Genetic responses to carbon and nitrogen availability in Anabaena

Antonia Herrero* and Enrique Flores

Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain
*For correspondence: herrero@ibvf.csic.es

Outline:
Summary
Introduction
Ammonium assimilation and NteA-dependent N control
Assimilation of combined \mathbf{N} sources alternative to ammonium
N_{2} fixation and the heterocyst

Inorganic carbon assimilation

Regulation by PacR

Global regulatory circuits in Anabaena

Originality-significance statement

Heterocyst-forming cyanobacteria such as Anabaena can acclimate to thrive in environments with different sources of (mainly) inorganic nitrogen and different levels of inorganic carbon. The responses to C and N supplies are orchestrated by global (NtcA and PacR) and pathway-specific transcription factors, and they involve regulation not only of assimilatory pathways but also of other physiological processes such as defense against oxidative damage. These regulatory responses are essential for the cyanobacterial mode of living as oxygenic phototrophs.

Summary

Heterocyst-forming cyanobacteria are filamentous organisms that perform oxygenic photosynthesis and CO_{2} fixation in vegetative cells and nitrogen fixation in heterocysts, which are formed under deprivation of combined nitrogen. These organisms can acclimate to use different sources of nitrogen and respond to different levels of CO_{2}. Following work mainly done with the best studied heterocyst-forming cyanobacterium, Anabaena, here we summarize the mechanisms of assimilation of ammonium, nitrate, urea and N_{2}, the latter involving heterocyst differentiation, and describe aspects of CO_{2} assimilation that involves a carbon concentration mechanism. These processes are subjected to regulation establishing a hierarchy in the assimilation of nitrogen sources with preference for the most reduced nitrogen forms- and a dependence on sufficient carbon. This regulation largely takes place at the level of gene expression and is exerted by a variety of transcription factors, including global and pathway-specific transcriptional regulators. NtcA is a CRP-family protein that adjusts global gene expression in response to the C-to-N balance in the cells, and PacR is a LysR-family transcriptional regulator (LTTR) that extensively acclimates the cells to oxygenic phototrophy. A cyanobacterialspecific transcription factor, HetR, is involved in heterocyst differentiation, and other LTTR factors are specifically involved in nitrate and CO_{2} assimilation.

Introduction

Cyanobacteria are a phylogenetically coherent group of bacteria characterized by their ability to perform oxygenic photosynthesis (Stanier and Cohen-Bazire, 1977; Giovannoni et al., 1988). Nonetheless, some cyanobacterial non-photosynthetic mutants have evolved as obligate endosymbionts (Zehr et al., 2017). Although non-photosynthetic bacteria such as Melainabacteria and Sericytochromatia have been included into the phylum "cyanobacteria" (Soo et al., 2017), in our opinion they constitute different groups of organisms (see also Pakrasi and Zehr, 2017). Therefore, photoautotrophy is the characteristic mode of growth of cyanobacteria, although numerous strains in this phylum can use sugars supporting either chemoheterotrophic or photoheterotrophic growth (Rippka et al., 1979). Regarding nitrogen (N) sources, cyanobacteria are generally able to assimilate with high affinity inorganic N compounds and a simple organic compound such as urea, and many strains can fix atmospheric nitrogen (N_{2}) (Flores and Herrero, 2005). These properties make many cyanobacteria able to grow in oligotrophic environments. Nonetheless, the genomes of cyanobacteria encode numerous transporters for more complex organic compounds including amino acids, which widens the trophic options of these organisms and is consistent with the idea that microbes are prepared to extensively take up substrates that become available (Hobbie and Hobbie, 2013).

