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Abstract

Background: Molecularand cellular changes are intrinsic to aging and age-related diseases. Prior cross-sectional
studies have investigated the combined effects of age and genetics on gene expression and alternative splicing;
however, there has been no long-term, longitudinal characterization of these molecular changes, especially in older

age.

Results: We perform RNA sequencing in whole blood from the same individuals at ages 70 and 80 to quantify how
gene expression, alternative splicing, and their genetic regulation are altered during this 10-year period of advanced
aging at a population and individual level. We observe that individuals are more similar to their own expression
profiles later in life than profiles of other individuals their own age. We identify 1291 and 294 genes differentially
expressed and alternatively spliced with age, as well as 529 genes with outlying individual trajectories. Further, we
observe a strong correlation of genetic effects on expression and splicing between the two ages, with a small subset
of tested genes showing a reduction in genetic associations with expression and splicing in older age.

Conclusions: These findings demonstrate that, although the transcriptome and its genetic regulation is mostly
stable late in life, a small subset of genes is dynamic and is characterized by a reduction in genetic regulation, most

likely due to increasing environmental variance with age.
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Background

While an individual’s genome sequence is mostly stable
throughout life, gene expression and genetic regulation
of expression fluctuate in response to different environ-
mental exposures [1-3]. The impact of aging on gene
expression and genetic regulation has been well-studied
in model systems, such as yeast, fruit fly, or worm [4, 5],
while much less is known about the transient nature of
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gene regulation and expression in humans. The majority
of studies that have been performed in humans have
been cross-sectional [6—15]. The few longitudinal studies
have either focused on a specific disease or intervention
[16-21], looked over a short time span [22], or focused
on cell lines [23]. For example, Bryois et al. [22] stud-
ied differences in RNA sequencing-based gene expression
levels in whole blood from female twins of the UK Adult
Twin Registry longitudinally at two time points separated,
on average, by 22 months. At each time point, the indi-
viduals varied in age from 45 to 80 years old. Harris
et al. [23] studied the impact of aging on array-based gene
expression levels in lymphoblastoid cell lines derived from
members of the Lothian Birth Cohort 1936 at mean ages
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70 and 76 years. The impact of aging on genetic regula-
tion of gene expression was not examined in the Harris
et al. [23] study. Even less is known about the effect of
age on alternative splicing and its genetics, even though
changes in alternative splicing have previously been linked
to aging-associated phenotypes [14, 24—27]. As a result,
a complete picture of the long-term effect of aging on
gene expression and splicing and their genetic regulation
in humans is still lacking, especially late in life.

Here, we present the first long-term, longitudinal char-
acterization of changes in gene expression and alternative
splicing and their genetic regulation as a function of aging
late in life. We performed RNA sequencing in whole
blood from 65 healthy participants from the Prospective
Investigation of Uppsala Seniors (PIVUS) study [28] at
both age 70 and 80, a period of the aging process char-
acterized by high morbidity and mortality. We quantified
how total and allele-specific gene expression, alternative
splicing, and genetic regulation (expression and splicing
quantitative trait loci; eQTLs, sQTLs) are altered over this
10-year period.

We observe that individuals are more similar to their
own gene expression profiles than profiles of other indi-
viduals their own age; 93% of samples cluster with their
own measurements at another age. Despite this, we iden-
tified hundreds of genes with differential expression and
alternative splicing with age, as well as outlying individ-
ual trajectories of aging, i.e., individuals with extreme
increase or decrease in expression with age. Moreover, we
observed a strong correlation of genetic effects on expres-
sion between the two ages (pg = .96; median across genes)
and that 7.8% of genes were characterized by genetic
dysregulation over the two time points. In contrast, over-
all allelic imbalance within an individual increases with
age by 2.69% (median across individuals). Together, these
findings indicate that a small subset of genes is character-
ized by changes in expression and splicing and a reduction
in genetic regulation late in life. The strong correlation
of genetic effects and the increase in allelic imbalance
with age suggests that increasing environmental variance
as opposed to decreased genetic variance underlies the
reduction in genetic regulation with age.

Results

Background noise correction, the process of identify-
ing and correcting for major components of expres-
sion variability, unrelated to the variable of interest,
e.g., RNA library size or cell-type composition, is cru-
cial in (longitudinal) RNA-Seq experiments in order
to improve power and avoid false discoveries [29, 30].
We performed extensive background noise correction
for each analysis (see the “Materials and methods”
section and Additional file 1). Unless otherwise men-
tioned, all results are based on analyses corrected for
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measured and inferred components of gene expression
variability.

Population-level age-specific expression across the
transcriptome

In order to quantify the stability of gene expression lev-
els within individuals, we measured the correlation of
expression across genes between the two time points and
performed hierarchical clustering based on the sample-
to-sample distance matrix (Fig. 1a and Additional file 1:
Figure S4). We identified a moderate correlation of gene
expression within an individual across genes (Spearman’s
o = .30; median across individuals; Additional file 1:
Figure S4A) and a high similarity of expression pro-
files; measurements of the same individual at the two
ages cluster together for the 93% of samples (Fig. 1a and
Additional file 1: Figure S4B).

