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Abstract
Two basic neuroimaging-based characterizations of white matter tracts are the magnitude of water

diffusion along the principal tract orientation (axial diffusivity, AD) and water diffusion perpendicu-

lar to the principal orientation (radial diffusivity, RD). It is generally accepted that decreases in AD

reflect disorganization, damage, or loss of axons, whereas increases in RD are indicative of disrup-

tions to the myelin sheath. Previous reports have detailed the heritability of individual AD and RD

measures, but have not examined the extent to which the same or different genetic or environ-

mental factors influence these two phenotypes (except for corpus callosum). We implemented

bivariate twin analyses to examine the shared and independent genetic influences on AD and RD.

In the Vietnam Era Twin Study of Aging, 393 men (mean age561.8 years, SD52.6) underwent

diffusion-weighted magnetic resonance imaging. We derived fractional anisotropy (FA), mean dif-

fusivity (MD), AD, and RD estimates for 11 major bilateral white matter tracts and the mid-

hemispheric corpus callosum, forceps major, and forceps minor. Separately, AD and RD were each

highly heritable. In about three-quarters of the tracts, genetic correlations between AD and RD

were >.50 (median 5 .67) and showed both unique and common variance. Genetic variance of FA

and MD were predominately explained by RD over AD. These findings are important for informing

genetic association studies of axonal coherence/damage and myelination/demyelination.

Thus, genetic studies would benefit from examining the shared and unique contributions of AD

and RD.
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1 | INTRODUCTION

White matter consists of thousands of neuronal fibers (axons), glial

cells, and myelin sheaths that comprise oligodendrocytes that envelop

the axons, ensuring efficient electrical signal transmission. Throughout

late childhood and adolescence, white matter volume increases in a

generally linear trajectory (Giedd et al., 1999; Giedd, 2004; Lebel,

Walker, Leemans, Phillips, & Beaulieu, 2008; Lebel and Beaulieu, 2011;

Paus et al., 2001; Sowell, Trauner, Gamst, & Jernigan, 2002), peaking

in the fourth or fifth decade of life before steadily declining in later life

(Bartzokis et al., 2001; Sowell et al., 2003; Walhovd et al., 2005; West-

lye et al., 2010). The extent of directionality of water diffusion along

white matters tracts can be expressed by the fractional anisotropy (FA)

measure that is broadly used to describe the density and coherence of

a white matter region. White matter organization can be further

described as nonfractional measures of axial diffusivity (AD) and radial

(RD) diffusivity, which reflect water diffusion along (eigenvalue k1) or

across axons (average of eigenvalues k21k3), respectively (reviewed in

Alexander et al., 2011).

The neuroanatomical constituents that alter diffusion directionality

have been investigated in experimental preclinical animal models and

clinical observational studies of neuronal development and degenera-

tion. A seminal investigation of AD and RD in a mouse model of dys-

myelination found that reduced myelin was associated with increased

RD (Song et al., 2002). Subsequent preclinical investigations have con-

firmed increased RD in models of dysmyelination (Tyszka, Readhead,

Bearer, Pautler, & Jacobs, 2006) and demyelination (Harsan et al.,

2006; Song et al., 2005), with a few studies suggesting minor concomi-

tant reductions in AD within these pathologies (Song et al., 2005;

Tyszka et al., 2006). Using mouse models of reversible dysmyelination

(Harsan et al., 2006; Sun et al., 2006), decreases in AD were associated

with reduced axonal caliber and increased expression of the cytos-

keletal protein III b-tubulin protein, whereas increases in AD were

associated with increases in axonal number and caliber. Subsequent

clinical investigations in neuronal development and degeneration

showed significant impairments in white matter microstructure as

indexed by increased RD and decreased AD when myelin is damaged

or absent (Horsfield, Larsson, Jones, & Gass, 1998; Huppi et al., 1998;

Mukherjee et al., 2001; Werring, Clark, Barker, Thompson, & Miller,

1999), though understanding the precise contribution of myelin to the

diffusion signal in these conditions is hampered by other factors includ-

ing axon diameter, neurofibril degeneration and/or demyelination,

extracellular matrix volume and composition, edema, microbleeds, and

infarcts (Assaf & Pasternak, 2008). Thus, while there is more to under-

stand about the neurobiological components that underpin changes in

the diffusion signal, it is generally accepted that decreases in AD reflect

disorganization, damage, or loss of axons (Freund et al., 2012; Zhang

et al., 2009), whereas increases in RD are indicative of disruptions to

the myelin sheath (Chen, Mar, Brown, Song, & Benzinger, 2011; Kla-

witer et al., 2012; Naismith et al., 2010).

To explicate the genetic and environmental influences on diffusiv-

ity measurements, univariate behavior genetic/twin analysis

approaches can provide an estimate of heritability, that is, the relative

proportion of the phenotypic variance attributed to genetic influences.

