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Abstract 45 

The UK Biobank Pharma Proteomics Project (UKB-PPP) is a collaboration between the UK 46 

Biobank (UKB) and thirteen biopharmaceutical companies characterising the plasma 47 

proteomic profiles of 54,306 UKB participants. Here, we describe results from the first phase 48 

of UKB-PPP, including protein quantitative trait loci (pQTL) mapping of 1,463 proteins that 49 

identifies 10,248 primary genetic associations, of which 85% are newly discovered. We also 50 

identify independent secondary associations in 92% of cis and 29% of trans loci, expanding 51 

the catalogue of genetic instruments for downstream analyses. The study provides an updated 52 

characterisation of the genetic architecture of the plasma proteome, leveraging population-53 

scale proteomics to provide novel, extensive insights into trans pQTLs across multiple 54 

biological domains. We highlight genetic influences on ligand-receptor interactions and 55 

pathway perturbations across a diverse collection of cytokines and complement proteins, and 56 

illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins 57 

with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for 58 

drug target discovery by extending the genetic proxied effect of PCSK9 levels on lipid 59 

concentrations, cardio- and cerebro-vascular diseases, and additionally disentangle specific 60 

genes and proteins perturbed at COVID-19 susceptibility loci. This public-private partnership 61 

provides the scientific community with an open-access proteomics resource of unprecedented 62 

breadth and depth to help elucidate biological mechanisms underlying genetic discoveries and 63 

accelerate the development of novel biomarkers and therapeutics. 64 

  65 
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Main 66 

Genetic studies of human populations are increasingly used as research tools for drug discovery 67 

and development. These studies can facilitate the identification and validation of therapeutic 68 

targets1,2, help predict long-term consequences of pharmacological intervention3, improve 69 

patient stratification for clinical trials4, and repurpose existing drugs5. Several precompetitive 70 

biopharmaceutical consortia have recently invested in population biobanks to accelerate 71 

genetics-guided drug discovery, enhancing massive-scale phenotype-to-genotype studies such 72 

as the UK Biobank (UKB)6,7 with comprehensive multi-omics profiling of biological samples8-73 

10. 74 

 75 

Ongoing private-public investments in biobank-based genetics are supported, in part, by a 76 

series of systematic analyses of historical drug development pipelines, all indicating that drugs 77 

developed with supporting evidence from human genetics are at least twice as likely to be 78 

approved11,12. Recent advances, such as the genetics-guided repurposing of drugs targeting 79 

IFNAR2 and ACE2 for early treatment of COVID-1913 and the identification of protective, 80 

protein-truncating variants implicating GPR75 as a therapeutic target for obesity14, further 81 

highlight the promise of these investments. Nonetheless, human genetics remains an imprecise 82 

instrument for biopharmaceutical research and development, as genome-wide association 83 

studies (GWAS) frequently implicate genetic variants without clear causal genes mediating 84 

their impact(s)15 or map to genes implicating putative drug targets with poorly understood 85 

biology or unclear mechanisms of modulation1. 86 

 87 

Combining human genetics with high-throughput proteomics could help bridge the gap 88 

between the human genome and human diseases16. Circulating proteins can provide insights 89 

into the current state of human health17 and partially capture the influences of lifestyle and 90 
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environment on disease pathogenesis18. Measuring thousands of proteins at population scale 91 

could improve genetic loss-of-function predictions19, help discover novel clinical biomarkers 92 

for improved patient stratification16, and improve fine-mapping of causal genes linked to 93 

complex diseases2,15. 94 

 95 

To date, most large-scale investigations have characterized genetic influences on blood plasma 96 

protein abundances using high-throughput aptamer20-24- or antibody-based22,25,26 assays. These 97 

studies have identified upwards of 18,000 associations between sequence variants and plasma 98 

protein concentrations (protein quantitative trait loci, pQTLs), using samples typically sourced 99 

from databases with proprietary subject-level access. The open-access framework27, deep 100 

phenotypic characterization6, and long-term development8,9,28 of population studies like UKB 101 

offers a unique opportunity to expand proteo-genomics to massive scale, broaden research use 102 

of high-throughput proteomic data, build more extensive pQTL databases, and accelerate the 103 

discovery of biomarkers, diagnostics and medicines. To fulfil these aims, we formed the UK 104 

Biobank Pharma Proteomics Project (UKB-PPP) - a precompetitive consortium of 13 105 

biopharmaceutical companies funding the generation of multiplex proteomic data using blood 106 

plasma samples from UKB. Here, we describe the measurement, processing, and downstream 107 

genetic analysis of 1,472 plasma analytes measured across 54,306 UKB participants using the 108 

antibody-based Proximity Extension Assay29. 109 
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Results 111 

Overview of UKB-PPP characteristics 112 

We conducted proteomic profiling on blood plasma samples collected from 54,306 UKB 113 

participants using the Olink Explore 1536 platform, measuring 1,472 protein analytes, 114 

capturing 1,463 unique proteins (Figure 1a, Supplementary Information, Extended Data 115 

Figure 1). This included a randomised subset of 46,673 UKB participants at baseline visit 116 

(“randomised baseline”), 6,385 individuals at baseline selected by the UKB-PPP consortium 117 

members (“consortium-selected”) and 1,268 individuals who participated in the COVID-19 118 

repeat imaging study at multiple visits (Figure 1a, Methods). 119 

 120 

The randomised baseline participants were highly representative of the overall UKB population 121 

for various demographic characteristics (Supplementary Table 1). Compared to the overall 122 

UKB participants, the consortium-selected participants were on average older (by 2.5 years, 123 

p=5.0x10-117), had lower proportion of women (by 3.2%, p=4.1x10-7), and higher body mass 124 

index (BMI, by 2.6 kg/m2, p=1.3x10-16), different smoking prevalence (p=2.1x10-6) and 125 

composition of self-reported ethnic background (UKB data field 21000) (p=3.8x10-296), with a 126 

higher proportion of non-white ethnicities (12% vs 6%) (Figure 1b, Supplementary Table 1). 127 

The COVID-19 imaging participants had a younger age distribution (difference in means of 128 

6.3 years, p=1.2x10-162), lower body mass index (BMI, by 1.1 kg/m2, p=1.7x10-20) and smoking 129 

prevalence (p=2.1x10-9), but were comparable to the overall UKB participants in sex, ethnic 130 

background, and blood group (Supplementary Table 1). 131 

 132 

Compared to the full UKB cohort, UKB-PPP participants were enriched for 122 diseases, 133 

spanning multiple systems, at a Bonferroni-corrected threshold of p<6.7x10-5 (0.05/746 134 

diseases), with no significant depletion in the diseases tested after multiple comparison 135 
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adjustment (Supplementary Table 2, Figure 1c). This enrichment was largely driven by the 136 

inclusion of consortium selected and COVID-19 imaging participants (Methods) as the 137 

enrichments were mostly attenuated when considering only the randomised baseline samples 138 

(Figure 1c); four diseases remained modestly enriched (1.08-1.09x) and two became depleted 139 

(0.48-0.49x) in the randomised baseline samples alone (Supplementary Table 2). 140 

 141 

Proteomic data processing and quality control  142 

Detailed information on the Olink assay, study-wide protein measurement, processing and 143 

quality control (QC) details are provided in Supplementary Information and outlined in 144 

Extended Data Figure 1 and Figure 1a. A total of 1,463 unique proteins were measured across 145 

four protein panels (Cardiometabolic, Inflammation, Neurology and Oncology, Figure 1a and 146 

Extended Data Figure 1), with 3 proteins (CXCL8, IL6, TNF) captured across all four protein 147 

panels (total=1,472 protein analytes, Supplementary Table 3). Globally, we did not observe 148 

batch effects, plate effects or abnormalities in protein coefficients of variation (CVs) 149 

(Supplementary Information). Protein CVs, representing intra-individual variability across 150 

duplicate samples, ranged from 2.4% to 25%, with a median of 6.3% (Supplementary Table 151 

3, Supplementary Information). We observed reasonably strong correlations between 152 

measurements across different panels for each of the 3 proteins measured on all four protein 153 

panels (Extended Data Figure 2a), with mean correlations of r=0.96 for CXCL8 (range: 0.95-154 

