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Abstract

Transcriptome data can facilitate the interpretation of the effects of rare genetic variants. Here, we 

introduce ANalysis of Expression VAriation (ANEVA) to quantify genetic variation in gene 

dosage from allelic expression (AE) data in a population. Application of ANEVA to the Genotype-

Tissues Expression (GTEx) data showed that this variance estimate is robust and correlated with 
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selective constraint in a gene. Using these variance estimates in a Dosage Outlier Test (ANEVA-

DOT) applied to AE data from 70 Mendelian muscular disease patients showed accuracy in 

detecting genes with pathogenic variants in previously resolved cases, and lead to one confirmed 

and several potential new diagnoses. Using our reference estimates from GTEx data, ANEVA-

DOT can be incorporated in rare disease diagnostic pipelines to utilize RNA-seq data more 

effectively.

One Sentence Summary:

New statistical framework for modeling allelic expression characterizes genetic regulatory 

variation in populations and informs diagnosis in rare disease patients

Background

Large reference databases of human exomes and genomes have enabled the characterization 

of genomic variation in human populations (1–3). These data have been used to summarize 

genic intolerance to damaging variants, where depletion of gene disrupting variants (e.g. 

stop gain variants) indicates deleterious fitness consequences (1, 4, 5). Such analyses are 

essential for prioritizing rare and de novo coding variants that can underlie Mendelian 

disease and provide a genetic diagnosis for 25–50% of the patients (6, 7). However, despite 

advances in DNA sequencing, the search for rare disease-causing variants outside the coding 

sequence has been hindered by the difficulty of interpreting rare regulatory variants and 

identifying their target genes.

Integration of genome and transcriptome sequencing data has provided improved diagnosis 

via better detection of rare variants with functional effects (6, 8–10). However, the often 

laborious analysis is further complicated by the transcriptome being affected by the 

environment, disease state, and technical variation. This has made it challenging to quantify 

when an effect is genetic and beyond the normal population range. Thus, most analyses have 

been limited to only a small fraction of variants that induce clear alterations in the 

transcriptome, such as total loss of expression and splice defects.

One promising data type is the allelic expression (AE) which measures the relative 

expression of the paternal and maternal haplotype of a gene in an individual. Departure from 

equal AE, allelic imbalance, is largely unaffected by environmental and technical factors 

with a reported heritability of 85% (11), and therefore, has a unique sensitivity to capture 

cis-acting genetic effects including those induced by rare variants (6, 12–14) (15). However, 

a quantitative framework for interpreting this unique data type to identify rare pathogenic 

variants has been lacking.

Here, we quantify the effects of genetic regulatory variation in populations using a 

mechanistic model of cis-regulatory variation. Specifically, for each gene we estimate VG, 

the expected variance in the dosage that is due to inter-individual genetic differences within 

a population. Next, we use VG as a reference to identify genes affected by potentially 

pathogenic regulatory variants in patients.
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Results

A generative model for population allelic expression data and the ANEVA method

Cis-regulatory variant effect sizes can be quantified with allelic fold change (aFC; (16)). 

AFC has an analytical link to gene dosage, which would allow calculation of VG if all 

regulatory variants were known (Eq. 1–7). In practice, we can use AE data to estimate the 

overall distribution of regulatory effects on a gene without having to identify these variants 

explicitly. Across individuals, AE data represents a series of comparisons between net 

expression effects of all variants on two random haplotypes at a time. A major complication 

for applications of AE data is that within a population, it has diverse patterns depending on 

the properties of regulatory variants present and the SNP used to measure the allelic 

expression (aeSNP; Fig. 1A–D; (14, 15)). We derive a generative model for population AE 

data under a realistic scenario where a gene is regulated by several regulatory variants of 

which only some are identifiable. Under this assumption, population AE data is described by 

a constrained mixture of Binomial-Logit-Normal (BLN) probability distribution functions 

(Eq. 8–19). We fit this model to population AE data (Eq. 20–28, Fig. 1E–H) and use the 

maximum likelihood parameters to estimate VG indirectly (Eq. 29–30). We refer to this 

method as ANalysis of Expression Variation (ANEVA). Simulations show that the inferred 

VG is accurate (R2 =0.92, Fig. S1). Thus, ANEVA allows one to derive biologically 

interpretable estimates of genetic variation in gene expression within a population from AE 

read count data.