Several studies have demonstrated significant heritability for whole

brain and tract-wise average FA across various age groups, geographic

locations, and ethnic backgrounds (Chiang et al., 2008, 2011; Duarte-

Carvajalino et al., 2012; Jahanshad et al., 2010, 2013a; Kochunov et al.,

2010, 2015). Importantly, the eigenvalues that comprise AD (k1) and

RD [(k21 k3)/2] are orthogonal and distinct from each other, but both

are mathematical components of the composite metrics mean diffusiv-

ity (MD5 (k11k21k3)/3) and

FA5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k12MDð Þ21 k22MDð Þ21 k32MDð Þ2

2 k1
21 k2

21k3
2

� �
vuut

Only a limited number of studies have investigated the heritability

of AD and RD using univariate analysis approaches. An extended family

pedigrees study of 467 adults (average age 47.9 years, range 19–85

years of age) found that whole brain FA and RD were each significantly

heritable (a2 5 .52 and .37, respectively) and genetically correlated

(genetic correlation rg52.68). Whole brain AD was not significantly

heritable (Kochunov et al., 2010). These findings indicate that RD is

under strong genetic control and these genetic effects have substantial

contribution to the heritability of FA. In contrast, this study suggested

that AD is more influenced by environmental factors. Recently, our

group (Vuoksimaa et al., 2017) reported on the heritability of diffusivity

measures in middle-aged male twins as part of the ongoing Vietnam Era

Twin Study of Aging (VETSA; Kremen, Franz, & Lyons, 2013a,b; Kremen

et al., 2006). We showed that despite the narrow age range of these

nondemented, community-dwelling individuals age was correlated with

the global average for each diffusion index measured (FA, AD, RD, and

MD), and older age was related to poorer white matter microstructural

properties even in middle age (Vuoksimaa et al., 2017). Contrary to the

observations of Kochunov et al. (2010), most tracts measured were sig-

nificantly heritable for both RD (a2 5 .74 for all tracts combined) and

AD (a2 5 .72 for all tracts combined) similar to findings in neonate (Lee

et al., 2015) and pediatric twins (Brouwer et al., 2010). The differences

between Kochunov et al. and Vuoksimaa et al. could be due to study

design (family pedigree vs twins), gender balance (mixed sex vs males

only), age range (19–85 years vs 56–66 years), white matter atlas (JHU

atlas vs AtlasTract atlas), and regions of interest (whole brain white mat-

ter vs major white matter pathways). Thus, there are conflicting results

about the genetic contributions to AD and RD.
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While there are limited reports on the heritability of AD and RD,

virtually no research has been conducted concerning the genetic rela-

tionship between diffusivity phenotypes. If the AD and RD of a given

tract are influenced by a shared set of genetic factors, then there will

be a significant genetic correlation (rg) between them. If there are no

shared genetic influences underlying AD and RD, then rg would not be

significantly different from zero (Figure 1). As is the case for any phe-

notypic correlation, a genetic correlation represents the shared var-

iance between two phenotypes. However, it represents only the

shared genetic variance. Genetic correlations can be determined in

twin analyses because the twin method makes it possible to decom-

pose genetic and environmental variance for each phenotype (Neale &

Cardon, 1992). Environmental correlations similarly reflect shared envi-

ronmental influences. We are aware of only one study that examined

this relationship in one neuroanatomical structure, reporting that AD

and RD had a strong genetic correlation (rg 5 0.61) within the corpus

callosum (Kanchibhotla et al., 2014).

In this study, we performed bivariate twin analyses to determine

the extent to which AD and RD share genetic and environmental influ-

ences in 15 white matter tracts. We also investigated what proportion

of genetic variance in FA and MD is explained by AD and RD. Deter-

mining the extent of shared or independent genetic influences on AD

and RD will be informative regarding genetic, shared environmental,

and independent mechanisms underlying axonal morphometry and

myelination.

2 | MATERIALS AND METHODS

2.1 | Participants

Participants in the VETSA MRI cohort (Kremen et al., 2010) were

recruited from the Vietnam Era Twin Registry, a nationally distributed

sample of male–male twin pairs who served in the United States mili-

tary at some time between 1965 and 1975 (Goldberg, Curran, Vitek,

Henderson, & Boyko, 2002; Tsai et al., 2013). Participants have similar

health and lifestyle characteristics to American men in their age range

(Schoenborn & Heyman, 2009). Although all VETSA participants are

veterans, most (�80%) did not experience combat situations. The pres-

ent sample comprised 393 participants with a mean age of 61.8 (62.6;

range, 56.7–65.6) the majority of whom were white (88.8%), with an

average education of 13.8 (SD, 2.1) years. This is the same cohort as

previously reported by our group (Vuoksimaa et al., 2017). The sample

included 85 full pairs of monozygotic (MZ) and 58 full pairs of dizygotic

(DZ) twins, as well as 107 unpaired individuals. Zygosity was deter-

mined from DNA as previously described (Eyler et al., 2012). The study

was conducted under local institutional review board supervision at the

participating institutions, and all participants provided signed informed

consent prior to their participation.