0.98), r=0.92 for IL6 (range: 0.88-0.95) and r=0.81 for TNF (range: 0.79-0.84). We also found 155 

strong correlation (r=0.85) for Cystatin C independently measured using the immuno-156 

turbidimetric approach in UKB. 157 

 158 
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Biological associations with age, sex and BMI 159 

In total, we found 1,126, 1,180 and 1,322 associations between protein levels and age, sex and 160 

BMI (as covariates in the same model, Methods) respectively at a Bonferroni-corrected 161 

threshold of p<3.4x10-5 (Extended Data Figure 3a, Supplementary Table 4). Many of the 162 

observed associations of protein levels with age, sex and BMI are either well-established or 163 

repeatedly reported in prior studies20,30-34 – such as those between age and levels of GDF15, 164 

CHRDL1, EDA2R; sex and leptin, prostasin and CGA; and BMI and leptin, IGFBP1 and 165 

IGFBP2 (Extended Data Figure 3a, Supplementary Table 4). Comparing association results 166 

between overlapping proteins measured using the aptamer-based SomaScan assay in the 167 

INTERVAL study20, we found significant correlations in relative effect sizes for age (r=0.45, 168 

p=5.3x10-37), sex (r=0.65, p=1.8x10-86) and BMI (r=0.67, p=4.4x10-94) (Extended Data 169 

Figure 3b).  170 

 171 

We also explored interaction effects between age, sex and BMI on protein levels in the same 172 

model. In total, we found 34 proteins levels with evidence of significant interactions (p<3.4x10-173 

5) between age, sex and BMI; 1,149 between age and sex; 463 between sex and BMI; and 531 174 

between age and BMI (Supplementary Table 5). For example, we found the strongest 175 

interaction between age and sex for glycodelin, also known as progesterone‐associated 176 

endometrial protein (PAEP, p=2.8x10-1445). Glycodelin is a glycoprotein expressed in 177 

mammary glands and endometrial tissues35. Levels of glycodelin decreased with age for 178 

females only, particularly before the age of menopause (~50 years), whilst for males, levels 179 

steadily increased with age (Figure 1d). After 55 years of age, levels of glycodelin slowly 180 

increased in females at a similar rate to males. These effects are consistent with the role of 181 

glycodelin in female reproductive tissues and their associated changes in hormone levels (such 182 
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as progesterone) around menopause35, demonstrating that the proteomic assay used in this 183 

cohort can capture physiological effects. 184 

 185 

Discovery of pQTLs 186 

Discovery pQTL analyses were performed in European ancestry participants from the 187 

randomised baseline cohort (n=35,571), which was broadly representative of the full UKB 188 

cohort, with the remaining samples (n=18,181) used as a replication cohort (Figure 1b-c, 189 

Supplementary Tables 1-2, Methods). We performed pQTL mapping of up to ~22.6 million 190 

imputed autosomal variants for 1,463 proteins post-QC, of which 1,425 proteins are encoded 191 

by genes on autosomes. We identified 10,248 significant primary associations across 2,928 192 

independent genetic regions at a multiple-corrected threshold of p<3.4x10-11 (Figure 2a, 193 

Supplementary Table 6). At a less stringent, single-phenotype genome-wide significance 194 

threshold of p<5x10-8, we found 9,150 additional associations for a total of 1,421 proteins. We 195 

base the ensuing results on associations that remained significant after adjustment for multiple 196 

testing, unless otherwise indicated. 1,377 of the 1,463 proteins tested (93.7%) had at least one 197 

pQTL at p<3.4x10-11, with 82% of proteins tested (1,162 of 1,425 proteins encoded by genes 198 

on autosomes) having a cis association (within 1Mb from the gene encoding the protein). We 199 

found a significant negative relationship between the number of pQTLs and the proportion of 200 

samples that were below limits of detection (LOD) for the proteins of interest (Spearman’s r=-201 

0.47, p= 2.7x10-82, Extended Data Figure 4a), where 67% of proteins without a pQTL (c.f. 202 

3.7% of proteins with pQTL(s)) have more than 50% of samples below LOD (Extended Data 203 

Figure 4b). We observed, on average, a median of 6 primary associations (5th-95th quantiles: 204 

1-19) per protein, with 56 proteins (3.8%) having ³20 associations (Figure 2b top). Genomic 205 

inflation was well-controlled, with median lGC=1.04 (standard deviation=0.018). The general 206 

inverse trend between effect size magnitudes and MAF remained for both cis and trans 207 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496443doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496443
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 9 

associations, with trans associations showing smaller magnitudes of effect sizes than cis 208 

associations (Figure 2c). Approximately 5.6% (570/10,248) and 1.5% (155/10,248) of the 209 

primary associations had MAF<1% and 0.5% respectively. 210 

 211 

1,163 of the 10,248 primary associations were in cis and 9,085 were in trans (>1Mb from the 212 

gene encoding the protein). 59%, 95% and 97% of the cis associations were within the gene, 213 

50Kb and 100Kb from the gene start site respectively. We found no systematic enrichment of 214 

trans pQTLs occurring on the same chromosomes as the protein tested after accounting for 215 

chromosome lengths (Fisher’s test p=0.89). All but two trans pQTLs on the same chromosome 216 

as the gene encoding the protein were >2Mb away from the corresponding gene (93% 217 

were >5Mb, 81% were >10Mb away).  218 

 219 

63% (1,835/2,928) of the independent genetic loci were associated with a single protein, whilst 220 

10% were associated with ³5 proteins (pleiotropic region), and 13 loci were extremely 221 

pleotropic, associated with ³100 proteins (Figure 2a). These included well-established 222 

pleiotropic loci such as MHC, ABO, ZFPM2, ARHGEF3, GCKR, SERPINA1, SH2B3 and 223 

ASGR1, all of which have previously been identified in large multiplex pQTL studies20,22-24.  224 

 225 

From the annotations of the primary pQTLs (Extended Data Figure 5), we identified 25 cis 226 

pQTLs annotated as potential high-impact variants (e.g., frameshift, stop gained, start lost, 227 

splice acceptor, splice donor, nonsense variants) (Supplementary Table 7). Among them, 10 228 

of the primary cis pQTLs variants code for start codon lost/stop codon gained, of which 9 have 229 

minor alleles leading to decreased corresponding protein levels (Supplementary Table 7). 18 230 

trans pQTLs SNPs were also annotated as potential high-impact. The majority of pQTLs 231 

identified in this study were located at non-coding regions. These non-coding pQTLs were 232 
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enriched in regulatory regions, including SNPs located at promoters, enhancers, transcription 233 

factor binding sites, CTCF binding sites, and open chromatin regions (hypergeometric test 234 

p=3.1x10-6; Supplementary Table 8). Of the cis pQTLs, 23% (273) were protein-altering 235 

variants, or in LD (r2>0.8) with protein-altering variants (Supplementary Table 9). Overall, 236 

at 49% (575) of primary cis associations, the index variant was in at least weak LD (r2>0.01) 237 

with a protein-altering variant.  238 

 239 

Replication of pQTLs 240 

96.6% (9,901/10,248) of all primary associations from the discovery cohort (99.9% 241 

[1,162/1,163] cis and 96.2% [8,739/9,085] trans associations) were also nominally significant 242 

(p<0.05) and directionally concordant in the replication set of 18,181 participants in UKB-PPP 243 

(Methods, Supplementary Table 6). After adjusting for the number of associated unique 244 

genomic regions (p<8.7x10-6), 95.7% (1,113) of cis and 60.3% (5,480) of trans associations 245 

remained significant and directionally concordant in the replication cohort, inline with previous 246 

large-scale studies20,22-24. Effect sizes were well-aligned between discovery and replication sets 247 

(r=0.99, p<10-300, Extended Data Figure 6a). Additionally, we observed good concordance 248 

of genetic associations between the three proteins measured across all four protein panels 249 

(CXCL8, IL6, TNF; Extended Data Figure 2b), reflecting their phenotypic correlations 250 

(Extended Data Figure 2a). The sentinel primary associations for these proteins were at least 251 

nominally GWAS significant across all other protein panels, suggesting good reproducibility 252 

of the same protein targets. 253 

 254 

Identification of novel pQTLs 255 

We cross referenced pQTLs identified in this study with multiple previously published pQTL 256 

results (Supplementary Information, Methods), finding that 85% of the primary associations 257 
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from the discovery cohort (9,098/10,248) had not been identified by a prior pQTL study 258 

(Supplementary Table 10). A larger percentage of trans pQTLs were novel (91%; 259 