We investigated transcriptome-wide changes in gene
expression with age (Fig. 1b and Additional file 1: Figure
S5A and Additional file 2). We discovered 1291 genes
(8% of tested genes) whose expression levels were signif-
icantly associated with age (FDR < 5%). Harris et al.
[23] observed a similar number of differentially expressed
genes between ages 70 and 76 years in lymphoblastoid
cell lines. The DE genes showed significant enrichment
(FDR < 5%) for multiple aging-related pathways (Fig. 1c
and Additional file 3), e.g., metabolism of proteins [31, 32],
oxidative phosphorylation [33], and DNA replication [34].

Moreover, 18 of these DE genes are associated with
complex traits for which gene expression levels in whole
blood modulate disease risk (Additional files 1 and 4).
For most of these genes, aging pushes expression toward
the direction that is associated with increased disease risk
or higher levels of risk factors. For example, the C allele
in rs7941030 is associated with reduced expression of
UBASH3B, which is downregulated with age in our study,
and increased cholesterol levels [35]. Thus, aging pushes
the expression of UBASH3B towards the direction that
is associated with increased total cholesterol. For a few
genes, aging pushes expression toward the direction of
decreased disease risk or risk factor levels, particularly for
blood pressure traits. This negative relation between aging
and blood pressure could be due to the fact that several
of the individuals in our study began using medications
that lower blood pressure between age 70 and 80, which
in turn results in a significant decrease of both SBP and
DBP with age (Wilcoxon signed rank test; Psgp = 0.04;
Pppp = 8.25 x 107°). Other medications, including lipid-
lowering, may also induce overlaps between DE genes
and complex trait GWAS genes or confound the direction
of the effect of aging on expression and complex traits;
however, it remains a challenge to disentangle causal rela-
tionships based on these results. Finally, it should be
noted that most of the traits associated with DE genes
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Measurements of the same individual at the two ages cluster together (green) for 93% of samples. b Mirror Manhattan plot of the expression-age
discoveries. We find 1291 age-associated genes (8% of tested genes; FDR < 5%). Each dot represents a gene; the x-axis gives the position of the
gene in the genome, and the y-axis represents the direction of the age effect and the strength of the association. € Gene-set enrichment analysis of
genes with age-specific expression. We observe strong enrichment for multiple age-related pathways. Each point represents a pathway; the x-axis
gives the absolute enrichment score, which reflects the degree to which each pathway is overrepresented at the top or bottom of the ranked list of
differentially expressed genes, normalized to account for differences in gene set size and in correlations between gene sets and the expression data
set. The y-axis lists the parent node of the most enriched pathways (FDR < 5%). The names of each significant pathway are listed in Additional file 3

are cardio-metabolic, e.g., triglycerides, total cholesterol,
and blood pressure. This is likely at least partly due to
the larger availability of publicly available well-powered
genetic association studies of metabolic traits as com-
pared to other age-related disease (e.g., cancer and neuro-
logical diseases).

To further quantify the relative effect of age on gene
expression, we estimated the proportion of expression
variance explained by age (Additional file 1: Figure S5B).
Age explained 1.5% of expression variance for genes sig-
nificantly associated with age. This estimate is smaller
than the estimate from the uncorrected analysis of our
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data (average across DE genes = 7.9%), due to our conser-
vative background noise correction approach, but compa-
rable to estimates from other aging studies in humans, e.g.,
2.2% in Vinuela et al. [14].

We validated our DE genes in silico using summary
statistics from two large cross-sectional studies of aging
in human PBMCs (CHARGE [11]) and whole blood
(SardiNIA[36]). We estimated that 76% and 51% of our
DE genes were differentially expressed with age in the
CHARGE and SardiNIA cohorts, respectively. In addition,
we found a significant overlap between our top 1000 DE
genes and the top 1000 DE genes from these other two
studies (hyper-geometric exact test for overlap of three
sets; P = 1.3 x 1071%; Additional file 1: Figure S5C).
The 49 DE genes that overlap in the top 1000 discov-
eries between the three studies (Additional file 5) are
enriched in gene ontology (GO) terms related to adap-
tive immune response pathways that have previously been
implicated in aging [37], e.g., leukocyte cell-to-cell adhe-
sion and terms reflecting the underlying age-related T
cell biology (Additional file 1: Figure S5D). Only 65% of
these 49 genes change in the same direction with age
across all studies. This discrepancy could be explained
by the difference in the age distribution of the sam-
ples in the three studies and could reflect non-linear
effects of age on expression. It could also be a result
of differences in expression assay—CHARGE is array-
based, while PIVUS is sequencing-based; or background
noise correction method—DE analyses in CHARGE and
SardiNIA were only adjusted for measured confounders,
while our analyses in PIVUS also adjusted for hid-
den factors. In addition, 22 and 17 known aging- and
longevity-related genes from The Human Aging Genomic
Resources [38] GenAge (307 genes) and LongevityMap
(212 genes) databases were included in our list of DE genes
(Additional file 6).

To study the impact of cell-type composition in our dif-
ferential expression results, we contrasted our list of DE
genes to a list of 547 genes that distinguish 22 human
hematopoietic cell phenotypes, including seven T cell
types, naive and memory B cells, plasma cells, NK cells,
and myeloid subsets [39]. We found a minimal impact of
the cell-type composition in our results; only 4.5% of all
DE genes and 5% of top 100 DE genes are signature genes
with cell-type-specific expression.