2.2 | Magnetic resonance imaging acquisition and

analysis

T1-weighted and diffusion-weighted images were acquired on 3 T

scanners at University of California, San Diego (UCSD) and Massachu-

setts General Hospital (MGH) as previously reported (McEvoy et al.,

2015; Vuoksimaa et al., 2017). At UCSD, images were acquired on a

GE 3 T Discovery 750 scanner (GE Healthcare, Waukesha, WI, USA)

with an eight-channel phased array head coil. The imaging protocol

included a sagittal 3D fast spoiled gradient echo (FSPGR) T1-weighted

image (TE53.164 ms, TR58.084 ms, TI5600 ms, flip angle588,

pixel bandwidth5244.141, FOV524 cm, frequency5256,

phase5192, slices5172, slice thickness51.2 mm), and a diffusion-

weighted image with 51 diffusion directions, b value51000 s/mm2,

integrated with a pair of b50 images with opposite phase-encode

polarity, TR59700 ms, TE 80–84 ms, pixel bandwidth 3906.25. At

MGH, images were acquired with a Siemens Tim Trio, (Siemens USA,

Washington, D.C.) with a 32-channel head coil. The imaging protocol

included a 3D magnetization-prepared rapid gradient echo (MPRAGE)

FIGURE 1 Genetic correlations between phenotypes. The genetic
correlation (rg) between two phenotypes (AD and RD) can explain
whether additive genetic factors (A, A1, A2) are identical (Model A),
share some factors (Model B), or are wholly independent (Model C)
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T1-weighted image (TE54.33 ms, TR52170 ms, TI51100 ms, flip

angle578, pixel bandwidth5140, slices5160, slice thickness5

1.2 mm), and a diffusion-weighted image consisting two separate b50

images with opposite phase-encode polarity, followed by two scans

with 30 diffusion directions, b value51000 s/mm2 (and one b50

image), TR59500 ms, TE594 ms, and pixel bandwidth51371.

Raw image files were processed with an automated stream written

in MATLAB and C11 by the UCSD Center for Multimodal Imaging

and Genetics. Data with severe scanner artifacts or excessive head

motion were excluded from the analysis. T1-weighted structural images

were corrected for gradient distortions (Jovicich et al., 2006) and N3

intensity normalisation (Sled, Zijdenbos, & Evans, 1998). Diffusion-

weighted images were corrected for eddy current distortion (Zhuang

et al., 2006), head motion (Hagler et al., 2009), B0-susceptibility distor-

tions (Holland, Kuperman, & Dale, 2010), then registered to T1 images

using mutual information (Wells, Viola, Atsumi, Nakajima, & Kikinis,

1996) and then rigidly resampled into the standard T1-based orienta-

tion at a 2 3 2 3 2 mm resolution using cubic interpolation at all

resampling steps.

Diffusivity measurements were derived from major white matter

tracts using a probabilistic diffusion tensor atlas of fiber tract locations

and orientations (Hagler et al., 2009). To ensure that tracts are only

reconstructed within white matter regions, grey matter regions of the

basal ganglia and thalamus as well as regions of cerebrospinal fluid

were used as exclusion masks based on their anatomical location

derived from FreeSurfer version 5.1 (Fischl, 2012). Average AD and RD

were calculated for each fiber tract, weighted by the fiber probability at

each voxel. We averaged diffusion indices from homologous tracts in

left and right hemispheres and examined 11 major tracts: (a) anterior

thalamic radiation, (b) cingulum, and (c) hippocampal portions of the

cingulate bundle, (d) fornix, (e) interior frontal superior frontal cortex, (f)

inferior fronto-occipital fasciculus, (g) inferior longitudinal fasciculus, (h)

striatal interior frontal cortex, (i) superior longitudinal fasciculi (SLF, also

reporting the temporal and parietal portions), (j) superior corticostriate

tract (also reporting the frontal and parietal portions), and (k) uncinate

fasciculus. Three additional mid-hemispheric structures did not require

averaging, namely, the corpus callosum, forceps minor, and forceps

major. Two compound measures are also provided: all fibers averaged

(referred to as “total tracts”) and all fibers excluding the corpus cal-

losum averaged (referred to as “total tracts excluding the corpus cal-

losum”). The corticospinal tracts were excluded from the present

investigation due to reports of very low heritability (Jahanshad et al.,

2013a).

2.3 | Statistical analysis

To examine the effect of scanner and age on diffusivity measures, we

use linear mixed models implemented within the R (R Core Team,

2017) package nlme version 3.1–131 (Pinheiro, Bates, DebRoy, Sarkar,

& Team, 2017), setting the relatedness of the twins as a random effect.