9,309/10,248) than cis pQTLs (48%; 562/1,163). 260 

 261 

SNP-based heritability and variance explained by pQTLs 262 

We estimated SNP-based heritability as a sum of contributions from significant lead pQTLs 263 

(pQTL component) and the remaining SNPs across the genome (excluding the pQTL region), 264 

which assumes a polygenic model (polygenic component) using the approach described in 36 265 

(Supplementary Table 11, Methods). The mean total SNP-based heritability was 0.18 (5-95th 266 

quantiles: 0.02-0.44) (Figure 1d). On average, the cis primary pQTLs accounted for 19% of 267 

the overall heritability whilst the trans pQTLs accounted for 12% (Figure 2d, Extended Data 268 

Figure 6b). We found a significant correlation between the lead pQTL component and the 269 

polygenic component (Spearman’s r=0.52, p=4.7x10-102, Extended Data Figure 6c), with 270 

stronger correlations between polygenic component and trans pQTL (r=0.62, p= 1.6x10-155) 271 

component compared to cis (r=0.38, p= 3.5x10-53). 272 

 273 

Identification and fine mapping of independent signals 274 

We identified 20,540 conditionally independent signals and performed fine-mapping using 275 

SuSiE (Supplementary Table 12). 92% (1,069/1,163) of cis regions contained more than one 276 

signal (mean 6.0 signals per cis region) (Extended Data Figure 7). For 11 proteins, there were 277 

20 or more signals in the cis region, including CLUL1, KIR3DL1, and TPSAB1, which had 278 

34, 26, and 23 distinct signals respectively. By comparison, only 29% (2,658/9,133) of trans 279 

regions contained more than one signal (mean 1.5 signals per trans region). Joint tagging 280 

between two or more causal variants by another non-causal variant can boost the significance 281 

of the non-causal variant in the marginal association37-39. We observed evidence for boosting 282 
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at 3.3% (340) of tested associations, where the sentinel variant from the marginal analysis was 283 

not identified in any of the credible sets from the conditional analysis. Strong primary signals 284 

can mask the effect of independent signals in the same region, attenuating their significance in 285 

the marginal association40. We observed evidence for masking at 5.6% (1,142) of independent 286 

signals that were either not significant in the marginal analysis (p>0.05) or had opposite 287 

conditional effect directions compared to their marginal effect. Long-range regions such as the 288 

extended MHC locus have largely been ignored in large-scale genetic studies due to 289 

complicated LD structure. We observed 1,011 signals for 435 proteins mapping to the MHC 290 

locus, 139 of which were cis signals for 18 proteins. Together, these results underscore the 291 

importance of modelling all variants within an associated region for accurate signal 292 

identification. 293 

 294 

We used fine-mapping to narrow down credible sets of causal variants for each independent 295 

pQTL signal (Supplementary Table 13). The 95% credible sets contained an average of 22.7 296 

variants, and for 5,672 signals, we were able to determine the likely-causal variant. Credible 297 

sets for cis signals tended to be better resolved than those of trans signals (mean 95% credible 298 

set variants cis: 9.6; trans: 29.4), and were more likely to be fine-mapped to causality (signals 299 

with single variant in 95% credible set cis: 43%; trans: 20%). 300 

 301 

Trans associations highlight biological pathways and protein-protein 302 

interactions 303 

Biological enrichment for proteins with multiple trans associations 304 

For trans pQTLs associated with multiple independent regions (³5) across the genome, we 305 

performed gene-set enrichment analyses by Ingenuity Pathway Analysis (IPA) to identify 306 

enrichment of biological functions relevant to cell-to-cell signalling, cellular development, 307 
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development and process. We found enriched pathways for 201 proteins, including numerous 308 

enriched pathways in cellular activation, survival and signalling relevant to immune cells 309 

(Supplementary Table 14). For example, “activation of lymphocytes via IL8-signaling” was 310 

found to be enriched in trans pQTLs of CR2 protein. SNPs mapped to the nearest genes 311 

TNFSF13B, EGFR, PAK2, HLA-DRB1, CR2, TNFRSF13B, RUNX1, ST6GAL1, PAX5 and 312 

FOXO1 were associated with CR2 protein expression; these genes were also enriched in the 313 

IL8-signaling pathway that activates lymphocytes. In addition, we found enrichment in 314 

organismal injury mechanisms such as fibrosis (trans pQTLs associated with NCR1 and 315 

SMPD1) as well as in lipid metabolism, such as synthesis of triacylglycerol (trans pQTLs 316 

associated with SMPD1 and NAAA). 317 

 318 

Protein interactions involving genes at trans loci and target protein 319 

Trans associations may reflect protein interactions between the protein products of genes at the 320 

trans locus and the target protein (Figure 3a). Additionally, genes at/near trans loci may 321 

operate within the same pathway as the target protein and modulate target protein levels 322 

(Figure 3a).  323 

 324 

We used the Human Integrated Protein-Protein Interaction Reference (HIPPIE)41 to test if trans 325 

pQTL loci contained at least one gene that encoded for proteins interacting with the target 326 

protein tested. Overall, we found an interacting partner at trans loci for 593 proteins 327 

(Supplementary Table 15), including multiple receptor-ligand relationships. We found 328 

different gene products at the same pleiotropic trans loci interacting with different proteins 329 

with associations in those regions, which may explain certain pleiotropic effects. For 810 trans 330 

associations, we found a single, specific interacting protein candidate (Supplementary Table 331 

15). We also found 13 cases where the protein tested interacted with a protein in one of its 332 
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trans loci and vice versa, indicating established coupled interactions. For example, in the 333 

ADAMTS13-vWF axis, which plays a key role in thrombosis, we found ADAMTS13 levels 334 

to be associated with a trans pQTL (rs112814955) at the gene encoding von Willebrand factor 335 

(VWF) – the substrate of the ADAMTS13 enzyme. Reciprocally, we found the trans pQTL for 336 

vWF (rs505922) in the ABO region to be 141Kb upstream of ADAMTS13. Other reciprocating 337 

examples included BAG3-HSPB6, PLAU-PLAUR (UROK-UPAR), TNFB-TNR1A-TNR3, 338 

GAS6-AXL, MUC16-MSLN and ITGP2-ITGAM, which are well-established protein 339 

complexes, receptor-ligand pairings, and membrane complexes. Two less well studied 340 

interactions included TNXB-APP and COL18A1-C1QTNF1, underlining potential coupled 341 

pathways for further investigation.  342 

 343 

Notably, in addition to the HSPB6 trans pQTL at the BAG3 locus (rs2234962; Cys151Arg), 344 

we found trans associations for both proBNP (NPPB) and NT-proBNP. BAG3 functions 345 

through BAG3-HSP70-HSPB complexes, which play an important role in heart failure and 346 

cardiomyopathies42, including the same BAG3 signal (rs2234962) in previous GWAS of 347 

cardiomyopathies43,44. ProBNP and NT-proBNP are established biomarkers of heart failure and 348 

cardiac damage45. The rs2234962 pQTL is an independent secondary cis pQTL for BAG3 349 

levels from the primary cis pQTL (rs35434411, Supplementary Table 12), for which we did 350 

not find significant evidence of association with ProBNP (p=0.44) and NT-proBNP (p=0.058) 351 

levels. Taken together, these results provide additional evidence of the BAG3 rs2234962 352 

missense variant affecting BAG3-HSPB6 complexing, emphasizing the relevance of BAG3 to 353 

downstream blood biomarkers of heart failure and potentially cardiomyopathies. 354 

 355 
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Insights into cytokine and complement interactions and pathways 356 

We found multiple instances of receptor-ligand interactions at trans loci for circulating 357 

cytokines and TNF superfamily proteins/receptors (Supplementary Table 16). In addition to 358 

trans pQTLs for IL15 at genes encoding its receptor components (IL15RA and IL15RB), we 359 

also found trans pQTLs at both JAK1 and JAK3, which are proximal components of IL15 360 

signalling (Figure 3b); notably, the trans pQTL at JAK1 is a rare missense mutation 361 

(rs149968614, MAF=0.2%, Val651Met). Furthermore, we found that the variant rs4985556-362 