ANEVA estimates from AE data are consistent with eQTL data and heritability of gene 
expression

We applied ANEVA to 10,361 RNA-seq samples from 48 tissues and 620 individuals with 

whole genome sequencing (WGS) data from the GTEx v7 data (17, 18). Overall, we 

estimated VG at a median of 43,219 autosomal aeSNPs per tissue. Gene-level VG was 

derived as a weighted harmonic mean of SNP-level estimates for a median of 4,962 genes 

per tissue, and a total of 14,084 genes (Fig. 2A–B, Table S1). First, we ensured that our AE-

derived estimates of VG were consistent with what is expected from eQTL data (median 

corr. SDG = 0.73; Figs. 2C, S2, Table S2). Next, we benchmarked ANEVA estimates against 

gene expression cis-heritability (h2). For GTEx whole blood, we calculated the ratio of AE 

and eQTL-derived VG to the total variance of gene expression (VT). These ANEVA-based 

h2 estimates were consistent and comparable with those from standard methods and larger 

data sets, confirming that VG measures the genetic variation in gene expression (Figs. 2D, 

S3). Since AE-based ANEVA VG estimates are better applicable to AE-based outlier 

detection, we used these estimates for all subsequent analyses (Fig. S14, (19)).

Genetically driven variation in gene expression across tissues, populations and gene sets

Next, we analyzed how VG varies between tissues and populations. The estimates were well 

correlated between tissues (median corr. SDG =0.57; Fig. 3A). For a given gene, VG tends to 

be smaller in tissues where the gene is more highly expressed (Wilcoxon signed rank test 

P<10–300; Fig. 3B). Since this was not an artifact of differences in read depth (Fig. S4), it 

suggests that there is an increased dosage sensitivity and a higher selective constraint in 

tissues where the gene has a more pronounced functional role (see Fig. S5 for an example). 
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To analyze population differences in VG, we used ANEVA on AE data from three European 

and one African subpopulation from GEUVADIS data (22). We found a high correlation 

between estimates from all subpopulations (corr. range: [0.75, 0.83]; Fig. S6). This suggests 

that the total amount of genetic dosage variation is not highly variable between populations, 

and approaches that aggregate genetic effects at the gene level may have better applicability 

across populations than analyses of individual variants.

To characterize differences in the amount of genetic regulatory variation between genes, we 

correlated VG to statistics of gene regulation and constraint. For each gene, we calculated a 

weighted harmonic mean of VG across tissues (VG; Table S1). Gene enhancer size had a 

minimal correlation to VG (Fig. 3C; (23)), suggesting that the size of the mutational target, a 

proxy for the background mutation rate plays a minor role. Genes with high purifying 

selection for coding gene disrupting variants, or noncoding variants in the promoter or UTR 

regions, were depleted of genetic regulatory variation (Fig. 3C), as previously observed by 

eQTL analysis (1). Rare disease genes had lower VG, while loss of function tolerant genes 

had higher VG (Fig. 3D), showing that dosage sensitivity is captured by both exome and 

regulatory variation analysis. Genes identified by genome wide association studies (GWAS) 

showed little deviation from the background, but schizophrenia genes having the lowest VG, 

and blood metabolite genes the highest suggests a link to genetic architecture of these traits. 

Altogether, the amount of genetic regulation variation measured as VG can complement 

previous coding and regulatory variation analyses of selective constraint on genes and traits.

Genetically driven variation in gene expression and dosage outlier testing from AE data

In addition to these biological insights, VG has a direct practical application in identifying 

population outliers that may be pathogenic. To this end, we developed ANEVA Dosage 

Outlier Test (ANEVA-DOT) to identify genes likely affected by a heterozygous genetic 

variant with an unusually strong effect on gene dosage. Using VG for each gene, ANEVA-

DOT tests against the null hypothesis that the observed allelic imbalance in an individual is 

consistent with dosage variation in the general population (Fig. 4A) while accounting for a 

number of additional technical and biological sources of variation (Eq. 31–42). We used 

extensive simulations to ensure that the test is well calibrated (Fig. S7). ANEVA-DOT is 

implemented in R, and it runs in a few seconds per sample (24).