Bivariate biometrical models were fit to the data using the

maximum-likelihood based structural equation modeling program

OpenMx in R (Boker et al., 2011; Neale et al., 2016). In univariate twin

analyses, the variance of a phenotype is decomposed into additive

genetic (A), common environmental (C), and unique environmental (E)

effects. The resulting model is widely referred to as the ACE model. In

MZ twin pairs, the A effects are set to correlate 1.0 as MZ pairs are

assumed to share all of their DNA, whereas DZ twin pairs share

approximately half of their segregating genes; therefore, the assumed

correlation of A effects is accordingly set at 0.5. The C effects correlate

1.0 in both MZ and DZ twin pairs, as these effects refer to all environ-

mental effects that make members of a twin pair alike. The E effects

are uncorrelated in all twin pairs because these refer to all environmen-

tal effects that make members of twin pair different from one another,

together with measurement error. Twin modeling assumes that the

means and variances do not differ between MZ and DZ or between

first and second members of a twin pair.

Bivariate analyses extend the ACE model by decomposing both

the variance of a phenotype into genetic and environmental compo-

nents and the covariance estimates between phenotypes, thereby per-

mitting the estimation of genetic and environment correlations.

All diffusivity measures were initially adjusted for age and scanner

(UCSD or MGH) to facilitate the estimation of means, variances, and

model parameters, without changing the inherent relationships

between variables and members of a twin pair. It is important to note

that the twin method does not depend on mean level differences, but

rather the covariances between MZ and DZ twin pairs. Members of a

twin pair were always scanned on the same scanner and pairs of each

zygosity type were equally represented at both sites. Therefore, herit-

abilities or genetic correlations will be unaffected by the scanner differ-

ences. All diffusivity measures were standardized to a mean of 0 and a

standard deviation of 1. Bivariate ACE models were fit to the diffusivity

measures. The significance of the genetic and environmental correla-

tions was determined through examination of their 95% confidence

intervals (CIs), as well as by constraining the genetic covariance param-

eter to zero (i.e., rg50; Figure 1, Model C) and evaluating the resulting

change in model fit via the likelihood-ratio test (i.e., the change in 22

log-likelihood between the full model and the model with the con-

strained parameter). Nonsignificant values (p> .05) indicate that the

constrained model does not yield a significant change in the model fit

relative to the full model, and therefore indicates that the parameter in

question is not significantly different from zero (i.e., there are not dis-

tinctly separate genetic factors underlying each phenotype). Con-

versely, constraining the genetic covariance parameter to rg51 tests if

the two phenotypes are influenced by the same genetic factors (Figure

1, Model A).

To determine the genetic variance of either FA or MD that is

accounted for by AD and RD, we ran follow-up bivariate analysis of

only the total tracts measure for AD vs FA, RD vs FA, AD vs MD, and

RD vs MD.

3 | RESULTS

The mean and standard deviation of AD and RD in most tracts were

significantly affected by scanner and/or age (Table 1), and subsequent

2238 | HATTON ET AL.



analysis adjusted for these covariates. The genetic, common, and

unique environmental standardized variance components for AD and

RD are presented in Table 2. Bilateral AD and RD measures demon-

strated moderate to high heritability (.72 for total tracts for both AD

and RD). Heritability of AD for individual tracts ranged from .47 (95%

CI: .24; .62) for the parahippocampal portion of the cingulum to .82

(95% CI: .54; .87) for the ILF. Similarly, the heritability of RD for individ-

ual tracts ranged from .42 (95% CI: .06; .73) for the parahippocampal

portion of the cingulum to .82 (95% CI: .66; .87) for the inferior longitu-

dinal fasciculus. Common environmental influences accounted for .00

(95% CI: .00; .12) of the variance in all fiber tract AD and .02 (95% CI:

.00; .27) of the variance in all fiber tract RD. All of the C estimates for

AD were at or near zero, the highest being .05 for the uncinate. Five

regions had higher C estimates for RD: the frontal superior corticostri-

ate (.14, 95% CI: .00; .40), a subcomponent of the superior

corticostriate (.07, 95% CI: .00; .36), parahippocampal portion of the

cingulum (.22, 95% CI: .00; .52), uncinate (.32, 95% CI: .00; .62), and

total tracts excluding the corpus callosum (.08, 95% CI: .00; .36). How-

ever, none of these were statistically significant and the median C esti-

mate for RD was only .02. Accordingly, subsequent correlational

analysis used AE–AE models with the exception of the above men-

tioned regions which used AE–ACE models. Separate ACE–ACE and

AE–AE model tables are provided in Supporting Information.

The phenotypic, genetic, common, and unique environment corre-

lations for AD and RD for the best fit models are presented in Table 3.