A, which causes a premature stop gain in IL34, is associated with decreased levels of IL34 in 363 

cis (beta=-1.07, p=2.0x10-1853) and decreased CD207 (also known as langerin) - a protein 364 

marker expressed in Langerhans cells - levels in trans (beta=-0.08, p=7.4x10-16). Whilst IL34 365 

and CD207 do not directly interact, this result is highly consistent with the crucial role of IL34 366 

in development and survival of Langerhans cells46. 367 

 368 

In the complement pathway, we found multiple trans pQTLs in genes for various constituents 369 

within the same complement pathway as the protein tested (Figure 3c). In particular, for 370 

protein MASP1, we found 6 of the 13 trans associations to lie in genes encoding other 371 

components of the complement pathway (including lectin pathway genes MASP2, MBL2, 372 

FCN3, COLEC11, C1-inhibitor gene SERPING1, and VTN), all of which, except VTN, show 373 

direct interactions with MASP1 (Figure 3c, Supplementary Table 15). Notably, the trans 374 

pQTL at FCN3 is a low-frequency frameshift variant (rs532781899, MAF=1.4%) leading to 375 

FCN3 deficiency47-50, and here, to reduced MASP1 levels (beta=-1.17, p=1.6x10-328). Similarly, 376 

we found a low frequency missense variant in MASP2 (rs72550870, Asp120Gly, MAF=3.1%), 377 

previously linked to MASP2 deficiency51-53, associated with reduced FCN2 levels in this study 378 

(beta=-0.21, p=9.3x10-32). We also found C2 levels to be associated with a trans pQTL at 379 

C1R/C1S and CD59 levels with a trans pQTL in the CFH-CFHR1-5 locus (Figure 3c). 380 
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 381 

Scaling of pQTL associations with increasing sample size and numbers of 382 

proteins assayed 383 

Previous studies have performed pQTL mapping across different sample sizes and varying 384 

numbers of proteins. Here, through sub-sampling of participants and proteins, we investigated 385 

how the number of associations scaled with sample size and number of proteins assayed 386 

(Figure 2e). We observed an initial increase in detectable cis pQTLs at sample sizes below 387 

5,000 before slowly plateauing as the number of cis pQTLs trended towards the number of 388 

proteins tested (1,463) – the upper bound. However, trans pQTLs continued to increase with 389 

larger sample sizes, without signs of plateauing at ~54,000 participants. 390 

 391 

Overall, the number of associations scaled linearly with the number of proteins measured 392 

(Figure 2f) with no obvious signs of plateauing for the current extent of proteome coverage. 393 

We found the mean proportion of variance explained by primary sentinel variants increased 394 

the most at sample sizes less than 5,000 (Figure 2g). Mean variance explained by cis 395 

associations quickly plateaued beyond samples sizes >5,000 whilst the mean variance 396 

explained by trans associations continued to slowly increase and drive most of the increase in 397 

mean variance explained at sample sizes >5000 (Figure 2g). 398 

 399 

We also found a shift towards an increasing number of genomic regions harbouring 400 

associations with multiple proteins with larger sample sizes, indicating greater detectability of 401 

pleiotropic loci at increased study sizes (Extended Data Figure 8a). Furthermore, we found a 402 

slightly sublinear increase in trans associations with genes encoding an interacting protein with 403 

the protein tested as sample size increased (Extended Data Figure 8b) – suggesting further 404 

trans target interacting loci to be found with larger studies. 405 
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 406 

Of the four trans pQTLs associated with IL15 levels in the IL15 signalling pathway, 407 

associations at the IL15RA, IL2RB, JAK1, JAK3 loci would not have been detected (p<3.4x10-408 

11) at sample sizes below 25,000, 10,000, 20,000 and 15,000, on average, respectively. 409 

Moreover, of the 6 trans associations for MASP1 in the complement pathway, associations at 410 

the MASP2, MBL2, FCN3, COLEC11, SERPING1 and VTN loci would not have been detected 411 

at sample sizes below 5,000, 1,000, 1,000, 1,000, 5,000, 10,000, on average, respectively. 412 

Hence, larger sample sizes would likely lead to increased discovery of trans pQTLs networks 413 

as opposed to isolated trans associations. 414 

 415 

Sensitivity analyses of pQTLs 416 

We also explored, a priori, the impact of blood cell composition, BMI, seasonal and fasting 417 

time before blood collection on pQTL effects (Supplementary Table 17, Extended Data 418 

Figure 9), discussed in more detail in Supplementary Information. Overall, the variables 419 

tested in the sensitivity analyses had limited impact on the majority of pQTLs. 420 

 421 

Co-localization with expression QTLs 422 

Integrating pQTL results from UKB-PPP with expression quantitative trait loci (eQTL) 423 

estimates from the eQTLGen54 GTEx (v8)55, we found that 36% (507/1,425 genes available) 424 

of proteins shared a casual variant with the corresponding gene expression using the 425 

HyPrColoc method56 (based on a posterior probability (PP) ≥ 0.7) (Supplementary Table 18-426 

19). 11% (111/1,023 genes available) colocalized with an eQTL in whole blood 427 

(Supplementary Table 18) and 32% (457/1,425 genes) colocalized with eQTL(s) in at least 428 

one tissue type (Supplementary Table 19). Of all targets which provided evidence of 429 

colocalization with eQTLs from the eQTLGen and GTEx consortia, 191 protein targets 430 
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provided evidence of colocalization with gene expression in only one of the 49 tissues analysed 431 

(Extended Data Figure 10a). 432 

  433 

Comparing the directions of effect for lead cis pQTL for colocalizing protein-expression 434 

combinations across tissues revealed that these were typically concordant with respect to 435 

circulating proteins and gene expression levels (Extended Data Figure 10b), with 93.7% of 436 

eQTLGen and 83.6% of GTEx protein-expression combinations sharing the same direction of 437 

effect. Pervasive discordant directions of effect for molecular QTLs on gene expression and 438 

protein levels are an established phenomenon throughout the human genome, which has been 439 

postulated to be attributed to factors such as protein degradation and genetic canalization22,57. 440 

Other possible explanations for discordant directions of effect include the blood-brain barrier, 441 

which may be relevant for genes such as PARK7, whose circulating protein shared the same 442 

direction of effect with its gene expression in 4 tissues (esophagus mucosa, heart atrial 443 

appendage, spleen and whole blood) but the opposite direction of effect in the cerebellum 444 

(Extended Data Figure 10c). 445 

 446 

Specific insights into disease, biology and potential drug targets 447 

Proteomic insights into COVID-19 associated loci 448 

The COVID-19 pandemic continues to accelerate research into the mechanisms and pathways 449 

influencing risk of COVID-19 infections and potential target candidates for drug compounds. 450 

Here we integrated pQTL data with the largest GWAS meta-analysis of reported and 451 

hospitalized COVID-19 cases conducted to date (https://www.covid19hg.org/results/r7/) using 452 

multi-trait colocalization under the HyPrColoc framework56. 453 

 454 
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For three of the COVID-19 hospitalization loci, we found high posterior probability of 455 

colocalization (PP>0.9) with pQTLs for proteins enriched for expression in lungs, including 456 

surfactant protein D (SFTPD), lysosome-associated membrane glycoprotein 3 (LAMP3) and 457 

mesothelin (MSLN) (Supplementary Table 20). At the MUC5B locus, we found evidence of 458 

multi-trait colocalizations with SFTPD, LAMP3 and MSLN trans pQTLs, driven by the 459 

MUC5B promoter variant, rs35705950 (PP=1, Figure 4a). Additionally, the cis SFTPD 460 

association colocalized with a COVID-19 hospitalization association at the SFTPD locus, 461 

driven by the SFTPD missense variant, rs721917 (PP=0.93). SFTPD has previously been 462 

causally implicated by Mendelian randomization studies for chronic obstructive pulmonary 463 

disorder58 and COVID-19 hospitalization59 risks. At the SLC22A31 COVID-19 hospitalization 464 

locus, we also found colocalizations with another trans LAMP3 pQTL, driven by the 465 

SLC22A31 missense variant, rs117169628 (PP=0.998). Apart from the pleiotropic ABO locus, 466 

all proteins showing evidence of pQTLs colocalizing with COVID19 hospitalization loci 467 

(PP>0.7; SFTPD, MUC5B, ELF5, SLC22A31 and TYK2 loci; Supplementary Table 20) 468 

showed a 24-fold enrichment for their corresponding gene expression in the lungs (p=1.4x10-469 