Individual-level age-specific expression across the
transcriptome

The longitudinal design of our study enabled us to also
investigate changes in individual-level expression profiles
with age. While such individual-level changes compared
to population-level changes can be due to any number
of personal environments (i.e., disease, diet, medication),
we hypothesized that outlier trajectories may reflect some
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individual-specific differences in aging. We searched for
individuals with outlying age trajectories (schematically
illustrated in Fig. 2a) and found 555 individual-gene out-
lier pairs from 529 unique genes (Fig. 2b and Additional
file 7); 60% of which showed outlying decrease in expres-
sion with age, as opposed to increase, and 6% of which
show also population-level DE with age. Only 5% of the
age-trajectory outlier genes are signature genes with cell-
type-specific expression, indicating a minimal impact of
the cell-type composition in our results. The median
number of outlier genes per individual was 4 with 14%
of individuals showing no outliers while 13% had more
than 20 outlier genes (Fig. 2c). The largest outlying expres-
sion increase with age was observed for an individual in
IGKV1I1-27, a gene responsible for antigen binding and
involved in adaptive immune response. The same individ-
ual was an outlier for several additional immunoglobulin-
related genes (Additional file 1: Figure S6A). BIRC2, a gene
which regulates apoptosis and modulates inflammatory
signaling and immunity, mitogenic kinase signaling, and
cell proliferation, showed the largest expression decrease
with age (Additional file 1: Figure S6B). The same indi-
vidual was an outlier for several other genes related to
proteasomal protein catabolic process.

To aid the understanding of the biological basis of
personal expression outlier genes, we performed enrich-
ment analysis of GO biological processes for the outlier
genes of each individual (Fig. 2d and Additional file 1:
Figure S6C) as well as contrast them with outlying
covariate/phenotype data for the individual (Additional
file 1: Figure S6D). For genes with outlying decrease of
expression with age, we observed significant enrichment
(FDR < 5%) for known age-related GO terms for three
individuals. For two of these individuals, one of which
showed a large increase in leukocyte counts between the
two ages (Additional file 1: Figure S6D), we see enrich-
ment for terms related to immune response [40]. For the
third individual, we see enrichment for terms related to
protein catabolism [41]. The same individual had a sub-
stantial increase in albumin levels between the two ages
and was diagnosed with diabetes between age 70 and 80
(Additional file 1: Figure S6D). In contrast, genes in which
individuals showed an outlying increase of expression
with age were not enriched for any specific functions.

Stability of genetic regulation of gene expression across
the transcriptome with age

We evaluated the association between expression of each
autosomal gene and common cis genetic variants (within
1 Mb of the transcription start site) in each age group
using linear regression models (“Materials and methods”
section; Additional file 8). To minimize the impact of
difference in statistical power between the two ages, we
found and corrected for the number of hidden factors
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that maximized eQTL discovery separately in each age
group (Fig. 3a and Additional file 1: Figure S7). After back-
ground noise correction, we detected 1326 eGenes, i.e.,
genes with at least one significant eQTL, at age 70 (8.5%
of tested genes, FDR < 1%) and 1264 eGenes at age 80.
The depletion of eGenes at age 80, relative to age 70, was
statistically significant (exact McNemar’s test; OR = 0.81,
P=58x1073).

Gene expression changes in response to environmental
exposures. To address the question of how stable eQTL
effects are with age, we estimated the rate of replication

of discovery eGenes from one age group in the other
age group (Fig. 3b). We observed a high proportion of
eGenes that replicated for each age, 92.2% (94.9%) of
eGenes discovered at age 70 (80) replicated at age 80 (70)
(FDR < 10%), although the rate of replication was lower
for eGenes discovered at age 70, compared to eGenes dis-
covered at age 80 (binomial proportion test; ﬂ%’gl — ﬂé’gl =
—2.7%, P = 3.3 x 1073). We used of a liberal FDR thresh-
old for validation (FDR < 10%) to ensure a low proportion
of false age-specific eGenes, i.e., genes that do not validate
at the second age. Results remained the same for a range of
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discovery and replication FDR thresholds, as well as minor
allele frequency thresholds (Additional file 1: Figure S7B).

Gene expression may be influenced by both genetic and
environmental factors. To address the question of the rel-
ative contribution of genetic variation, we estimated the
cis-heritability for each gene in each age group using bi-
variate linear mixed models (“Materials and methods”
section; Fig. 3c). Consistent with results above, we found
a small but statistically significant decrease in aver-
age cis-heritability with age (Wilcoxon signed rank test;
median(hyy — h3,) = —14%, P = 5.56 x 1071%); the
average heritability decreased from 18% at age 70 to 17%
at age 80. We also estimated the genetic correlation of
expression between the two ages, i.e., the proportion of
expression variance shared between ages due to genetic
causes. We observed a high genetic correlation of expres-
sion (pg = 0.96; median across genes) and a strong
correlation of the fixed effect sizes between the two ages
(Fig. 3d); pg = 0.70 and 0.97 transcriptome-wide and
for genes that were eGenes in at least one age group,
respectively.