The genetic correlation between AD and RD was high in total tracts

(rg5 .67, 95% CI: .57; .75). All individual tracts showed significant

genetic correlations between AD and RD except the cingulate portion

of the cingulum and the superior corticostriate. Projection fibers

showed little genetic correlation between AD and RD (superior

TABLE 1 Mean diffusion measures for all fiber tracts and association with scanner and age

Axial diffusivity (31023/s) Radial diffusivity (31024/s)

Scanner effect Age effect Scanner effect Age effect

Fiber tract e Mean SD t p r p Mean SD t p r p

Total tracts 1.30 0.03 27.51 <.001 4.15 <.001 0.61 0.03 22.72 .007 4.21 <.001

Total tracts (excluding
corpus callosum)

1.22 0.03 21.11 .269 3.88 <.001 0.61 0.03 20.82 .416 3.90 <.001

Anterior thalamic
radiation

1.18 0.05 21.66 .099 4.19 <.001 0.64 0.05 2.92 .004 4.68 <.001

Cingulate portion of
cingulum

1.21 0.05 22.17 .031 20.47 .640 0.52 0.03 20.99 .325 2.38 .019

Parahippocampal
portion of cingulum

1.15 0.07 212.06 <.001 2.12 .036 0.67 0.05 26.95 <.001 1.37 .172

Corpus callosum 1.46 0.05 212.98 <.001 3.02 .003 0.61 0.05 24.33 <.001 3.49 .001

Forceps major 1.55 0.13 228.03 <.001 0.8 .423 0.59 0.10 213.11 <.001 1.30 .194
Forceps minor 1.37 0.08 9.26 <.001 2.63 .009 0.65 0.06 5.77 <.001 3.32 .001

Fornix 1.78 0.14 25.50 <.001 4.48 <.001 1.14 0.13 27.15 <.001 4.48 <.001

Inferior frontal superior
frontal cortex

1.09 0.04 1.89 .060 2.22 .028 0.58 0.04 20.05 .957 2.80 .006

Inferior longitudinal
fasciculus

1.29 0.05 1.39 .167 2.94 .004 0.61 0.04 0.93 .354 2.53 .012

Inferior fronto-occipital
fasciculus

1.33 0.04 3.80 <.001 3.11 .002 0.62 0.04 2.48 .014 3.38 .001

Superior longitudinal
fasciculus (SLF)

1.15 0.03 21.86 .064 2.03 .044 0.56 0.04 21.17 .243 1.88 .063

Temporal SLF 1.17 0.04 23.94 <.001 1.98 .050 0.55 0.04 21.74 .083 1.44 .153
Parietal SLF 1.13 0.03 21.43 .154 1.94 .054 0.57 0.04 21.38 .168 2.27 .025

Superior corticostriate 1.16 0.04 0.07 .945 1.82 .071 0.55 0.03 24.50 <.001 2.17 .032

Frontal superior
corticostriate

1.12 0.04 2.12 .035 1.96 .052 0.55 0.03 23.17 .002 2.70 .008

Parietal superior
corticostriate

1.19 0.04 21.25 .213 1.60 .111 0.54 0.03 24.63 <.001 1.78 .077

Striatal inferior frontal
cortex

1.13 0.04 5.27 <.001 3.16 .002 0.60 0.04 1.84 .067 3.59 <.001

Uncinate 1.21 0.04 3.43 .001 2.67 .009 0.62 0.04 21.23 .222 3.33 .001

The mean diffusion measures of these fiber tracts by hemisphere for this cohort have previously been characterized (refer to table 2 in Vuoksimaa
et al., 2017).
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corticostriate5 .15, 95% CI: 2.02; .32). The cingulate portion of the

cingulum showed little genetic correlation (2.24, 95% CI: 2.40; 2.07),

whereas the parahippocampal portion of the cingulum showed the

highest genetic correlation (.85, 95% CI: .58; 1.0). Constraining the

genetic correlation to either 0 or 1 (Table 3) showed significant changes

in model fit in the majority of tracts, indicating that AD and RD in the

majority of the tracts are influenced by both shared and unique genetic

factors. However, when the genetic correlation was constrained to

equal 0, there was not a significant reduction in model fit for the supe-

rior corticostriate (p5 .0752), specifically the parietal subset of the

superior corticostriate (p5 .7025), indicating that AD and RD for this

region may have entirely distinct genetic influences. Conversely, con-

straining the genetic correlation to equal 1 showed nonsignificant

changes in model fit in the parahippocampal portion of the cingulum

(p5 .4240), indicating that AD and RD in this portion of this tract have

the same genetic influences.

We followed this core analysis up with an investigation into the

degree to which AD and RD separately account for the genetic var-

iance in FA and MD. Comparing all-tract measures of FA and AD, we

found that both were highly heritable (FA a2 5 .73 CI: .42,.86; AD

a2 5 .75 CI: .59,.83), and showed moderate genetic and phenotypic

correlations (rg 5 2.41 CI: 2.60, 2.19; rp 5 2.41 CI: .50, .32). AD

explained 16.4% of the genetic variance in FA. The negative genetic

correlation here indicates that the shared genetic factors between

these diffusivity measures produce opposing changes in magnitude

(i.e., genes that cause increases in AD also tend to cause decreases in

FA). Comparing all-tract measures of FA and RD, both were highly her-

itable (FA a2 5 .72 CI: .42,.86; RD a2 5 .70 CI: .44,.82), and showed

strong genetic and phenotypic correlations (rg 5 2.91 CI: 2.94,2.84;

rp 5 2.91 CI: 2.93,2.89). In this pairing, however, RD explained 82.3%

of the genetic variance in FA. Although a similar pattern of effects was

observed for all-tracts MD, the variance accounted for by the AD and

TABLE 2 Standardized variance components for axial and radial diffusivity

Axial diffusivity (AD) Radial diffusivity (RD)