4). 470 

 471 

In addition to colocalization at the pleiotropic ABO locus, we also found evidence of 472 

colocalization between the gene-dense region containing TYK2, ICAM-encoding genes at 473 

chromosome 19, and the interleukin-12 receptor subunit beta-1 (IL12RB1) trans pQTL 474 

(PP=0.95, rs34536443, TYK2 P1104A). This pQTL is consistent with TYK2 partial loss of 475 

function caused by P1104A. No additional colocalizations were identified for the other 23 476 

proteins with associations overlapping this locus, including ICAM-1,3,4 and 5 (Figure 4b). 477 

 478 
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ABO blood group and FUT2 secretor epistasis effects 479 

We observed pleiotropic associations at the ABO blood group and fucosyltransferase 2 (FUT2) 480 

loci on chromosomes 9 and 19 respectively. The FUT2 enzyme facilitates expression of ABH 481 

antigens on red cells of corresponding blood groups in mucal and gastro-intestinal (GI) 482 

secretions. Approximately 20% of white Europeans are homozygous for deletion of the FUT2 483 

functional secretor allele (rs601338, Trp154Ter), leading to truncation and inactivation of the 484 

enzyme and non-secretion of the blood group antigens60. The FUT2 deletion has been 485 

associated with cholestatic and gastrointestinal conditions61-63. This led us to explore the 486 

biologically informed hypothesis that FUT2 secretor status modifies the effect of blood group 487 

antigen expression on protein levels, serving as an example of long-range gene-by-gene 488 

interaction. 489 

 490 

We did not observe any evidence of dependencies between ABO blood group genotypes and 491 

FUT2 secretor status (c2 p=0.65). At a multiple testing corrected threshold of p<3.4x10-5, 352 492 

proteins were associated with ABO blood groups and 165 proteins were associated with 493 

secretor status (Supplementary Table 21). We found significant interaction between blood 494 

group and secretor status for 38 proteins. For example, CDH17, CDH1 and CGREF1 plasma 495 

levels were higher in blood group B participants compared to group A in secretors only, whilst 496 

for GALNT3, we saw the opposite effect (Figure 5a). We saw that the extent of differences in 497 

protein levels between secretors and non-secretors varied depended on the blood group for 498 

these proteins. We also replicated the only previous reported such interaction effect seen for 499 

alkaline phosphatase (ALP) in a Japanese cohort64. 500 

 501 

We found significant gene expression enrichments for proteins with significant interaction 502 

effects across multiple human gastrointestinal tissues65, including duodenum, small intestine, 503 
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colon, rectum, and pancreas – consistent with the role of FUT2 in GI secretions (Figure 5b 504 

left). Enrichment in the intestine was also observed in orthologous genes in a mouse tissue 505 

expression data66 (Figure 5b right), indicating a degree of conservation between these two 506 

species. 507 

 508 

Our results provide evidence of blood group and secretor interaction in the modulation of 509 

proteomic concentrations, which may underline susceptibility to various FUT2/ABO 510 

associated GI conditions.  511 

 512 

Inflammasome pathway connections 513 

Inflammasomes are multimeric protein complexes that mediate innate immune responses, 514 

primarily through the activation of CASP1 and subsequent cleavage, activation, and non-515 

canonical secretion of pro-inflammatory cytokines IL-18 and IL-1b67,68. Rare, protein altering 516 

variants in inflammasome components are known to cause many inherited autoinflammatory 517 

conditions69. The causal relationship between genetic alterations in the inflammasome and 518 

autoinflammation has been clinically validated by their successful treatment with anti-IL-1b 519 

therapies70. 520 

 521 

In this study, we observed multiple trans pQTL associations between inflammasome 522 

components and downstream effector proteins CASP1, IL-18, and IL-1b (Supplementary 523 

Table 22). These associations included genes that encode inflammasome scaffolding proteins 524 

(NLRC4, NLRP6, and NLRP12); negative regulators of inflammasome activity (VDR, 525 

CARD18); and GSDMD, which enables the non-canonical secretion of IL-18 and IL-1b, and is 526 

an activator of pyroptosis (Supplementary Table 22). Associations at the NLRP12 527 

inflammasome locus are discussed in Supplementary Information. 528 
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 529 

Taken together, these results indicate that - in addition to known, rare, highly penetrant, 530 

disease-causing variants – common forms of genetic variability play a more subtle, but 531 

significant, role in inflammasome-mediated innate immune responses.  532 

 533 

PCSK9 pQTLs reflect pharmacological effects on cholesterol and indicated diseases 534 

The causal effects of PCSK9 levels on LDL and total cholesterol have been well established 535 

through various orthogonal means, with several randomized clinical trials demonstrating the 536 

efficacy of PCSK9 inhibitors on cholesterol levels and cardiovascular events71-74. Leveraging 537 

multiple cis pQTLs as genetic instruments to proxy directly for the effect of PCSK9 levels, we 538 

employed Mendelian randomization to examine causal effects of PCSK9 levels on lipids (HDL, 539 

LDL and total cholesterol), cardiovascular outcomes (coronary heart disease (CHD), 540 

myocardial infarction (MI)) and ischaemic stroke (IS: large-artery (IS-LA) and small-vessel 541 

(IS-SV) subtypes) (Methods). 542 

 543 

For lipids, we found significant causal effects of increased PCSK9 on increased LDL 544 

cholesterol (MRLDL=0.45, p=6.5x10-41) and total cholesterol (MRTC=0.31, p=4.0x10-24), and 545 

decreased HDL cholesterol (MRHDL=-0.04, p=0.011) (Extended Data Figure 11). We also 546 

found significant causal associations with increased risk of CHD (MRlog(CHD OR)=0.24, 547 

p=2.2x10-10) and MI (MRlog(MI OR)=0.27, p=9.3x10-10). For stroke, we found significant causal 548 

associations with increased risk of large artery ischaemic stroke subtype (MRlog(IS-LA OR)=0.27, 549 

p=0.011). Whilst genetic PCSK9 effects on LDL, total cholesterol and CHD have been found 550 

previously36,75, effects of PCSK9 on HDL cholesterol and large artery ischaemic stroke have 551 

not been substantiated by previous MR studies, likely due to decreased power. These findings 552 
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extends the corroborated effects observed across multiple randomised clinical trials of PCSK9 553 

inhibitors72. 554 

  555 
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Discussion 556 

High-throughput proteomic profiling of population biobanks holds the potential to accelerate 557 

our understanding of human biology and disease. Here, we present findings from one of the 558 

largest proteogenomic studies conducted to date, combining blood plasma measurements of 559 

1,463 proteins with imputed genome-wide genotyping of 54,306 individuals in the UK Biobank. 560 

The study constructs an updated genetic atlas of the plasma proteome, identifying 10,248 561 

primary associations with 1,377 protein levels, and provides the scientific community with an 562 

open-access, population-scale proteomics resource with individual level data and deep 563 

phenotypic integration, facilitating downstream experimentation.  564 

 565 

We demonstrate the utility of these data for basic biological discovery using distinct examples 566 

– capturing multiple biological signalling networks, protein interactions, and long-range 567 

epistatic effects. We also underline potential use cases for drug discovery and development by 568 

validating the well-established causal relationship between PCSK9, lipid levels, cardiovascular 569 

disease and stroke, and highlight potential targets and mechanisms for COVID-19 risk. Our 570 

results expand the catalogue of genetic instruments for downstream MR and associated 571 

genomic loci for multi-trait colocalization. The availability of individual-level data should 572 

accelerate both applied and methodological studies that would not be possible with summary 573 

data. The inclusion of consortium selected samples, enriched for a range of diseases across 574 

multiple systems, also increases power for prospective proteome-disease association studies, 575 

facilitating biomarker discovery for rare conditions such as spinal muscular atrophy, where 576 

case counts are boosted by approximately five-fold compared to random sampling.  577 

 578 

The size and breadth of this study enabled us to estimate how the genetic architecture of pQTLs 579 

scales with increasing sample size and proteome coverage, potentially guiding decisions for 580 
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future proteogenomic investments. We found that the discovery of cis pQTLs is saturated to 581 

the number of proteins tested after ~10,000 samples. Although trans association discoveries 582 

continue to increase, the heritabilities explained by trans loci increase at a slower rate beyond 583 

