 genera-
tions. The tendency of convergence rate can be shown clearly
in the results of the mean of average profits of population.
In the beginning, convergence rates of all the algorithms in-
crease. But CGA maintains a nearly constant profit due to its
premature convergence immediately, while GQA approaches
towards the neighborhood of global optima with a constant

1358

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 02:14 from IEEE Xplore. Restrictions apply.

convergence rate. GQAs display no premature convergence
which is a common problem of CGAs until 1000 generations.

The experimental results demonstrate the effectiveness
and the applicability of GQA. Especially, Figure 1 shows the
excellent global search ability and the superiority of conver-
gence ability of GQA.

5 Conclusions

This paper proposed a novel evolutionary computing algo-
rithm, GQA with a quantum representation. GQA is based
on the principles of quantum computing such as concepts of
qubits and superposition of states. GQA can represent a lin-
ear superposition of states, and there is no need to include
many individuals. GQA has an excellent ability of global
search due to its diversity caused by the probabilistic repre-
sentation, and it can approach better solutions than CGA’s
in a short time. The knapsack problem, a kind of combinato-
rial optimization problcms, is used to discuss the performance
of GQA. It was showed that GQA’s convergence and global
search ability are superior to CGA’s. The experimental results
demonstrate the effectiveness and the applicability of GQA.

References

P. W. Shor, ”Quantum Computing,” Documenta
Mathematica, vol. Extra Volume ICM, pp. 467-
486, 1998, http://east.camel.math.ca/ EMIS/ jour-
nals/ DMJDMV/ xvol-icm/ 001 Shor.MAN.htm1.

P. W. Shor, ”Algorithms for Quanhim Computation:
Discrete Logarithms and Factoring,” in Proceedings of
the 35th Annual Syrnposiunz on Foundations of Com-
puter Science, pp. 124- 134, 1994.

L. K. Grover, ”A fast quantum mechanical algorithm for
database search,” in Proceedings of the 28th ACM Sym-
posium on Theory of Computing, pp. 212-219, 1996.

L. K. Grover, ”Quantum Mechanical Searching,” in Pro-
ceedings ofthe 1999 Congress on Evolutionary Compu-
tation, pp. 2255-2261. Jul 1999.

L. Spector, H. Bamum, H. J. Bemstein and N. Swamy,
”Finding a Better-than-Classical Quanhim AND/OR
Algorithtn using Genetic Programming,” in Proceed-
ings of the 1999 Congress on Evolutionary Computa-
tion, pp. 2239-2246, Jul 1999.

A. Narayanan and M. Moore, ”Quantum-inspired ge-
netic algorithms,” in Proceedings of IEEE International
Conference on Evolutionary Computation, pp. 6 1-66,
1996.

T. Hey, ”Quantum computing: an introduction,” Com-
puting & Control Engineering Journal, pp. 105-1 12,
Jun 1999.

[81 A. Narayanan, “Quantum computing for beginners,”
in Proceedings of the 1999 Congress on Evolutionary
Computation, pp. 223 1-2238, Jul 1999.

[9] R. Hinterding, ”Representation, Constraint Satisfaction
and the Knapsack Problem,” in Proceedings of the
1999 Congress on Evolutionary Computation, pp. 1286-
1292, Jul 1999.

[101 2. Michalewicz, Genetic Algorithms i Data Structures
= Evolution Programs, Springer-Verlag, 3rd, revised
and extended edition, 1999.

[l 11 J.-H. Kim and H. Myung, “Evolutionary Programming
Techniques for Constrained Optimization Problems,”
IEEE Transactions on Evolutionary Computation, Vol.

[121 X. Yao, Evolutionary Computation: Theory and Appli-

1, NO. 2, pp. 129-140, Jul 1997.

cations, World Scientific, Singapore, 1999.

1359

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 02:14 from IEEE Xplore. Restrictions apply.

http://east.camel.math.ca

Avoran m w

0 100 200 300 400 500 WO 700 BOO 900 1000
5301 " " " " "

(a) best profits (100 items)

I 5 4 0

1300 lmo-loo
(c) best profits (250 items)

2654

26110

(e) best profits (500 items)

- " , , , , , , , , ,

-; lb0 2;o 3bo 4b0 4 0 eo0 ,bo M O 9 L lcoo

(b) average profits (100 items)

=7 1250

0 IO0 200 300 400 500 600 700 800 WO I000
12001 ' " " ' '

(d) average profits (250 items)

1 2650

A W a g e o l C W

2500 ~~~~: 0 100 200 300 400 5oD 600 700 800 W O I000

(f) average profits (500 items)

Figure 1: Comparison between CGA and GQA on the knapsack problem. The vertical axis is the profit value of knapsack, and
the horizontal axis is the number of generations. (a), (c), (e) show the best profits, and (b), (d), (f) show the average profits.
Both were averaged over 25 runs.

1360

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 02:14 from IEEE Xplore. Restrictions apply.