Fiber Tract a2 (95% CI) c2 (95% CI) e2 (95% CI) a2 (95% CI) c2 (95% CI) e2 (95% CI)

Total tracts .72 (.55; .80) .00 (.00; .12) .28 (.20; .41) .72 (.43; .81) .02 (.00; .27) .26 (.19; .38)

Total tracts (excluding
corpus callosum)

.79 (.63; .86) .01 (.00; .16) .20 (.14; .29) .70 (.39; .84) .08 (.00; .36) .22 (.16; .32)

Anterior thalamic
radiation

.69 (.49; .78) .00 (.00; .17) .31 (.22; .43) .60 (.32; .71) .00 (.00; .23) .40 (.29; .55)

Cingulate portion of
cingulum

.69 (.40; .79) .01 (.00; .25) .30 (.21; .43) .74 (.41; .84) .03 (.00; .34) .23 (.16; .32)

Parahippocampal
portion of cingulum

.47 (.24; .62) .00 (.00; .14) .53 (.37; .73) .42 (.06; .73) .22 (.00; .52) .36 (.25; .50)

Corpus callosum .66 (.39; .76) .01 (.00; .24) .33 (.24; .47) .68 (.40; .79) .03 (.00; .29) .28 (.20; .40)

Forceps major .56 (.24; .68) .00 (.00; .27) .44 (.32; .59) .78 (.56; .84) .00 (.00; .19) .22 (.16; .32)
Forceps minor .51 (.06; .66) .02 (.00; .39) .47 (.34; .64) .70 (.32; .80) .02 (.00; .36) .28 (.20; .39)

Fornix .48 (.08; .62) .01 (.00; .36) .50 (.38; .66) .42 (.00; .59) .05 (.00; .43) .53 (.40; .69)

Inferior frontal superior
frontal cortex

.78 (.58; .86) .04 (.00; .22) .18 (.13; .26) .74 (.53; .85) .05 (.00; .24) .21 (.15; .30)

Inferior longitudinal
fasciculus

.82 (.54; .87) .00 (.00; .26) .18 (.13; .26) .82 (.66; .87) .00 (.00; .14) .18 (.13; .27)

Inferior fronto-occipital
fasciculus

.80 (.65; .86) .00 (.00; .13) .20 (.14; .29) .76 (.56; .83) .00 (.00; .18) .24 (.17; .34)

Superior longitudinal
fasciculus (SLF)

.77 (.50; .84) .00 (.00; .25) .23 (.16; .32) .81 (.58; .87) .00 (.00; .22) .19 (.13; .27)

Temporal SLF .77 (.47; .83) .00 (.00; .27) .23 (.17; .33) .82 (.61; .87) .00 (.00; .21) .18 (.13; .25)
Parietal SLF .76 (.55; .83) .00 (.00; .19) .24 (.17; .34) .80 (.60; .86) .00 (.00; .18) .20 (.14; .29)

Superior corticostriate .75 (.54; .83) .01 (.00; .19) .24 (.17; .35) .72 (.42; .85) .07 (.00; .36) .21 (.15; .30)

Frontal superior
corticostriate

.74 (.56; .83) .02 (.00; .18) .23 (.16; .34) .65 (.37; .84) .14 (.00; .40) .21 (.15; .30)

Parietal superior
corticostriate

.73 (.51; .82) .00 (.00; .20) .26 (.18; .38) .77 (.44; .84) .01 (.00; .32) .22 (.16; .31)

Striatal inferior frontal
cortex

.76 (.52; .83) .00 (.00; .22) .24 (.17; .34) .71 (.40; .81) .02 (.00; .30) .27 (.19; .38)

Uncinate .56 (.24; .70) .05 (.00; .29) .40 (.28; .56) .42 (.09; .80) .32 (.00; .62) .25 (.18; .35)

a25 additive genetic influences; c25 common environmental influences; e25unique environmental influences. All estimates were derived from the
bivariate Cholesky decomposition.
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RD measures was greater. Comparing MD and AD, both were highly

heritable (MD a2 5 .74 CI: .53, .83; AD a2 5 .75 CI: .59, .83), and

showed strong genetic and phenotypic correlations (rg 5 .86 CI: .80,

.92; rp 5 .86 CI: .83, .89). AD explained 74.1% of the genetic variance

in MD. Comparing MD and RD, both were highly heritable (MD

a2 5 .73 CI: .47, .83; RD a2 5 .72 CI: .45, .83), and showed very high

genetic and phenotypic correlations (rg 5 .97 CI: .96, .98; rp 5 .98 CI:

.97, .98). RD explained 95.0% of the genetic variance in MD.