We first tested ANEVA-DOT in the general population of 466 skeletal muscle samples from 

GTEx. Each sample had a median of 3,390 genes tested and 10 genes identified as outliers at 

5% FDR (hereafter ANEVA-DOT genes; 90% range: [3, 22]). An average of 56% of the 

genes previously implicated in neuromuscular disorders (6, 25), and up to 46% of the highly 

expressed genes were testable per individual (Fig. S8). As a quality filter, 113 out of 5848 

tested genes that appeared as outliers in >1% of the individuals were excluded from further 

analysis (Fig. S8D–F, Table S4). After this step, a median of 4.5 ANEVA-DOT genes were 

retained per individual (90% range: [1, 14]; Fig. 4B). ANEVA-DOT genes were highly 

enriched for rare heterozygous variants in a 10kb window upstream of the TSS and in the 

gene body (Fig. 4B). This enrichment was particularly pronounced for rare putative gene 

disrupting variants that are expected to have a strong effect on gene expression levels via 
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nonsense-mediated decay (Fig. 4B–C). This confirms that ANEVA-DOT captures rare 

genetic effects on gene dosage.

Next, we evaluated how sensitive ANEVA-DOT is to differences in the reference population 

where VG is calculated. First, using the GEUVADIS data (22), we looked for ANEVA-DOT 

genes in 86 European (GBR) individuals using VG estimates derived from two European 

(FIN and TSI), and one African (YRI) populations. The three reference populations 

performed similarly with an average of 74% (69%–78%) of ANEVA-DOT genes identified 

using one confirmed by another (Fig. S9), suggesting that the lack of full concordance is 

likely driven by noise and threshold effects. However, larger sample sizes will be needed for 

a comprehensive evaluation of the population effects._Next, we checked if ANEVA-DOT 

genes in GTEx skeletal muscle could be identified by analyzing other accessible tissues of 

these individuals. The detection rate varied from 23.3% in fibroblast to 12.3% in whole 

blood, which indicates that ANEVA-DOT can capture some outlier effects also from proxy 

tissues (Fig. S10).

ANEVA-DOT accurately identifies disease genes in AE data from rare disease patients

To test ANEVA-DOT’s performance in the diagnosis of rare disease patients, we applied it 

to AE data from 70 rare Mendelian muscle dystrophy and myopathy (MDM) patients using 

VG reference from GTEx skeletal muscle (Figs. S11–S17, Table S5). Out of the 65 patients 

with high quality data, 32 have a previous diagnosis, of which 21 are expected to lead to 

allelic imbalance (6). These cases were used as positive controls to benchmark ANEVA-

DOT against previous tests of allelic imbalance: binomial and beta-binomial tests, binomial 

test with an allelic imbalance threshold, and a naive population-aware test of excess allelic 

imbalance against GTEx data via z-test (Fig. 4D–H, Fig. S12). ANEVA-DOT identified a 

median of 11 outlier genes per individual (out of a median of 2190 tested), substantially less 

than other tests, (Fig. 4H). This small number of outliers always included the previously 

diagnosed gene when there was a detectable allelic imbalance present (76%; Figs. S11–

S12), typically (69%) among the top-five most significant genes (Table S5). ANEVA-DOT’s 

high recall and precision outperformed all the other tests by a substantial margin (Figs. 4I, 

S12–S14, (19)).