There are two simple explanations for the depletion of
eGenes at age 80, the lower replication rate at age 70,
and the small decrease in cis-heritability with age: first,
that the influence of genetic variation is reducing with
age, or second, that the influence of environmental per-
turbations is increasing with age. The latter explanation is
supported by the strong correlation of genetic effects as
well as the lack of eQTLs for the change in gene expres-
sion with age (data not shown). Together, these findings

suggest that genetic effects on gene expression are largely
stable late in life and that environmental perturbation is
gradually increasing with age, leading to lower SNP heri-
tability estimates and lower power to detect eQTL as age
increases.

We contrasted the eGenes with the genes that showed
DE by age; 7.2% of the genes with eQTLs at both ages
and 9.7% of the genes with eQTLs only at age 70 showed
significant differences in expression by age. Last, only 2%
of the genes that showed loss in genetic regulation with
age are signature genes with cell-type-specific expression,
indicating that our observations are very unlikely to be
driven by differences in cell-type composition with age.

Allele-specific expression by age across the transcriptome
We investigated transcriptome-wide patterns of allele-
specific expression (ASE) with age. At the global level,
reference allele proportions within an individual were
largely consistent (Spearman’s p = 0.73; Fig. 4a).
Moreover, we observed a 2.6% increase in allelic imbal-
ance (AI) with age (median across individuals and
sites; Wilcoxon signed rank test; P = 1.6 x 1072
Fig. 4b). At the local level, as with total expression, we
focused on both population- and individual-level differ-
ences in ASE with age. The former analysis requires the
sites to be heterozygous across multiple individuals and
captures, among others, age-interacting cis-regulatory
effects while the latter captures effects of rare/personal
variants or somatic mutations, e.g., as a result of clonal
hematopoiesis.
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At the population level, sites from six genes showed sig-
nificant differential ASE with age (FDR < 5%; Fig. 4c).
HLA-DRA, NCOR2, and PLEKHO2 show a significant
gain of AI with age (likelihood ratio test (LRL); P =
9.7 x 107°%, 4.1 x 107>, and 4.2 x 107>, respectively)

while CLEC7A, OAS1, and HLA-DQBI show a signifi-
cant loss of Al with age (LRT; P = 7.7 x 107°, 4.1 x
107>, and 3.9 x 107°, respectively). Most of these genes
are involved in the immune system and have been pre-
viously implicated in the aging process [42, 43]. Most
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notably, NCOR2 expression and its occupancy on perox-
isome proliferator-activated receptor (PPAR) target gene
promoters are increased with age in major metabolic
tissues. Shifting its repressive activity towards PPARs,
by selectively disabling one of its two major receptor-
interacting domains, resulted in premature aging in mice
and related metabolic diseases accompanied by reduced
mitochondrial function and antioxidant gene expression
[44]. CLEC7A is the only gene with differential ASE that is
also significantly downregulated with age and a signature
gene with macrophage-specific expression.

At the individual level, six individuals show differential
ASE with age in four sites from three genes (FDR < 5%;
Fig. 4d). GNAS, which showed a nominally significant loss
in population-level Al with age (LRT P = 3.4 x 10~3), also
showed a significant decrease in individual-level Al with
age. Moreover, two individuals showed a significant loss
in AI with age for SH3BGRL3, a gene whose expression
mean has been shown to decrease with age in the human
skin [9] and whose expression variance has been shown
to increase with age in rat retina [45]. Last, three indi-
viduals showed a significant gain in Al with age for two
exonic SNPs in CD52 while one individual showed loss of
Al None of these genes showed significant DE with age or
are known to have cell-type-specific expression.

Age-specific alternative splicing across the transcriptome

We investigated associations of transcriptome-wide
changes in alternative splicing with age and discovered
503 clusters of alternatively excised introns from 294
genes (“Materials and methods” section) whose splicing
levels were significantly associated with age (FDR < 5%,
Fig. 5a, Additional file 9); 11% of these genes showed also
significant DE with age. GO enrichment analysis showed
significant enrichment (FDR < 5%) of terms related to
regulation of RNA splicing, apoptosis, and leukocyte
differentiation (Additional file 10). The strongest asso-
ciations with age were found for genes related to the
circadian rhythm (Fig. 5a), disruption of which accelerates
aging [46], i.e., SFPQ, PERI, and SETX. SFPQ regulates
the circadian clock by repressing the transcriptional
activator activity of the CLOCK-ARNTL heterodimer
and plays a role in the regulation of DNA virus-mediated
innate immune response. Intron retention and nuclear
loss of SFPQ are molecular hallmarks of amyotrophic
lateral sclerosis (ALS) [47]. PERI is a member of the
Period family of genes and is expressed in a circadian
pattern in the suprachiasmatic nucleus, the primary cir-
cadian pacemaker in the mammalian brain. Genes in this
family encode components of the circadian rhythms of
locomotor activity, metabolism, and behavior. This gene
is upregulated by CLOCK-ARNTL heterodimers, but
then represses this upregulation in a feedback loop using
PER/CRY heterodimers to interact with CLOCK-ARNTL.
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SETX is implicated in transcription termination and
DNA double-strand breaks damage response generated
by oxidative stress [48]. Mutations in this gene have been
associated with juvenile ALS [49]. SETX is also required
for the transcriptional termination of PER1 and CRY2,
thus playing an important role in the circadian rhythm
regulation.