4 | DISCUSSION

We sought to clarify whether the same or different genetic and envi-

ronmental factors contribute to AD and RD. We report that AD and

RD exhibit significant heritability estimates of generally similar

magnitude in most of the bilateral tracts measured, consistent with our

prior report of diffusivity heritability estimates separately for left and

right hemispheres (Vuoksimaa et al., 2017). The core novel finding is

that there are strong genetic correlations between AD and RD in the

majority of tracts measured. Genetic correlations for the two total

tracts measures plus 14 of 18 individual tract measures were �.50

(median 5 .67; range: .50–.89; Table 3) in line with the previous report

of rg 5 0.61 for the corpus callosum (Kanchibhotla et al., 2014). These

results indicate substantial shared genetic influences underlying AD

and RD that would play a role in the neurobiological mechanisms that

underpin these two measures. On the other hand, the genetic correla-

tions were all significantly different from 1 indicating that there are

also distinct genetic influences specific to AD and RD for most tracts.

We showed that the genetic variance of FA—the most widely used

DTI metric—is predominately explained by RD (82%) over AD (16%).

TABLE 3 Best fit models of phenotypic, genetic, common, and environmental correlations among measures of axial and radial diffusivity

Correlations (95% CI) Significance tests

Fiber tract rp rg re rg50 rg51 re50 rp50

Total tracts .70 (.64; .76) .67 (.57; .75) .79 (.69; .86) <.0001 <.0001 <.0001 <.0001

Total tracts (excluding
corpus callosum)*

.74 (.69; .79) .74 (.67; .85) .75 (.63; .83) <.0001 <.0001 <.0001 <.0001

Anterior thalamic radia-
tion

.76 (.71; .80) .73 (.63; .81) .82 (.73; .88) <.0001 <.0001 <.0001 <.0001

Cingulate portion of
cingulum

2.18 (2.28; 2.07) 2.24 (2.40; 2.07) 2.01 (2.23; .20) .0055 <.0001 .9042 .0064

Parahippocampal
portion of cingulum*

.61 (.54; .68) .85 (.58; 1.0) .50 (.31; .66) <.0001 .4240 <.0001 <.0001

Corpus callosum .61 (.54; .68) .56 (.42; .66) .74 (.63; .82) <.0001 <.0001 <.0001 <.0001

Forceps major .58 (.50; .65) .65 (.52; .77) .47 (.27; .62) <.0001 <.0001 <.0001 <.0001
Forceps minor .64 (.57; .70) .66 (.53; .77) .63 (.48; .74) <.0001 <.0001 <.0001 <.0001

Fornix .91 (.89; .93) .88 (.81; .92) .95 (.92; .96) <.0001 <.0001 <.0001 <.0001

Inferior frontal superior
frontal cortex

.68 (.61; .73) .68 (.6; .76) .65 (.50; .76) <.0001 <.0001 <.0001 <.0001

Inferior longitudinal
fasciculus

.64 (.57; .70) .68 (.59; .76) .48 (.29; .63) <.0001 <.0001 <.0001 <.0001

Inferior fronto-occipital
fasciculus

.70 (.64; .75) .74 (.65; .81) .57 (.41; .70) <.0001 <.0001 <.0001 <.0001

Superior longitudinal
fasciculus (SLF)

.51 (.42; .59) .51 (.39; .61) .51 (.34; .66) <.0001 <.0001 <.0001 <.0001

Temporal SLF .52 (.43; .60) .52 (.40; .62) .54 (.37; .67) <.0001 <.0001 <.0001 <.0001
Parietal SLF .51 (.43; .59) .52 (.40; .63) .47 (.28; .62) <.0001 <.0001 <.0001 <.0001

Superior corticostriate* .20 (.09; .31) .15 (2.02; .32) .39 (.19; .56) .0752 <.0001 .0003 <.0001

Frontal superior
corticostriate*

.29 (.18; .39) .25 (.08; .44) .46 (.27; .62) .0049 <.0001 <.0001 <.0001

Parietal superior
corticostriate

.09 (2.02; .20) .03 (2.14; .19) .29 (.07; .48) .7025 <.0001 .0092 .0095

Striatal inferior frontal
cortex

.64 (.56; .70) .64 (.53; .72) .63 (.49; .74) <.0001 <.0001 <.0001 <.0001

Uncinate* .48 (.39; .56) .63 (.42; .96) .37 (.17; .54) <.0001 .0333 <.0001 <.0001

rp5 phenotypic correlation; rg5 genetic correlation; re5 unique environment correlation. All AD and the majority of RD measures did not indicate sig-
nificant common environmental influences (refer to Table 2), and the AE–AE model is shown. Where there were significant common environmental
influences (Table 2, c2> .05) the AE–ACE models are shown (denoted by *). Separate ACE–ACE and AE–AE model tables are provided in Supporting
Information.
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Similarly, the genetic variance of MD was predominately explained by

RD (95%) over AD (74%). These findings are in line with a family pedi-

grees study of whole brain diffusivity (Kochunov et al., 2010). It is per-

haps not surprising that more of the genetic variance in FA or MD is

accounted for by RD rather than AD because RD is based on two

eigenvectors, whereas AD is based on only one.