In the 33 patients without a genetic diagnosis from previous WES and/or WGS or RNA-seq 

analysis (6), we found a median of nine ANEVA-DOT genes per sample (in total 349 genes), 

which included at least one neuromuscular disease gene (6, 25) in 12 patients (in total 17 

genes; Figs. S15–S16). One of these potential new diagnoses from ANEVA-DOT was 

confirmed: Patient N10, with limb-girdle muscular dystrophy-like phenotype, had 13 

ANEVA-DOT genes, with the one known Mendelian muscle disease gene, DES being the 

most significant. Further RNA-sequencing and RT-PCR analysis identified a pseudo-exon 

insertion caused by a variant creating an intronic splice site. This had been missed by the 

prior gene panel, WES, WGS and RNA-seq analysis due to challenging in silico 

interpretation of intronic variants and the relatively low number of RNA-seq reads. The 

variant is in trans with a pathogenic missense variant that had not been identified as a 

diagnosis due to the lack of a second variant (Fig. S18). Additionally, ANEVADOT 

identified strong candidates in six cases and possible candidates in 11 others (19). By design, 
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ANEVADOT does not rely on identifying which variant underlies the dosage outlier effect, 

but genetic analysis can be applied after prioritizing genes by ANEVADOT. This is currently 

mostly limited to gene or splice disrupting variants due to their easier annotation compared 

to rare regulatory variant candidates that may also exist. Overall, we expect up to 10.5 of the 

17 known MDM, and 18.8 of all 349 identified ANEVADOT genes in the 33 undiagnosed 

patients to be true disrupted causative genes (19).

Discussion

In this study, we introduce a method, ANalysis of Expression VAriation (ANEVA), and its 

extension ANEVA Dosage Outlier Test (ANEVA-DOT) to quantify genetic variation in gene 

dosage in the general population, and to identify genes where a patient appears to carry a 

heterozygous variant with an unusually strong effect on gene expression. This enables 

individual transcriptome comparison to previously generated reference data without the 

caveats of technical and reverse causation noise in total gene expression analysis.

The ANEVA framework uses biologically interpretable units of gene dosage, allowing 

interpretation of regulatory and coding gene disrupting variants on the same scale. 

Furthermore, the statistical methods introduced here for modeling allelic expression data are 

applicable to other uses of this data type.

ANEVA-DOT is a fast and powerful approach for finding genes with likely disease effects, 

with the small numbers of outliers making further manual curation feasible in a clinical 

setting without compromising on sensitivity. The use of VG estimates from GTEx as a 

shared reference for ANEVA-DOT analysis of patients is analogous to use of coding 

constraint metrics for prioritization of pathogenic coding variants. ANEVA-DOT outlier 

genes can be further prioritized by candidate gene lists and by tools that are currently used in 

exome sequencing follow-up (1, 2, 5, 26, 27). Since ANEVA-DOT captures transcriptome 

outcomes of genetic effects without having to identify rare regulatory variants themselves, 

this method is particularly advantageous for rare genetic effects from poorly defined 

regulatory elements, but it will also detect, for example, variants triggering transcript decay. 

However, identifying the specific variants underlying ANEVA-DOT outliers is still 

challenging despite existing variant prioritization approaches, especially for noncoding 

regions (28–30).

Despite these advantages, our methods have several limitations. The main caveat is that AE 

data is sparse, and VG estimates may be lacking or noisy for genes with few common coding 

variants due to small size or high coding constraint, or low expression levels. These issues 

will, however, improve with increasingly large RNA-seq data sets. ANEVA-DOT is only 

applicable to about half of expressed genes per individual that have an aeSNP. Finally, allelic 

imbalance is not informative of recessive effects without family analysis. Thus, similarly to 

other genetic diagnosis tools, ANEVA-DOT should be used in conjunction with other 

methods to capture different types of rare variants underlying disease. We envision that in 

clinical genetics, when practically feasible, transcriptome data will become a powerful 

additional layer of data for interpreting the genome and its disease-contributing variants.
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Figure 1: Cis-regulatory variation, allelic expression, and ANEVA.
A–D) Examples of allelic expression across individuals (dots) for four genes with a single 

aeSNP each. In (A) similar haplotype expression levels for the gene indicate little cis-

regulatory variation. In (B–D) there is relatively more variation. In (C–D) there are distinct 

clusters driven by different haplotype combinations of a common, strong regulatory variant 

and the aeSNP, with strong linkage disequilibrium in (D). These examples illustrate the 

challenge of consistently modeling the underlying regulatory variants. E) Schematic 

representation of ANEVA, which uses a generative model of population AE data and a 

mechanistic model of cis-regulatory variation to estimates the magnitude of genetic variation 

in expression for each gene. F–H) A generative model of population AE data, represented 

mechanistically (F), in population AE data (G), and as Bayesian plate diagram (H; Eq. 20–

