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Abstract- This paper proposes a novel evolutionary 
computing method called a genetic quantum algorithm 
(GQA). GQA is based on the concept and principles of 
quantum computing such as qubits and superposition of 
states. Instead of binary, numeric, or symbolic represen- 
tation, by adopting qubit chromosome as a representation 
GQA can represent a linear superposition of solutions due 
to its probabilistic representation. As genetic operators, 
quantum gates are employed for the search of the best 
solution. Rapid convergence and good global search ca- 
pability characterize the performance of GQA. The effec- 
tiveness and the applicability of GQA are demonstrated 
by experimental results on the knapsack problem, which 
is a well-known combinatorial optimization problem. The 
results show that GQA is superior to other genetic algo- 
rithms using penalty functions, repair methods, and de- 
coders. 

1 Introduction 

Many efforts on quantum computers have progressed actively 
since the early 1990’s because these computers were shown 
to be more powerful than classical computers on various spe- 
cialized problems. But if there is no quantum algorithm that 
solves practical problems, quantum computer hardware may 
be useless. It could be considered as a computer without op- 
erating system. 

Although there would be significant benefit from new 
quantum algorithms that could solve computational problems 
faster than classical algorithms, to date, only a few quantum 
algorithms are known. Nevertheless, quantum computing is 
attracting serious attention, since its superiority was demon- 
strated by a few quantum algorithms such as Shor’s quantum 
factoring algorithm [l, 21 and Grover’s database search al- 
gorithm [3, 41. Shor’s algorithm finds the prime factors of 
an n-digit number in polynomial-time, while the best-known 
classical factoring algorithms require time o 2n’ log(n)’ . 
Grover’s database search algorithm can find an item in an un- 
sorted list of n items in 0 (6) steps, while classical algo- 
rithms require O(n).  

Research on merging evolutionary computing and quan- 
tum computing has been started by some researchers since 
late 1990’s. They can be classified into two fields. One con- 
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centrates on generating new quantum algorithms using au- 
tomatic programming techniques such as genetic program- 
ming [SI. The absence of new quantum algorithms motivated 
this work. The other concentrates on quantum-inspired evo- 
lutionary computing for a classical computer [6],  a branch of 
study on evolutionary computing that is characterized by cer- 
tain principles of quantum mechanics such as standing waves, 
interference, coherence, etc. 

This paper offers a novel evolutionary computing algo- 
rithm called a genetic quantum algorithm (GQA). GQA is 
characterized by principles of quantum computing including 
concepts of qubits and superposition of states. GQA uses a 
qubit representation instead of binary, numeric, or symbolic 
representations. GQA can imitate parallel computation in 
classical computers. 

This paper is organized as follows. Section 2 describes 
a novel evolutionary computing algorithm, GQA. Section 3 
contains a description of the experiment with GAS and GQAs 
for knapsack problems for comparison purpose. Section 4 
summarizes and analyzes the experimental results. Conclud- 
ing remarks follow in Section 5 .  

2 Genetic Quantum Algorithm (GQA) 

GQA is based on the concepts of qubits and superposition of 
states of quantum mechanics. The smallest unit of informa- 
tion stored in a two-state quantum computer is called a quan- 
tum bit or qubit [7]. A qubit may be in the ‘1’ state, in the ‘0’ 
state, or in any superposition of the two. The state of a qubit 
can be represented as 

where a and ,8 are complex numbers that specify the proba- 
bility amplitudes of the corresponding states. Ia12 gives the 
probability that the qubit will be found in ‘0’ state and ]PI2 
gives the probability that the qubit will be found in the ‘1’ 
state. Normalization of the state to unity guarantees 

If there is a system of m-qubits, the system can represent 2m 
states at the same time. However, in the act of observing a 
quantum state, it collapses to a single state [8]. 
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2.1 Representation 

It is possible to use a number of different representations to 

putation. The classical representations can be broadly classi- 
fied as: binary, numeric, and symbolic [9]. GQA uses a novel 
representation that is based on the concept of qubits. One 
qubit is defined with a pair of complex numbers, (a, @), as 

store the best solution among P(t) 
while (not termination-condition) do 
begin 

encode the solutions onto chromosomes in evolutionary com- t t t + l  
make P( t )  by observing Q (t - 1) states 
evaluate P(t)  
update Q(t)  using quantum gates U ( t )  
store the best solution among P(t)  

end 
end 

which is chzacterized by (1) and (2) .  And an m-qubits rep- 
resentation is defined as 