Stability of genetic regulation of alternative splicing across
the transcriptome with age

We tested for genetic variants that affect alternative gene
splicing on the autosomes at each age. For each gene, we
quantified intron usages with LeafCutter [50] and evalu-
ated the association between intron usage ratios at each
age and genetic variants within 100 kb of the intron
(“Materials and methods” section). After correction for
background noise (Fig. 5b), we detected significant sQTLs
for 550 introns at age 70 and 509 introns at age 80 (1.4%
of tested introns, FDR < 5%, Additional file 11). The
depletion of introns with at least one significant sQTL
(sIntrons) at age 80, relative to age 70, was statistically
significant (exact McNemar'’s test; P = 8.6 x 1073).

To study the stability of sQTL effects with age, we esti-
mated the rate of replication of discovery sIntrons from
one age group in the other age group (Fig. 5¢). While we
observed a high replication proportion at both ages, 90.4%
(93.9%) of sIntrons discovered at age 70 (80) replicated at
age 80 (70) (FDR < 20%), the replication rate for sIntrons
discovered at age 70 was significantly smaller, compared
to sIntrons discovered at age 80 (binomial proportion test;
P=22x1072).

Last, we observed a strong correlation of sQTL effect
sizes between the two ages (Fig. 5d, Spearman’s pg = 0.98)
as well as a lack of sQTLs for the change in alternative
splicing with age (data not shown). This suggests that,
similar to gene expression, genetic effects on alternative
splicing are largely stable late in life and that increase
in environmental noise underlies the loss of sQTLs as
individuals age.

Discussion

We have studied the combined effects of age and genetics
on gene expression and alternative splicing in 65 humans
from the general population sampled twice 10 years apart.
Our focus on 70- and 80-year-old elderly individuals
was designed to capture transcriptome changes during a
period of high morbidity and mortality; the average life
expectancy in Sweden is 80 and 83 years for men and
women, respectively. We observed that individuals were
more similar to their own gene expression levels between
the two ages than to other individuals of the same age.
This indicates that a larger proportion of gene expression
variance is explained by shared genetics and environment
than by the advanced aging process.
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aging [46]. PLK3, which was also in the top ten most associated genes, is implicated in stress responses and double-strand break repair. b Number of
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maximizes discovery at each age. ¢ Proportion of sintrons discovered at age 70 (80) that validated (FDR < 20%) at age 80 (70). The validation
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observed a strong correlation of the fixed effect sizes between the two ages (Spearman’s pg = 0.98). Blue line represents linear regression fit

Despite the relative stability of expression profiles
within individuals over time, we were able to identify 1291
genes with significant changes in expression. Pathways
related to the adaptive immune system, cell signaling,
and inflammatory response were among those enriched
for downregulated genes while upregulated genes were
enriched for pathways related to oxidative phosphoryla-
tion, adaptive immune system, and metabolism of pro-
teins. Many of these functions have been previously
described as hallmarks that represent common denom-
inators of aging [51]. Moreover, 18 of the differentially
expressed genes are previously known to be complex trait-
associated genes where gene expression levels modulate
risk.

Because the rate of aging varies among individuals,
humans become increasingly different from each other
with age [52]. Thus, chronological age fails to provide
an accurate indicator of the aging process. Longitudinal

studies offer a better understanding of the aging process
by studying the same individuals throughout their lifes-
pan. By collecting serial assessments, individuals can be
compared to their own measurements at different time
points rather than individuals of different ages from differ-
ent environments. Recent longitudinal studies have begun
to highlight the importance of individual-level molecu-
lar profiling to identify important health factors [53, 54].
Using our longitudinal design, we were able to analyze
individual changes in gene expression and identified 529
individually dynamic genes with functions related to reg-
ulation of proteolysis and immune response. The shar-
ing of immune-related function for both population and
individual differentially expressed genes may, in part, be
explained by observations of increased immune dysregu-
lation and transcriptional variability with age [55, 56].
Genetic regulation of gene expression is involved in
the etiology of many complex human traits [57, 58].
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Previous studies in model organisms have reported a
reduction in these associations with age [5]; however,
less is known about the extent of genetic dysregulation
with age in humans. Cross-sectional studies in humans
have identified age-specific eQTLs for three [8] and
ten [10] genes, respectively. A smaller 2-year longitu-
dinal study of middle-aged females found two genes
with time-dependent associations [22]. Our results indi-
cate a small but significant global reduction in genetic
control and gene expression heritability with age. This
reduction could be due to several factors, such as the
diminution of the level of expression of transcription
factors, epigenetic modification, or genomic instability.
Notably, while aging led to a reduction in genetic con-
trol, we observed an increase in the levels of allele-
specific expression with age. The high correlation of
genetic effects and the increase in allelic imbalance with
age suggests that increasing environmental variance as
opposed to decreased genetic variance underlies a com-
ponent of the reduction in heritability and loss of genetic
effects.

Deregulation of precursor mRNA splicing is associated
with many illnesses and has been linked to age-related
chronic diseases. There are no prior longitudinal studies
of the human transcriptome [22, 23] assessing the dynam-
ics of alternative splicing and its genetics. We found 294
genes, related, among others, to regulation of RNA splic-
ing and apoptosis, with age-specific alternative splicing.
Three of the top ten genes with the strongest association
of alternative splicing with age are related to the circadian
rhythm, disruption of which is known to accelerate aging
[46]. In addition to changes in alternative splicing with
age, we also observed a reduction in the number of genetic
associations with splicing between the two ages highlight-
ing similar patterns of dysregulation for both expression
and splicing.