10,000 samples. Therefore, we anticipate most gains from future, larger-scale studies to be 584 

driven by the detection of trans associations, rare associations and associations with proteins 585 

not previously tested. The next phase of UKB-PPP will increase the total number of plasma 586 

measurements to 2,926 unique proteins, employing the Olink Explore 3072 assay to the same 587 

individuals described in this study. We will also include 4,500 plasma samples collected 588 

approximately 10 years after initial blood draws from this randomised cohort, facilitating 589 

expanded longitudinal analyses.  590 

 591 

Given the predominantly white European ancestral composition of UKB, the project was 592 

largely unable to capture the full genetic and phenotypic diversity of the human population. 593 

Thus, the present study and its expansion project will likely miss important insights in non-594 

European individuals. We encourage prospective users of these data to integrate additional 595 

proteogenomic data from under-represented populations76, and strongly recommend that future 596 

investments in population proteomics prioritize genetic diversity in their cohort selection(s)77. 597 

 598 

The study highlights the strengths of the antibody based Olink® Explore Assay for pQTL 599 

detection and downstream biological discovery. However, the Explore 1536 assay captures less 600 

than 10% of the canonical human proteome, and affinity-based platforms largely overlook 601 

protein isoforms and proteoforms generated by post-translational modifications. To address 602 

these issues, the consortium has initiated a systematic evaluation of affinity- and mass 603 

spectrometry-based assays, assessing the relative sensitivity, specificity, and scalability of the 604 

platforms, alongside the proportion of validated human proteins and proteoforms captured by 605 
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each. Orthogonal validation of antibody-based proteomics using aptamer- and mass 606 

spectrometry-based assays is strongly recommended before population-scale proteomics 607 

studies expand to sample sizes of 100,000 and beyond. 608 

 609 

Following on from the successful exome sequencing and the ongoing whole genome 610 

sequencing of UK Biobank, the Pharma Proteomics Project builds on the precompetitive 611 

industry collaboration framework in generating high-dimensional, population-scale data for the 612 

advancement of science and medicine. The wider research community will be able to leverage 613 

this open-access resource to test hypotheses crucial to the development of improved diagnostics 614 

and therapeutics for human disease. 615 

  616 
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Methods 617 

UK Biobank participants 618 

UK Biobank (UKB) is a population-based cohort of approximately 500,000 participants aged 619 

40-69 years recruited between 2006 and 2010. Participant data include genome-wide 620 

genotyping, exome sequencing, whole-body magnetic resonance imaging, electronic health 621 

record linkage, blood and urine biomarkers, physical and anthropometric measurements. 622 

Further details are available at https://biobank.ndph.ox.ac.uk/showcase/. All participants 623 

provided informed consent. This research has been conducted using the UK Biobank Resource 624 

under approved application numbers 65851, 20361, 26041, 44257, 53639, 69804. 625 

 626 

UKB-PPP sample selection and processing 627 

Details of UKB participant selection and sample handling are detailed in Supplementary 628 

Information. 629 

 630 

Proteomic measurement, processing and quality control 631 

Details of the Olink proteomics assay, data processing and quality control are detailed in 632 

Supplementary Information. 633 

 634 

Genomic data processing 635 

UKB genotyping and imputation (and quality control) were performed as described previously6. 636 

In addition to checking for sex mismatch, sex chromosome aneuploidy, and heterozygosity 637 

checks, imputed genetic variants were filtered for INFO>0.7, MAC>50 and chromosome 638 

positions were lifted to hg38 build using LiftOver78. European ancestry was defined using the 639 

Pan-UKBB definitions in UKB return dataset 2442, “pop = EUR”. 640 
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 641 

Genetic association analyses 642 

GWAS were performed using REGENIE v2.2.1 via a two-step procedure to account for 643 

population structure detailed in 79. In brief, the first step fits a whole genome regression model 644 

for individual trait predictions based on genetic data using the leave one chromosome out 645 

(LOCO) scheme. We used a set of high-quality genotyped variants: minor allele frequency 646 

(MAF)>1%, minor allele count (MAC)>100, genotyping rate >99%, Hardy-Weinberg 647 

equilibrium (HWE) test p>10−15, <10% missingness and linkage-disequilibrium (LD) pruning 648 

(1000 variant windows, 100 sliding windows and r2<0.8). The LOCO phenotypic predictions 649 

were used as offsets in step 2 which performs variant association analyses using standard linear 650 

regression. We limited analyses to variants with INFO>0.7 and MAC>50 to minimise spurious 651 

associations.  652 

 653 

In the discovery cohort (n=35,571), we included participants of European ancestry from 654 

batches 1-6, and excluded the pilot batch, plates which were normalised separately, and batch 655 

7 (COVID-19 imaging longitudinal samples and baseline samples showing increased 656 

variability and mixed with COVID-19 imaging samples). Participants not included in the 657 

discovery cohort were included in the replication cohort, which consisted of 14,706 White, 658 

1,225 Black/Black British, 998 Asian/Asian British, 148 Chinese, 339 Mixed, 613 Other and 659 

152 missing ethnic backgrounds based on the self-reported ethnicities in UKB (data field 660 

21000). 661 

 662 

For the discovery cohort, association models included the following covariates: age, age2, sex, 663 

age*sex, age2*sex, batch, UKB centre, UKB genetic array, time between blood sampling and 664 

measurement and the first 20 genetic principal components (PCs). The covariates in the 665 
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replication cohort additionally included whether the participant was pre-selected, either by the 666 

UKB-PPP consortium members or as part of the COVID imaging study.  667 

 668 

To ensure reproducibility of the analysis protocol, the same proteomic QC and analysis 669 

protocols were independently validated across two additional sites using the same initial input 670 

data on the three proteins measured across all protein panels (CXCL8, IL6, TNF). 671 

 672 

Definition and refinement of significant loci 673 

We used a conservative multiple comparison-corrected threshold of p<3.4x10-11 (5x10-8 674 

adjusted for 1,463 unique proteins) to define significance. We defined primary associations 675 

through clumping ±1Mb around the significant variants using PLINK80, excluding the HLA 676 

region (chr6:25.5-34.0Mb) which is treated as one locus due to complex and extensive LD 677 

patterns. Overlapping regions were merged into one, deeming the variant with the lowest p-678 

value as the sentinel primary associated variant. To determine regions associated with multiple 679 

proteins, we iteratively, starting from the most significant association, grouped together regions 680 

associated with proteins containing the primary associations that overlapped with the 681 

significant marginal associations for all proteins (p<3.4x10-11). In cases where the primary 682 

associations contained marginal associations that overlapped across multiple groups, we 683 

grouped together these regions iteratively until convergence. 684 

 685 

Variant annotation  686 

Annotation was performed by Ensembl Variant Effect Predictor (VEP), ANNOVAR 687 

(https://annovar.openbioinformatics.org/en/latest/) and WGS Annotator (WGSA, 688 

https://sites.google.com/site/jpopgen/wgsa). The gene/protein consequence was based on 689 

RefSeq and Ensembl. We reported exon and intron numbers that a variant falls in as in the 690 
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canonical transcripts. For synonymous mutations, we estimated rank of genic intolerance and 691 

consequent susceptibility to disease based on the ratio of loss-of-function. For coding variants, 692 

SIFT and PolyPhen scores for changes to protein sequence were estimated. For non-coding 693 

variants, transcription factor binding site, promoters, enhancers and open chromatin regions 694 

were mapped to histone marks chip-seq, ATAC-seq and DNase-seq data from The 695 

Encyclopedia of DNA Elements Project (ENCODE, https://www.encodeproject.org) and 696 

ROADMAP Epigenomics Mapping Consortium (http://www.roadmapepigenomics.org). For 697 

intergenic variants, we mapped the 5’ and 3’ nearby protein coding genes and provided distance 698 

(from 5’ transcription starting site of a protein coding gene) to the variant. Combined 699 

Annotation Dependent Depletion score (CADD, https://cadd.gs.washington.edu) was 700 

estimated for non-coding variants. An enrichment analysis hypergeometric test was performed 701 

to estimate enrichment of the associated pQTL variants in specific consequence or regulatory 702 

genomic regions. 703 

 704 

Cross referencing with previously identified pQTLs 705 

To evaluate whether the pQTLs in the discovery set were novel, we used a list of published 706 

pQTL studies (http://www.metabolomix.com/a-table-of-all-published-gwas-with-proteomics/) 707 

and the GWAS catalog to identify previously published pQTL studies. Twenty-six studies were 708 

included (Supplementary Information). Using a p-value threshold of 3.4x10-11, we identified 709 

the sentinel variants and associated protein(s) in the previously published studies and queried 710 

those against our discovery pQTLs. If a previously associated sentinel variant-protein pair fell 711 

within a 1Mb window of the discovery set pQTL sentinel variant for the same protein and had 712 

an r2>0.8 with any significant SNPs in the region, it was considered a replication.   713 