GQA is a probabilistic algorithm which iS SimikU to a ge- 
netic algorithm. GQA maintains a population of qubit chro- 
mosomes, Q(t)  = {qt, q:, . , qk} at generation t, where 
n is the size of population, and q$ is a qubit chromosome 
defined as 

(3) 

where laiI2 + lfliI2 = 1, i = 1,2, .  . . , m. This representation 
has the advantage that it is able to represent any superposition 

[ ;; I ;: I ::: I ;; ] ’ 
(6) 

of states. If there is, for instance, a three-qubits system with 
three pairs of amplitudes such as where m is the number of qubits, i.e., the string length of the 

qubit chromosome, and j = 1,2, . , n. . .  . 
1 In the step of ‘initialize Q(t),’ ai and pit, i = 1,2, - - , m, 

of all q$, j = 1,2 , . . . ,n ,  in Q(t)  are initialized with -&. 
It means that one qubit chromosome, q$  it=^ represents the 
linear superposition of all possible statevwith the same prob- 
abilitv: 

(4) [ g I ;::I $ 1 ’  
the state of the system can be represented as 

The above result means that the probabilities to represent the 
state (OOO), IOOl), IlOO), and 1101) are i, $, i, and i, re- 
spectively. By consequence, the three-qubits system of (4) 
has four states information at the same time. 

Evolutionary computing with the qubit representation has 
a better characteristic of diversity than classical approaches, 
since it can represent superposition of states. Only one qubit 
chromosome such as (4) is enough to represent four states, but 
in classical representation at least four chromosomes, (000), 
(OOl), (loo), and (101) are needed. Convergence can be 
also obtained with the qubit representation. As /ail2 or I & I 2  
approaches to 1 or 0, the qubit chromosome converges to a 
single state and the property of diversity disappears gradu- 
ally. That is, the qubit representation is able to possess the 
two characteristics of exploration and exploitation, simulta- 
neously. 

2.2 GQA 

The structure of GQA is described in the following. 

procedure GQA 
begin 

t t o  
initialize Q ( t )  
make P(t)  by observing &(t)  states 
evaluate P( t )  

om 

where Sk is the k-th state represented by the binary string 
( q z z  . . -zm), where zi, i = 1,2, -.  e ,  m, is either 0 or 1. 
The next step makes a set of binary solutions, P(t),  by ob- 
serving Q(t)  states, where P(t)  = {xi, xi, - - - , xk} at gen- 
eration t. One binary solution, xi, j = 1,2, .. . ,n, is a 
binary string of the length m, and is formed by selecting 
each bit using the probability of qubit, either ]ail2 or I @ 1 2 ,  
i = 1,2,  . , m, of qi. Each solution xi is evaluated to give 
some measure of its fitness. The initial best solution is then 
selected and stored among the binary solutions, P(t).  

In the while loop, one more step, ‘update Q(t),’ is in- 
cluded to have fitter states of the qubit chromosomes. A set of 
binary solutions, P(t ) ,  is formed by observing Q(t - 1) states 
as with the procedure described before, and each binary so- 
lution is evaluated to give the fitness value. In the next step, 
‘update Q(t).’ a set of qubit chromosomes Q(t)  is updated 
by applying some appropriate quantum gates’ U ( t ) ,  which is 
formed by using the binary solutions P(t) and the stored best 
solution. The appropriate quantum gates can be designed in 
compliance with practical problems. Rotation gates, for in- 
stance, will be used for knapsack problems in the next sec- 

lQuantuni gates are reversible gates and can be represented as unitary 
operators acting on the qubit basis states: UtU = U U t ,  where Ut is the 
hermitian adjoint of U. There are several quantum gates, such as NOT gate, 
Controlled NOT gate, Rotation gate, Hadamard gate, etc.[7]. 
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tion, such a$ based on repair methods, and algorithms based on decoders 
[lo]. 

In all algorithms based on penalty functions, a binary 
string of the length m represents a chromosome x to the prob- 

(7) sin(8) cos(8) 1 ' cos(8) - sin(8) U ( 8 )  = 

where 8 is a rotation angle. This step makes the qubit chromo- 
somes converge to the fitter states. The best solution among 
P(t)  is selected in the next step, and if the solution is fitter 
than the stored best solution, the stored solution is changed 
by the new one. The binary solutions P(t)  are discarded at 
the end of the loop. 