In summary, we present the first long-term, longitudi-
nal characterization of expression and splicing changes
as a function of age and genetics. Our findings indicate
that, although gene expression and alternative splicing
and their genetic regulation are mostly stable late in life,
a small subset of genes is dynamic and is characterized
by changes in expression and splicing and a reduction
in genetic regulation, most likely due to an increase of
environmental variance.

Materials and methods

Study cohort

The PIVUS study is a population-based study of the
cardiovascular health in the elderly [28]. The PIVUS
cohort is comprised of 1016 individuals (509 females and
507 males) of Swedish ancestry living in Uppsala, Swe-
den, from 2001 to 2005. Participants were examined at
age 70 and 80 with deep phenotyping, and blood was
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frozen immediately upon collection. Our focus on 70- and
80-year-old elderly individuals was designed to capture
changes during a period of high morbidity and mortality;
the average life expectancy in Sweden is 80 and 83 years
for men and women, respectively. A detailed description
of the recruitment and phenotype data for this cohort is
provided elsewhere [28].

RNA isolation and sequencing
Gene expression was quantified for 65 individuals
(35 females; 30 males) at both ages (130 samples).
The RNA extraction, library preparation, and sequenc-
ing for the two samples from each individual was
always performed in pairs and by the same tech-
nician to minimize confounding effects. Total RNA
was extracted from 400 pL whole blood using the
NucleoSpin RNA Blood Kit (Macherey-Nagel, Diiren,
Germany) according to the manufacturer’s directions.
Samples were eluted in 60 uL RNase-free HyO. A small
aliquot of each sample was set aside for quality assess-
ment, and the remainder was immediately stored at
— 80 °C. The RNA yield was estimated by measuring
absorbance at 260 nm on the Nanodrop 2000 (Thermo
Fisher), and RNA purity was determined by calculating
260/280 nm and 260/230 nm absorbance ratios. RNA
integrity was assessed on the Agilent Bioanalyzer using
the RNA 6000 Nano Chip kit (Agilent Technologies).
An RNA integrity number (RIN) was assigned to each
sample by the accompanying Bioanalyzer Expert 2100
software.

c¢DNA libraries were constructed following the Illumina
TrueSeq Stranded mRNA Sample Prep Kit protocol and
dual indexed. The average size and quality of each cDNA
library were determined by the Agilent Bioanalyzer 2100,
and concentrations were determined by Qubit for proper
dilutions and balancing across samples. Twenty pooled
samples with individual indices were run on an Illumina
NextSeq 500 (high-output cartridge) as 2 x 75 paired end
sequencing. Output BCL files were FASTQ-converted and
demultiplexed.

Genotyping and imputation

DNA was extracted and genotyped on the Illumina Omni-
Express and Cardio-Metabochip arrays for more than
700K SNPs. Genotype data quality control was described
elsewhere [59]. Only 63 of the 65 RNA-sequenced indi-
viduals passed genotype quality control; thus, all anal-
yses involving genotype data, e.g., eQTL analysis, were
performed on these 63 individuals with complete data.
Genotype data was phased using SHAPEIT [60] and
imputed with Impute2 (v2.3.2) [61] using the CEU haplo-
types from the 1000 Genomes Project Phase-3 reference
panel [62]. Post imputation quality control is described in
Additional file 1.
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RNA-Seq quality control

Picard, Samtools [63], and other metrics were used
to evaluate data quality (Additional file 1: Figure S1).
Only genes that passed expression threshold were used;
genes were considered expressed if, at both ages, they
had, on average, at least 5 counts and 0 counts in no
more than 20% of individuals (to minimize tails). A total
of 16,086 genes were considered expressed. Gene expres-
sion data was library-size-corrected, variance-stabilized,
and log2-transformed using the R package DESeq2 [64].
We refer to this version of the data as “raw data” as it is
not corrected for global determinants of gene expression
variability (see below).

Background noise correction of gene expression data

It is well known that major components of expression vari-
ability can often be attributed to technical factors, e.g.,
RNA library size, that introduce unwanted, systematic
variability in the data [29, 30]. Recovering and correcting
for such factors can improve power to find differentially
expressed/spliced genes or identify e/sQTLs. When these
factors are correlated to the variable of interest, in our case
age, they can act as confounders and correcting for such
factors is necessary in order to avoid bias and prevent false
discoveries.

To identify potential measured confounders, we search
for measured factors that are associated both with age
and gene expression. RIN and RNA concentration are
moderately correlated with age (Spearman’s p= — 0.46
and — 0.30, Additional file 1: Figure S3), and they are
both associated with gene expression (71 = 61.43% and
22.19%, Additional file 1: Table S1). To extract unmea-
sured components of gene expression variability (referred
to as hidden factors), we used surrogate variable analy-
sis (SVA) as implemented in the R package smartSVA
[65]. We set age as variable of interest and allowed for the
factors to be correlated to age (Additional file 1: Figure
S3). While the latter could reduce our power to iden-
tify DE genes, when correcting our analysis for these
factors, it is a necessary step to avoid false-positive asso-
ciations. More details about the implementation of SVA
can be found in Additional file 1. We selected SVA, as
opposed to other background noise correction methods
[30, 66], on the basis of recent work that shows it is
robust to spurious associations when setting a variable of
interest [67]. Using the Buja and Eyuboglu method [68],
we estimated the number of hidden factors that explains
a significant amount of the expression variability to
be 15.