22). AE data is modeled with one distinctly strong regulatory bi-allelic variant. If present, 

this variant is specified by its effect size, SH,L, and its LD with the aeSNP. Residual cis-

regulatory variation is modeled as an infinite-allelic regulatory variant summarized by 

variance term σ
r

2. Allelic expressions eR and eA are measured at a heterozygous aeSNP with 

reference (R) and alternative (A) alleles, and s*R,A is the aeSNP reference allele alignment 
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bias. Haplotypes h1 and h2, basal expression level eB, and N cis-regulatory variant sites v1… 

vN, are components of our complete formal model of cis-regulatory variation.
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Figure 2: Estimates of genetic regulatory variation in GTEx
A) Number of genes with VG estimates across 1 to 49 GTEX tissues; B–C) Distribution of 

SDG, V
G, for 7556 genes in GTEx subcutaneous adipose (B), and its comparison to eQTL 

data (C; corr.=0.71). The red line is Deming regression fit (Fig. S2). SDG is capped at 0.5 for 

visualization. D) Benchmarking of ANEVA by gene expression heritability (h2) estimates. 

GTEx h2 was calculated by the linear mixed model based BSLMM, PrediXcan R2, and 

ANEVA (19). These were compared to two larger cohorts: BLSMM h2 from the DGN 

cohort (n=922; (20)), and local identity-by-descent (IBD) based h2 from the IFB cohort 

(n=722; (21)).
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Figure 3: Biological sources of regulatory variation between genes.
A) Correlation of genetic regulatory variation across GTEx tissues (see Table S1 for tissue 

names). B) Rank correlation between median expression in a tissue and VG for 9,158 genes 

with VG estimates in at least five tissues. The distribution is shifted (median rank corr. 

−0.20). Significant genes are shown in red (5% FDR). C) Rank correlation of VG with 

enhancer size, coding constraint (RVIS, pLI), and noncoding constraint (ncRVIS) and 

conservation (ncGERP) in UTRs and promoters. D) VG for different gene sets (DD: 

Developmental disorder, CHD: Congenital heart disease, MDM: Congenital Muscular 

dystrophies and myopathies; Table S3), with nominal p-values from ranksum test compared 

to the background of all genes (p-value ≤ 0.01 highlighted), with the number of genes in 

parentheses. Boxes span the middle 50% values, and the whiskers span ±1.5 IQR from first 

and the third quartile.

Mohammadi et al. Page 13

Science. Author manuscript; available in PMC 2020 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Regulatory outliers detected with the ANEVA Dosage Outlier Test.
A) Illustration of the ANEVA-DOT method. For each gene, the null distribution of allelic 

imbalance is estimated using the VG and the model of cis-regulatory genetic effect. Allelic 

counts in a test individual are compared to this null, accounting for sampling noise, 

sequencing noise, reference bias, and the variant haplotype. B–C) Enrichment of all rare 

variants in ANEVA-DOT genes as a function of allele frequency (B) and for putative gene-

disrupting variants (MAF<1%; C). D–H) An example of AE data for all genes from one 

previously diagnosed muscle dystrophy patient (N13). The disease gene is shown in blue. 

Outlier genes identified by different tests (5% FDR) are marked in red: binomial (n=387; D), 

binomial with a 15% allelic imbalance threshold (Bin-Thr, n=246; E), beta-binomial (Beta-

Bin, n=83; F), excess allelic imbalance against GTEx data via z-test (AI z-test, n=94; G), 

and ANEVA-DOT (n=15; H). Genes marked in grey are excluded from each test. I) Fraction 

of true causal genes identified in previously diagnosed patients (recall) and its 95% bootstrap 

confidence intervals versus the number of outliers reported. Empirical recall (left) is 

calculated using all cases where imbalanced AE would be expected (n=21), while idealized 

recall (right) excludes five cases in which detecting the gene from AE data is impossible 

(e.g. when the causal gene is not expressed; Fig. S12).
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