 714 
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Heritability analysis 715 

We estimated the SNP-based heritability as a sum of variance explained (VE) from the primary 716 

sentinel variants for each protein at each loci (pQTL component) and the polygenic component 717 

using the genome-wide SNPs excluding the pQTL regions of each protein. The polygenic 718 

component, which mostly likely satisfies the polygenic model of small genetic contributions 719 

across the genome, was estimated using LD-score regression81. 720 

 721 

Identification and fine mapping of independent signals 722 

We used the Sum of Single Effects model (SuSiE, version 0.12.6)39 to identify and fine map 723 

independent signals from subject level data. To create test regions that accounted for potential 724 

long-range LD, we performed a two-step clumping procedure using PLINK with parameters 1) 725 

“--clump-r2 0.1 --clump-kb 10000 --clump-p1 3.4e-11 --clump-p2 0.05” on the summary 726 

statistics and 2) “--clump-kb 500” on the results of the first clumping step. For each clump, we 727 

extended the coordinates of the left- and right-most variants to a minimum size of 1 Mb. We 728 

merged overlapping clumps and defined these as the test regions. For each test region, we 729 

applied SuSiE after pruning pairs of related samples (1st or 2nd degree relations) and regressing 730 

out the same covariates as the main analysis with parameters “min_abs_corr=0.1, L=10, 731 

max_iter=100000, refine=TRUE”. For test regions where SuSiE found the maximum number 732 

of independent signals, which was initially set at “L=10”, we incremented “L” by 1 until no 733 

additional signals were detected (up to a maximum of L=35 for the cis-region of CLUL1). 734 

 735 

Pathway enrichment and protein interactions 736 

For pleiotropic pQTL loci and multiple associated trans pQTL proteins, gene-set enrichment 737 

analyses were performed by Ingenuity Pathway Analysis (IPA) to identify enrichment of 738 

biological functions relevant to cell-to-cell signaling, cellular development, development and 739 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496443doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496443
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 32 

process. Gene pathways and networks annotated based on STRING-db and KEGG pathway 740 

databases were also used for enrichment analyses. Hypergeometric tests were performed to 741 

estimate statistical significance and hierarchical clustering trees and networks summarizing 742 

overlapping terms/pathways were generated. To correct for multiple testing, the false discovery 743 

rate (FDR) was estimated. FDR < 0.01 was considered as statistical significance. 744 

 745 

To test if trans pQTL loci contained at least one gene (within 1Mb of the trans pQTL) that 746 

encoded for proteins interacting with the tested protein, we used the curated protein interaction 747 

database: Human Integrated Protein-Protein Interaction Reference (HIPPIE)41 release v2.3 748 

(http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/download.php). 749 

 750 

Sub-sampling analysis 751 

To estimate how the number of associations scaled with sample size, we took random samples 752 

without replacement of [1,000, 5,000, 10,000, 15,000, 20,000, 25,000 and 30,000] from the 753 

discovery randomized baseline cohort, then performed the association analyses of the primary 754 

sentinel variant and examined the proteomic variance explained in the exact same manner as 755 

the main analyses described above. We also examined how associations scaled with the number 756 

of proteins measured by random sub-sampling [10, 50, 100, 200, 400, 800, 1200] proteins from 757 

the results. We also performed multiple samples (n=3) to check consistency and stability of 758 

sub-sampling results across runs. 759 

 760 

Sensitivity analyses  761 

The variables for sensitivity analyses were chosen a priori to avoid post-hoc biases. 762 

Effects of blood cell counts 763 
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We investigated the effect of blood-cell (BC) composition on the genetic association with 764 

plasma proteins through sensitivity analyses of pQTLs from the discovery analyses.  The top 765 

hits from the discovery analyses were re-analysed adjusting for the following blood-cell 766 

covariates: monocyte count; basophil count; lymphocyte count; neutrophil count; eosinophil 767 

count; leukocyte count; platelet count; hematocrit percentage; hemoglobin concentration. 768 

These blood-cell covariates were selected to represent blood-cell composition due to their 769 

common clinical use. Prior to the analyses, we followed the methods in 82 to exclude blood-770 

cell measures from individuals with extreme values or relevant medical conditions. Relevant 771 

medical conditions for exclusion included pregnancy at the time the complete blood count was 772 

performed, congenital or hereditary anemia, HIV, end-stage kidney disease, cirrhosis, blood 773 

cancer, bone marrow transplant, and splenectomy. Extreme measures were defined as 774 

leukocyte count >200x109/L or >100x109/L with 5% immature reticulocytes, hemoglobin 775 

concentration >20 g/dL, hematocrit >60%, and platelet count >1000x109/L. After blood-cell 776 

measure exclusions, all individuals in the discovery cohort without blood-cell measures had 777 

each measure imputed to the mean of the cohort. Following these exclusions and QC, genetic 778 

analyses of the sentinel variant – protein associations adjusted for blood-cell covariates were 779 

performed using the same approach as the main analysis. 780 

 781 

We further tested whether blood cell composition is partially or fully mediating variant-protein 782 

associations (Genotype -> BC measure -> Protein) for genetic associations significant within 783 

the discovery (p<3.4x10-11) and not in the sensitivity analyses (p>3.4x10-11). For each variant 784 

– protein association, we first identified the BC phenotypes that were associated with protein 785 

levels at p<3.4x10-11 within a multivariate linear regression model including blood cell 786 

phenotypes as the predictors, protein as the outcome and adjusted for all other covariates 787 

included in the discovery analysis. We then confirmed if there was an association between the 788 
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genetic variant (dosage) and each of the blood cell phenotypes (Genotype -> BC) and between 789 

blood cell phenotype and the protein (BC -> Protein) prior to testing for mediation. In the final 790 

test, we compared the strength of associations, Genotype -> Protein, to that of the Genotype -> 791 

Protein in a multivariate model (Protein ~ Dosage + BC phenotype + Discovery Covariates) to 792 

establish whether the variant – protein association is either fully (p>0.01) or partially 793 

(p<3.4x10-11) mediated by the blood cell phenotype. 794 

 795 

Effects of BMI 796 

We investigated the effect of BMI on the genetic association with plasma proteins through 797 

sensitivity analyses of pQTLs from the discovery analyses. The primary associations from the 798 

discovery analyses were re-analysed using the same approach as the main analysis including 799 

BMI [data field: 21001] as an additional covariate.  800 

 801 

Effects of season and amount of time fasted at blood collection  802 

To assess the effects of season and amount of time fasted at blood collection on variant 803 

associations with protein levels, we re-analysed all sentinel pQTLs identified in the main 804 

discovery analyses including season and fasting time as two additional covariates. Blood 805 

collection season (summer/autumn: June to November vs. winter/spring: December to May) 806 

was defined based on the blood collection date and time (data-field: 3166). Participant-reported 807 

fasting time was derived from data-field 74 and was standardized (Z-score transformation) 808 

prior to analysis. 809 

 810 

Co-localization analyses 811 

We investigated evidence of shared genetic variation between the 1,425 circulating proteins 812 

encoded by autosomal genes and their tissue-specific gene expression using the HyPrColoc 813 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 18, 2022. ; https://doi.org/10.1101/2022.06.17.496443doi: bioRxiv preprint 

https://doi.org/10.1101/2022.06.17.496443
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 35 

approach56. Analyses were conducted using variant-level priors; alignment probabilities and a 814 

posterior probability of colocalization (PP) ≥ 0.7 threshold was applied to indicate evidence of 815 

shared genetic variation. For each circulating protein in turn, we aggregated cis pQTL estimates 816 

around their encoding gene region (+/-500kbs) from the discovery UKB-PPP GWAS as well 817 

as cis-expression quantitative trait loci (eQTL) using whole blood derived findings from the 818 

eQTLGen consortium54 and 48 other tissue types from the GTEx consortium55 (v8). This 819 

included all available tissues with eQTLs in GTEx, excluding whole blood, as these data were 820 

included in the eQTLGen meta-analysis. 821 

  822 

Next, for circulating proteins which provided evidence of colocalization in this previous 823 

analysis, we assessed whether lead cis pQTL influenced protein levels and gene expression in 824 

the same direction (for gene expression in tissues which provided evidence of colocalization). 825 