It should be noted that some genetic operators can be ap- 
plied, such as mutation which creates new individuals by a 
small change in a single individual, and crossover which cre- 
ates new individuals by combining parts from two or more 
individuals. Mutation and crossover can make the probability 
of linear superposition of states change. But as GQA has di- 
versity caused by the qubit representation, there is no need to 
use the genetic operators. If the probabilities of mutation and 
crossover are high, the performance of GQA can be decreased 
notably. 

In GQA, the population size, i.e., the number of qubit 
chromosomes is kept the same all the time. This is caused by 
conservation of qubits based on quantum computing. GQA 
with the qubit representation can have better convergence 
with diversity than conventional GAS which have fixed 0 and 
1 information. 

3 Experiment 

The knapsack problem, a kind of combinatorial optimization 
problem, is used to investigate the performance of GQA. The 
knapsack problem can be described as selecting from among 
various items those items which are most profitable, given 
that the knapsack has limited capacity. The 0-1 knapsack 
problem is described a$: given a set of m items and a knap- 
sack, select a subset of the items so as to maximize the profit 

m 
f (4: 

= C p i x i ,  
i= 1 

subject to 
m 

i= 1 

where x = ( X I  . x m ) ,  zi is 0 or 1, pi is the profit of item 
i, zvi is the weight of item i, and C is the capacity of the 
knapsack. 

In this section, some conventional GA methods are de- 
scribed to experiment with the 0-1 knapsack problem, and the 
detailed algorithm of GQA for the knapsack problem follows. 

lem. The profit f ( x )  of each string is determined as 
m 

f ( x )  = C p i x i  - ~ e n ( x ) ,  
i=l 

where Pen(x)  is a penalty function. There are many possible 
strategies for assigning the penalty function [l 1, 121. Three 
types of penalties are considered, such as logarithmic penalty, 
linear penalty, and quadratic penalty: 

Penl (x )  = log, (1 + p (Ccl wixi - C))  , 
Penz(x) = p(Ccl w i z i  - C )  , 
P e n d x )  = ( p  (ELl wixi  - C) )  , 2 

where p is maxi=l ...m{ p i / w i } -  

each string is determined as 
In algorithms based on repair methods, the profit f ( x )  of 

m 

where x' is a repaired vector of the original vector x .  Orig- 
inal chromosomes are replaced with a 5% probability in the 
experiment. The two repair algorithms considered here dif- 
fer only in selection procedure, which chooses an item for 
removal from the knapsack: 

Rep1 (random repair): The selection procedure selects a ran- 
dotn element from the knapsack. 
RepfL (greedy repair): All items in the knapsack are sorted 
in the decreasing order of their profit to weight ratios. The 
selection procedure always chooses the last item for deletion. 

A possible decoder for the knapsack problem is based on 
an integer representation. Each chromosome is a vector of 
m integers; the i-th component of the vector is an integer in 
the range from 1 to m - i + 1. The ordinal representation 
references a list L of items; a vector is decoded by selecting 
appropriate item from the current list. The two algorithms 
based on decoders considered here differ only in the proce- 
dure of building a list L of items: 

Decl (random decoding): The build procedure creates a list 
L of items such that the order of items on the list corresponds 
to the order of i t em in the input file which is random. 
Decz (greedy decoding): The build procedure creates a list 
L of items in the decreasing order of their profit to weight 
ratios. 

3.1 Conventional GA methods 

Three types of conventional algorithms are described and 
tested: algorithms based on penalty functions, algorithms 

3.2 GQA for the knapsack problem 

The algorithm of GQA for the knapsack problem is based 
on the StruChiTe of GQA proposed and it contains a repair 
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algorithm. The algorithm can be written as follows: 