All results in the main paper are corrected for hidden
factors extracted by SVA as well as RIN and RNA con-
centration, to avoid false positives. In Additional file 1, we
show results from uncorrected analyses and analyses cor-
rected for measured factors (Additional file 1: Table S1),
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or hidden factors extracted by SVA without setting age as
a variable of interest (Additional file 1: Figure S5A).

Hierarchical clustering of gene expression

We performed hierarchical cluster analysis on the sample-
to-sample distance matrix of the expression data. To
compute the sample-to-sample distance matrix, we used
the R function hclust from the stats package. We
used the Euclidean distance measure to determine the
distance between sets of observations. We used the com-
plete linkage clustering strategy, a method that aims to
find similar clusters. Samples were classified as “clustered
with individual ID” if their nearest neighbor based on the
dendrogram was their own sample from another age.

Differential expression by age analysis

For each gene, we fit the following linear mixed model:
expression ~ individual (random) + age (fixed) + 15 hid-
den factors (fixed) + RIN (fixed) + RNA concentration
(fixed), using the 1me4 R package [69]. Age was coded
as 0 and 1 for individuals at age 70 and 80, respectively.
P values were calculated based on Satterthwaite’s approx-
imations implemented in the lmerTest R package
[70]. Significance of the results was assessed using
the Storey and Tibshirani [71] g-value method imple-
mented in the gvalue R package to control the FDR
at 5%.

Enrichment analysis for differentially expressed genes
Pathway enrichment analyses for DE genes were per-
formed using GSEA [72], a computational method that
determines whether an a priori defined set of genes shows
statistically significant, concordant differences between
two biological states (here age 70 vs 80). Resulting P val-
ues are adjusted for multiple testing using the gvalue
method [71] controlling FDR at 5%.

Replication of differential expression results in other blood
studies

We assess the significance of the overlap between our top
1000 DE genes from PIVUS and the top 1000 DE gene
in CHARGE [11] and SardiNIA [36] using the exact test
of multi-set intersection implemented in the R package
SuperExactTest [73]. We perform GO enrichment
analysis for intersect genes that are shared between the
three studies using WebGestaltR [74].

Identification of individuals with outlying age trajectories

We only looked for outliers on autosomal genes and
among the 61 individuals that cluster with their own sam-
ple at another age (Fig. 1a). Individuals are outliers for a
gene, if their change in the expression of the gene between
the two ages (Egp — Eyo) falls outside the (Q; — 3 x
IQR, Q3 + 3 x IQR) range, where Q; and Q3 are the 25th
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and 75th percentiles and IQR is the interquartile range of
the distribution.

eQTL mapping

We mapped eQTLs at each age using the linear regres-
sion models implemented in the Mat r ixEQTL R package
[75]. For the analysis correcting for measured/hidden fac-
tors, we include the factors as covariates. To call eGenes
at each age, we performed multiple testing at the gene
and eQTL level using the hierarchical testing procedure
implemented in the R package TreeQTL [76] control-
ling the FDR at 1%, both at the gene and gene-SNP
level. The P values for the level 1 hypotheses (eGenes)
were computed using Simes’ rule [77] on the families
they index (collection of eQTL P values for each gene).
This summary of the evidence for the global null hypoth-
esis is relatively robust to dependence [78]. The final
number and list of eGenes at each age was obtained
using the number of expression hidden factors that max-
imized discovery at each age, i.e., 10 hidden factors

(Fig. 3a).

Stability of eQTL effects with age

We estimated the rate of replication of discovery eGenes
from one age group in the other age group using a two-
step FDR approach from validation theory [79]. Specifi-
cally, we first discover eGenes at age 70 at 1% FDR, as
described above, and then we validate them at age 80 at
10% and 20% FDR, by performing eQTL mapping only for
these genes.We reverse the process for age 80.

Heritability of gene expression at each age

For each gene, we used the bivariate GREML method,
implemented in the GCTA software [80], to estimate the
cis-heritability of expression at each age as well as the
genetic correlation of expression between the two ages.
To estimate the average cis-heritability with age, we use
the beta regression models implemented in the R package
betareg [81], modeling the logit of the cis-heritability
of each gene as a function of age, i.e., logit(h?) = a +
B x age, where h? is the estimated cis-heritability of a
gene, B is the effect of age on heritability, and age is coded
as above. Then, the estimated average cis-heritability at
age 70 and 80 is given by h%o = 1/ (1 4+ exp(—a)) and
h§0 =1/ (1 + exp(—(x + B))), respectively. When testing
for the significance of the difference in cis-heritability with
age, we also adjust for the standard error of the heritabil-
ity, in order to take into account cases where the estimate
of the heritability at one of the two ages is noisier.