Lead cis pQTL were selected as those with the smallest p-value that also existed in the 826 

corresponding eQTL dataset which were not palindromic variants. 827 

 828 

For colocalization with COVID-19 loci, the top loci reported by the COVID-19 Host Genetics 829 

consortium (https://app.covid19hg.org/variants) were updated with estimates from the R7 830 

summary results (https://www.covid19hg.org/results/r7/) for hospitalised COVID-19 cases 831 

and reported COVID-19 infections compared to population controls. 832 

 833 

PCSK9 Mendelian randomization 834 

Instrument selection and outcomes 835 

Instruments to proxy for altered PCSK9 abundance were generated using variants associated 836 

in cis (within 1Mb of the PCSK9 gene-coding region) at genome-wide significance (p<5x10-8) 837 

to minimise pleiotropic effects. We performed LD clumping to ensure SNPs were independent 838 
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(r2 < 0.01) by using an in-sample reference panel of 10,000 UK Biobank participants. We 839 

removed SNPs with a F-statistic less than 10 to avoid weak instrument bias. 840 

 841 

Outcomes of interest were measurements of cholesterol, including low-density lipoprotein 842 

cholesterol (LDL-c), high-density lipoprotein cholesterol (HDL-c), triglycerides (TG) and total 843 

cholesterol (TC); coronary heart disease (CHD) and myocardial infarction (MI); ischemic 844 

stroke large artery atherosclerosis and small-vessel subtypes. Data for these outcomes were 845 

extracted from the OpenGWAS project83,84. PCSK9 pQTL effects were harmonised to be on 846 

the same effect allele. If the variant was not present in the outcome dataset, we searched for a 847 

proxy SNP (r2>0.8) as a replacement if available. 848 

 849 

MR analysis 850 

We performed two-sample MR on the harmonised effects to estimate the effect of genetically 851 

proxied PCSK9 abundance on genetic liability to the outcomes of interest. We estimated the 852 

effects for each individual variant using the two-term Taylor series expansion of the Wald ratio 853 

(WR) and the weighted delta inverse variance weighted (IVW) to meta-analyse the individual 854 

SNP effects to estimate the combined effect of the WRs. Results from the MR analyses were 855 

interrogated using standard sensitivity analyses. We used Steiger filtering to provide evidence 856 

of whether the estimated effect was correctly orientated from PCSK9 abundance to the 857 

outcome and not due to reverse causation. 858 

 859 

ABO blood group and FUT2 secretor status analysis 860 

ABO blood group was imputed through the genetic data using three SNPs in the ABO gene 861 

(rs505922, rs8176719, and rs8176746) following the blood-type imputation method in UKB 862 

(https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=23165), developed from 85-88. FUT2 secretor 863 
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status was determined by the inactivating mutation (rs601338), with genotypes GG or GA as 864 

secretors and AA as non-secretors. Interaction term between blood group (O as reference group) 865 

and secretor status was tested adjusting for the same covariates as in the main pQTL analyses 866 

for each protein separately. A multiple testing threshold of p<3.4x10-5 (0.05/1,463 proteins) 867 

for the interaction terms was used to define statistically significant interaction effects. 868 

 869 

Enrichment for gene expression in tissues 870 

Tissue enrichment of associated proteins was tested using the TissueEnrich R package 871 

(v1.6.0)89, using the genes encoding proteins on the Olink panel as background. For enrichment 872 

in human genes, we used the RNA dataset from Human Protein Atlas65 using all genes that are 873 

found to be expressed within each tissue, whilst for orthologous mouse genes we used data 874 

from Shen et al.66. The enrichment p-value thresholds were corrected for multiple comparisons 875 

based on the number of tissues tested (n=35 in human and n=17 in mouse tissues). 876 

  877 
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Figures 938 

Figure 1. Overview of UKB-PPP. (a) Sample set-up and protein measurements. (b) Age distribution 939 
between different sub-cohorts. (c) Q-Q plot of enrichment p-values of UKB compared against all UKB-940 
PPP samples and UKB-PPP randomised baseline samples. (d) Violin-plot of glycodelin (PAEP) levels 941 
by age bins and sex. 942 
 943 

 944 
 945 
  946 

1Number based on Oct 2021 release of UK Biobank (UKB).
2Samples from individuals who have withdrawn from the study are excluded except in the sample processing schematic
3Samples (n=13) and plates (n=4) which were damaged/contaminated are not included in the summaries except in the 
sample processing schematic.
4Multiple measurements include a combination of blind duplicate samples (BSDs) and bridging samples.
5Participants selected for COVID19 positive status measured at baseline (n=1230), visit 2 (n=1209), and visit 3 (n=1,261). 
Visit 2 and 3 measurement were measured together in batch 7.
61,463 unique proteins – 3 proteins were measured on all 4 protein panels. NT-proBNP and BNP, IL12A and IL12 are treated 
as separate proteins
UKB-PPP:  UK Biobank Pharma Proteomics Project. NT: N-terminal. BNP: Brain natriuretic peptide. IL: Interleukin.
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Figure 2. Genetic architecture of pQTLs. (a) Summary of pQTLs across the genome. Lower panel: 947 
genomic locations of pQTLs against the locations of the gene encoding the protein target. Cis pQTLs 948 
(red), trans (blue). Upper panel: number of associated protein targets for each genomic region (axis 949 
capped at 100, regions with ³100 number of associated proteins labelled, with number in parenthesis). 950 
(b) Number of primary pQTLs per protein (top) and number of associated proteins per genomic region 951 
(bottom). (c) Log absolute effect size against log(MAF) by cis and trans associations. (d) Distribution 952 
of heritability and contributions from primary cis and trans pQTLs. (e-f) Number of primary 953 
associations against sample size (e) and number of proteins assayed (f). (g) Mean proportion of variance 954 
explained by primary pQTLs aginst sample size. 955 
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Figure 3. Examples of pathway networks highlighted by trans pQTLs. 957 
(a) Schematic of how trans pQTLs function as part of the same protein-protein interaction or pathway 958 
as the protein tested (protein X). Top left: proteins involved may be directly interacting or indirectly 959 
involved as part of the same pathway. Bottom: trans pQTLs found for corresponding genes in trans (in 960 
addition to potentially other signals and cis associations regulating protein X). Top right: some of the 961 
mechanisms by which the trans pQTLs may regulate the target protein (protein X) including: (1) 962 
regulating the levels of the binding partners (Y, Z) which in turn affects protein X levels, (2) altering 963 
the interaction between Y/Z with X, (3) Modulating components of the pathway in which Y/Z may be 964 
upstream/downstream of protein X. Figure created with BioRender.com including adaptations from 965 
“The Principle of a Genome-wide Association Study” (b) IL15-sginalling pathway. Components with 966 
* and underline indicate genes with trans pQTLs for IL15 (primary association SNP in red). Figure 967 
created with BioRender.com including adaptations from “Thrombopoietin Receptor Signaling”. (c) 968 
Complement pathway. Trans pQTL and associated protein in red. Figure adapted from Giang et al, 969 
Front Immunol (2018)90. 970 
 971 
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Figure 4. Regional association plots between COVID loci and pQTLs. (a) Regional association 974 
between COVID-19 locus at MUC5B and SFTPD, LAMP3, and MSLN trans pQTLs (b) Regional 975 
association between COVID-19 locus at TYK2 and colocalised IL12RB1 trans pQTL, in addition to the 976 
cis pQTLs of ICAM-1,3,4 and 5 in close proximity. 977 
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Figure 5. ABO blood group FUT2 secretor status interaction. (a) Boxplot of protein levels by blood 981 
group and secretor status for four proteins with most significant interaction effects. Each box plot 982 
presents the median, first and third quartiles, with upper and lower whiskers representing 1.5x inter-983 
quartile range above and below the third and first quartiles respectively. (b) Enrichment of genes 984 
encoding proteins with significant interactions (p<3.4x10-5) for expression in various human (left) and 985 
mouse (right) tissues. Numbers above bars represent p-values with blue bars representing significance 986 
after multiple testing correction. 987 
 988 
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