. 
O false  

procedure GQA 
begin 

t t o  
initialize Q(t)  
make P(t)  by observing Q(t) states 
repair P(t )  
evaluate P(t )  
store the best solution b among P(t)  
while (t < MAX-GEN)  do 
begin 

t t t + l  
make P(t )  by observing Q(t - 1) states 
repair P(t)  
evaluate P(t)  
update Q(t) 
store the best solution b among P(t)  

end 
end 

A qubit string of the length m represents a linear superposi- 
tion of solutions to the problem as in (6). The length of a qubit 
string is the same as the number of items. The i-th item can be 
selected for the knapsack with probability I/3ilz or (1 - lail'). 
Thus, a binary string of the length m is formed from the qubit 
string. For every bit in the binary string, we generate a ran- 
dom number T from the range [0..1]; if r > laiI2, we set the 
bit of the binary string. The binary string xf, j = 1,2, , n, 
of P(t) represents a j-th solution to the problem. For nota- 
tional simplicity, x is used instead of xf in the following. The 
i-th item is selected for the knapsack iff xi = 1, where xi is 
the i-th bit of x. The binary string x is determined as follows: 

, 
I 0 1  0 1  0 1 0 1 0 1  

procedure make (x) 
begin 

i t 0  
while (i < m) do 
begin 

i t i + l  
if randomlo, 1) > Iai12 
thenzi t 1 
else xi  t 0 

end 
end 

The repair algorithm of GQA for the knapsack problem is 
implemented as follows: 

procedure repair (x) 
begin 

knapsack-overfilled t false 

then knapsack-overfilled t true 
while (knapsack-overfilled) do 
begin 

ifCE1 wixi > C 

0 0 true 
0 1 false  
0 1 true 
1 0 false  
1 0 true 
1 1 f a l se  
1 1 true 

0 
0 

0 . 0 5 ~  
0.01T 
0.025~ 
0 . 0 0 5 ~  
0 . 0 2 5 ~  

0 
0 
-1 
-1 
+1 
$1 
+1 - 

0 
0 
+1 
+1 
-1 
-1 
-1 

0 
0 
fl 
fl 
0 
0 
0 - 

I :  
0 
0 
f l  
f l  
f l  - 

Table 1: Lookup table of O i ,  where f (,) is the profit, s(ai@i) 
is the sign of Bi ,  and bi and x i  are the i-th bits of the best 
solution b and the binary solution x, respectively. 

select an i-th item from the knapsack 
xi t 0 
ifCL1 wixi <_ c 
then knapsack-overfilled c false 

end 
while (not knapsack-overfilled) do 
begin 

select a j - th  item from the knapsack 
x j  t 1 
if CL1 wixi > C 
then knapsack-overfilled t Vue 

end 
xj t 0 

end 

The profit of a binary solution x is evaluated by pixi ,  
and it is used to find the best solution b after the update of qi, 
j = 1,2, .  . . , n. A qubit chromosome sj is updated by using 
the rotation gate U ( 0 )  of (7) in this algorithm. The i-th qubit 
value (ai, P i )  is updated as 

In this knapsack problem 0, is given as s(aipi)A&. The 
parameters used are shown in Table 1. For example, if the 
condition, f (x) 2 f (b), is satisfied and xi  and bi are 1 and 
0, respectively, we can set the value of At$ as 0 . 0 2 5 ~  and 
s(aipi) as +1, -1, or 0 according to the condition of a& so 
as to increase the probability of the state 11). The value of AOi 
has an effect on the speed of convergence, but if it is too big, 
the solutions may diverge or have a premature convergence to 
a local optimum. The sign s(aipi)  determines the direction 
of convergence to a global optimum. The lookup table can be 
used as a strategy for convergence. This update procedure 
can be described as follows: 

procedure update (9) 
begin 

i t 0  
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ll of 
items 

100 

250 

250 

while (i < m) do 
begin 

i t i + l  
determine Bi with the lookup table 
obtain (ai, P f )  as: 

[ai = q e , )  [ai 
end 
q +  q' 

end 

CGAs GQAs 
Pen1 Pen2 Pen3 Repl Rep2 Decl Dec2 P 2 + R 1  GQA(1)  GQA(10) 

b. 557.7 581.4 566.0 561.1 560.2 514.7 511.0 582.2 597.5 612.5 
profits m. 545.4 569.7 556.1 546.5 546.3 503.9 500.0 571.1 583.7 603.9 

w. 535.1 562.6 551.1 537.3 536.6 496.3 493.3 562.3 562.5 592.7 
t(sec/run) 1.329 1.333 1.323 1.142 1.151 3.510 10.51 1.360 0.054 0.382 

b. 1391.9 1444.9 1480.3 
profits m. 1382.1 1412.4 1467.1 

W. 1364.8 1385.8 1443.8 
t ( s ec / run)  - 3.292 0.141 1.380 

b. 2744.2 2824.1 2860.0 
profits m. 2720.8 2771.5 2841.3 

W. 2699.2 2744.3 2812.5 
t ( s ec / run)  - 6.532 0.324 3.994 

The update procedure can be implemented in various meth- 
ods with appropriate quantum gates. It depends on a given 
problem. 