Quantifying allele-specific count data from RNA-Seq data

Read mapping bias was removed by following the WASP
pipeline [82]. The GATK tool ASEReadCounter was
used to count reads at exonic heterozygous sites. Only
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bi-allelic SNPs with reference allele proportion > .1 or
< .9 were considered. Correlation of reference allele pro-
portions between the two ages and testing for changes in
global Al and local individual-level differential ASE with
age was performed using only sites supported by at least
100 and 50 reads at each age of an individual, respectively.
The local population-level differential ASE with age anal-
ysis was performed on sites supported by at least 20 reads
at each age of an individual in at least 20 individuals.

For the two individuals for which genotypes were
not available, we called genotypes at heterozygous
sites using the GATK RNA-Seq variant calling pipeline
[83]. We limited the variants to only those that were
found to be heterozygous in at least one of the
other PIVUS samples. We then ran the WASP pipeline
described above to obtain allelic read counts for these
samples.

Age-specific ASE mapping

Let mj and ¢y = |m;x — 0.5] denote the proportion
of reads supporting the reference allele and the allelic
imbalance, i.e., absolute deviation from allelic balance, for
individual i (i = 1,...,65), at age j (f = 70, 80), and het-
erozygous site k (k = 1,...,Kj). Moreover, let ¢;;, the
median allelic imbalance for i at age j and @i = %
the ratio of median Al between the two ages of individ-
ual i across all sites. We test for a statistically significant
increase in global Al with age (Hp : © < 1vs H} : p >
1, where p median of the ¢;.’s) using the one-sample
Wilcoxon signed rank test.

At the local level, we test for population- and individual-
level differences in ASE with age using the beta-binomial
generalized linear (mixed) models implemented in EAGLE
(v2.0) [84, 85]. In short, for each exonic SNP, we model
the alternative allele count for heterozygous individual
i, at age ¢ using a beta-binomial distribution, i.e., y;; ~
BB(nj, 0 (¢ift), ¢), where nj; is the total number of reads
for i in ¢, o() is the logistic function, ¢; represents the
phase between the causal cis-SNP and the exonic SNP and
is treated as a latent variable taking values in {—1,+1}.
We learn a prior 1 = P(¢; = +1) across all individuals
and marginalize (sum) over the possible values of 7. g is
the effect if age on the reference allele proportion. Last, ¢
is the concentration parameter which we learn per exonic
SNP using maximum a posteriori probability estimation
with a Gamma(1.0001, 1 x 10~%) prior. For analyses at the
population level (across multiple heterozygous individu-
als), we adapted EAGLE to handle repeated samples from
the same individual, i.e., iy ~ BB(nj, o (¢iBr + ui),c) ,
where u; ~ N(0,v) is a per individual, per exonic SNP ran-
dom effect. We use variational Bayes EM to approximately
integrate over all u_i while optimizing with respect to
the other parameters. EAGLE2 uses the Stan probabilistic
programming language [86].
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Quantification of alternative splicing

To quantify alternative splicing events, we followed the
LeafCutter [50] pipeline. In short, we first mapped the
130 RNA-Seq samples from PIVUS to the human genome
(hgl9) using STAR, allowing de novo splice junction
predictions. We then used LeafCutter [50] to iden-
tify alternatively excised introns by pooling all junction
reads. LeafCutter then defines “clusters” of alternatively
excised introns that represent alternative splicing choices.
This resulted in 78,373 alternatively excised introns from
24,126 clusters. Each cluster comprises of, on average, 3.2
introns (median = 3, min = 2, max = 51).

To identify alternative splicing events that are suitable
for differential splicing and sQTL by age analysis, we first
excluded clusters with more than 10 introns. Then, we
restricted our analyses to active introns, i.e., introns that
are supported by at least 10% of the total number of reads
supporting the clusters they belong to in at least 25% of
samples, considering each age separately. Clusters with
less than two active introns after this step were filtered
out. Last, we only considered clusters that exhibit some
minimum splicing variability, i.e., clusters with Hellinger’s
distance > 1% [87]. In the end, we had 14,917 clusters and
36,713 introns.

Background noise correction of alternative splicing data
As with the gene expression data, we used SVA [65],
setting age as variable of interest, to identify major compo-
nents of alternative splicing variability (Additional file 1:
Figure S8). More details about the implementation of
SVA can be found in Additional file 1. Using the Buja
and Eyuboglu [68] method, we estimated the number of
hidden factors that explains a significant amount of the
alternative splicing variability to be 14.

Differential splicing by age analysis

To identify alternative splicing events with age, we used
the Dirichlet-multinomial generalized linear model imple-
mented in LeafCutter [50]. We adjusted our analysis
for measured factors that explained more than 0.5% splic-
ing variability, i.e., RIN, proportion of intronic bases,
median insert size, and extraction year (Additional file 1:
Figure S8B). P values of association with age were calcu-
lated based on the likelihood ratio test. To call dsGenes,
i.e., genes with at least one significantly DS cluster, as well
as DS clusters for each dsGene, we used the R package
TreeQTL [76] controlling the FDR at 5% both at the gene
and gene-cluster level.

sQTL mapping

We wused linear regression, as implemented in
MatrixEQTL [75], to test for associations between ratios
of alternatively excised introns at each age group and
variants within 100 kb of the intron clusters, adjusting for
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splicing hidden factors. We control the FDR at 5% both at
the intron and intron-SNP level using TreeQTL [76].
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