We can potentially identify the shared and unique genes influenc-

ing AD and RD measures through genome-wide association studies

(GWAS) or a meta-GWAS across multiple sites. Several GWAS of FA

have identified single nucleotide polymorphisms (SNPs) located within

genes involved in neural growth and cell adhesion (SPON1), lipid

metabolism (LPIN2, HADH), cell adhesion (OPCML, KAZN) and traffick-

ing (CCDC91), serotonin receptor (HTR7), g-protein coupled receptor

(GNA13), and several intergenic SNPs (Chiang et al., 2012; Jahanshad

et al., 2013b; Sprooten et al., 2014). Although this research highlights

that white matter cellular processes give rise to diffusion variations,

these GWAS of FA do not replicate the same SNPs between studies.

Our results are informative to subsequent GWAS since we show that

AD and RD, subcomponents of FA, have shared and distinct genetic

factors. Inconsistencies in FA GWAS results may be due to some stud-

ies identifying distinctly AD genes and other studies identifying dis-

tinctly RD genes, and this discrepancy may be obscured when looking

at FA alone. Indeed, a study of over 6,000 individuals was not able to

replicate any candidate genes previously associated with FA (Jahanshad

et al., 2017). To clarify the canonical genetic factors influencing diffu-

sivity measures, it would be very informative to perform separate

GWAS/meta-GWAS to determine if significant SNPs in FA, AD, and

RD are shared and/or unique.

Although most tracts demonstrated shared and unique genetic

influences between AD and RD, there were a few notable exceptions.

The parahippocampal portion of the cingulum showed some of the

lowest heritability concomitant with higher common environmental

influences in agreement with neonate twins findings (Lee et al., 2015).

For this tract, the model fit did not change when constraining rg51,

indicating that the two traits are under the influence of the same

genes. Conversely, the parietal portion of the superior corticostriate

showed high heritability and the model fit did not change when con-

straining rg50 indicating that the two traits are under entirely different

genetic influences resulting in low phenotypic and genetic correlation.

Finally, while the majority of tracts showed positive correlations, the

cingulate portion of the cingulum had negative genetic and phenotypic

correlations suggesting that the shared and unique genetic influences

on AD and RD within this tract are operating in opposite direction.

5 | L IMITATIONS

It is important to note the inherent problems of diffusion microstruc-

ture metrics and interpretations of AD and RD (Jones, Knosche, &

Turner, 2013). The initial AD and RD metrics were derived from an

experimental rodent species (Song et al., 2002, 2005) that may not

accurately reflect the microstructural changes that occur in humans in

normal brain development and aging. For example, normal age-related

neuropathology such as inflammation, lacunar infarctions, and atrophy

may introduce additional fluid/tissue partial volume estimates that alter

the magnitude of individual eigenvectors and associated eigenvalues

(Basser & Pajevic, 2000; Field et al., 2004). This issue is relevant for all

studies of AD and RD, and is not specific to this study.

This study has several specific limitations. The present investiga-

tion was restricted to men and may not be applicable to women. This is

particularly relevant given a recent investigation using the Human Con-

nectome Project database (n5481; 194 male, 287 female) showing

that sex was the only covariate evaluated that significantly contributed

to the phenotypic variance in heritability of whole-brain averaged FA

(Kochunov et al., 2015). Our study also included participants in a rela-

tively narrow age range. With well-known age-related changes in white

matter, it will be important to examine the genetic and environmental

associations between AD and RD in samples of different ages. On the

other hand, it is of value to have specific age ranges well characterized.

Moreover, as noted, our heritability estimates were similar to those of

prior reports, suggesting that our results may, in fact, be generalizable

to other age groups or mixed-sex samples. Finally, future studies

should acquire a retest diffusivity dataset to confirm that unique envi-

ronmental correlations are not significantly skewed by measurement

error (i.e., image acquisition variations due to variations in head place-

ment, subject hydration and movement, etc.) as well as examining

whether AD and RD heritability is differentially affected by measure-

ment error.

6 | CONCLUSIONS

Using bivariate twin models, we have shown here that AD and RD are

influenced to a large extent by shared genetic factors in most major

white matter pathways of the brain, but there are also significant

unique genetic factors influencing each of these diffusivity indices. A

GWAS of FA, AD, and RD in the same individuals would help to iden-

tify the shared and unique “white matter microarchitecture genes” that

give rise to diffusivity alterations seen in routine MRI exams. Based on

the genetic correlations we observed, we hypothesize that there should

be significant overlap of SNPs that are associated with FA, AD, and RD

in the majority of tracts, with the exception of the cingulum and supe-

rior corticostriate. This information will help further our understanding

of neuronal development, healthy brain aging, brain evolution, the neu-

ropathological origins of common psychiatric disorders, and neurodege-

nerative disorders. Finally, the fact that there are some distinct genetic

influences on each diffusivity measure suggests that genetic studies

should examine the individual contributions of AD and RD to the com-

posite measures FA and MD.
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