4 Results 

In all experiments strongly correlated sets of data were con- 
sidered: 

wi = uniformly random[l,  10) 
pi = Wi + 5 ,  

the average knapsack capacity was used: 

i=l 

and the data files were unsorted. The population size of the 
eight conventional genetic algorithms (CGAs) was equal to 
100. Probabilities of crossover and mutation were fixed: 0.65 
and 0.05, respectively, as in [lo]. The population size of 
GQA( 1) was equal to 1, and the population size of GQA( 10) 
was equal to 10, this being the only difference between 
GQA( 1) and GQA( 10). As a performance measure of the al- 
gorithm we collected the best solution found within 500 gen- 
erations over 25 runs, and we checked the elapsed time per 

one run. A Pentium-III 500MHz was used, running Visual 
C++ 6.0. 

Table 2 shows the experimental results of the knapsack 
problems with 100, 250, and 500 items. In the case of 100 
items, GQA yielded superior results as compared to all the 
other CGAs. The CGA designed by using a linear penalty 
function and random repair algorithm outperformed all other 
CGAs, but is behind GQA( 1) as well as GQA( 10) in perfor- 
mance. The results show that GQA performs well in spite 
of small size of population. Judging from the results, GQA 
can search solutions near the optimum within a short time 
as compared to CGAs. In the cases of 250 and 500 items, the 
CGA that outperforms all the other CGAs was tested for com- 
parison purpose with GQA. The experimental results again 
demonstrate the superiority of GQA. 

Figure 1 shows the progress of the mean of best prof- 
its and the mean of average profits of population found by 
GQA( l), GQA( lo), and CGA over 25 runs for 100,250, and 
500 items. GQA performs better than CGA in terms of con- 
vergence rate and final results. In the beginning of the plot- 
ting of the best profits, GQA( 1) shows a slower convergence 
rate than GQA( 10) and CGA due to its small population num- 
ber. After 50 generations, GQA( 10) and GQA( 1) maintain a 
nearly constant convergence rate, while CGA's convergence 
rate reduces substantially. After 200 generations, even though 
convergence rate of GQA reduces, GQAs show a faster con- 
vergence rate than CGA due to its better global search ability. 
GQAs' final results are larger than CGA's in 1000 genera- 
tions. The tendency of convergence rate can be shown clearly 
in the results of the mean of average profits of population. 
In the beginning, convergence rates of all the algorithms in- 
crease. But CGA maintains a nearly constant profit due to its 
premature convergence immediately, while GQA approaches 
towards the neighborhood of global optima with a constant 

1358 

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on September 16, 2009 at 02:14 from IEEE Xplore.  Restrictions apply. 



convergence rate. GQAs display no premature convergence 
which is a common problem of CGAs until 1000 generations. 

The experimental results demonstrate the effectiveness 
and the applicability of GQA. Especially, Figure 1 shows the 
excellent global search ability and the superiority of conver- 
gence ability of GQA. 

5 Conclusions 

This paper proposed a novel evolutionary computing algo- 
rithm, GQA with a quantum representation. GQA is based 
on the principles of quantum computing such as concepts of 
qubits and superposition of states. GQA can represent a lin- 
ear superposition of states, and there is no need to include 
many individuals. GQA has an excellent ability of global 
search due to its diversity caused by the probabilistic repre- 
sentation, and it  can approach better solutions than CGA’s 
in a short time. The knapsack problem, a kind of combinato- 
rial optimization problcms, is used to discuss the performance 
of GQA. It was showed that GQA’s convergence and global 
search ability are superior to CGA’s. The experimental results 
demonstrate the effectiveness and the applicability of GQA. 
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Figure 1: Comparison between CGA and GQA on the knapsack problem. The vertical axis is the profit value of knapsack, and 
the horizontal axis is the number of generations. (a), (c), (e) show the best profits, and (b), (d), (f) show the average profits. 
Both were averaged over 25 runs. 
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