The enzyme that catalyzes N_{2} fixation, nitrogenase, is very sensitive to oxygen, making protection of nitrogenase against oxygen an important physiological issue in cyanobacteria (Gallon, 1981). Many strains separate nitrogen fixation and oxygenic photosynthesis in time, restricting the former to the dark period in diel cycles, and many filamentous cyanobacteria separate the two processes spatially restricting N_{2} fixation to specialized cells (Fay, 1992). This is particularly the case of heterocyst-forming strains, in which N_{2} fixation under oxic conditions is restricted to differentiated cells called heterocysts. The heterocyst-forming cyanobacteria are a monophyletic group of organisms (Giovannoni et al., 1988; Shih et al., 2013), implying that the heterocyst evolved only once, likely over 2,000 million years ago (Tomitani et al., 2006). There are two major groups of heterocyst-forming cyanobacteria, those in which cell division always takes place perpendicular to the long axis of the filament (Section IV cyanobacteria or Nostocales) and those in which cell division can take place also in a different angle producing branched filaments (Section V cyanobacteria or Stigonematales) (Rippka et al., 1979; Castenholz, 2001). The existence of these two
groups of heterocyst-forming cyanobacteria is supported by phylogenetic analysis (Shih et al., 2013; Schirrmeister et al., 2015; Mareš, 2017; Ponce-Toledo et al., 2017). The heterocyst-forming strains for which most physiological and molecular information is available belong to the genera Anabaena and Nostoc, which are included in Section IV and in some taxonomic classifications are distinguished by the ability to form hormogonia (small motile filaments frequently made of small cells) in Nostoc spp. but not in Anabaena spp. (Rippka et al., 1979). Strains ascribed to these genera are however interspersed in the phylogenetic tree of Section IV cyanobacteria (Shih et al., 2013; Schirrmeister et al., 2015). Studying a few model strains has permitted to advance in the understanding of some basic aspects of this group of organisms, but it should be noted that some traits may be strain-specific. The strain for which more molecular information is available is Anabaena sp. PCC 7120 (hereafter, Anabaena). This strain is sometimes referred to as Nostoc, but it does not form evident hormogonia and behaves as a planktonic organism, which in the botanical literature is associated to Anabaena spp. rather than to Nostoc spp.

Here we will review the genetic responses of Section IV cyanobacteria -mainly Anabaena- to the availability of sources of the major bioelements carbon and nitrogen. Whereas the most abundant source of C is atmospheric CO_{2}, the levels of CO_{2} that reach a cyanobacterial filament may vary depending on physicochemical parameters such as temperature-dependent solubility of CO_{2} in water or pH -dependent accumulation of bicarbonate and carbonate. (Unfortunately, the regulatory effect of sugars that can be assimilated by many Section IV cyanobacteria [Rippka et al., 1979] has not been generally investigated.) Nitrogen, on the other hand, can be assimilated in several different chemical forms. Whereas N_{2} will be generally available as a major component of the atmosphere, its fixation is restricted to conditions in which no sufficient combined N is available. Ammonium, nitrate, nitrite and urea are common N sources that may be found in natural habitats in a range of concentrations up to micromolar, and the cyanobacteria respond to changes in the concentrations of these nutrients through mechanisms that will be described below. (Lab experiments frequently require the use of millimolar concentrations of nutrients, but the uncovered regulatory mechanisms appear to be relevant under environmental conditions.) Finally, as we shall discuss, the assimilation of C and N are linked with each other, and the relative abundance or scarcity of one element is perceived by the cells depending on the availability of the other element.

Ammonium assimilation and NtcA-dependent N control

Cyanobacteria readily utilize ammonium, which is a preferred N source. Thus, when ammonium is available in sufficient amounts, it determines repression of genes encoding proteins for the assimilation of alternative N sources, which are expressed upon ammonium deprivation. Figure 1 presents a scheme of the pathways for assimilation of combined N and inorganic C in Anabaena.

Assimilation of ammonium

Ammonium ions are easily assimilated because ammonium is directly incorporated into carbon skeletons to produce organic N compounds. Solutions of ammonium always contain ammonia ($\mathrm{p} K_{\mathrm{a}}\left[\mathrm{NH}_{4}{ }^{+} / \mathrm{NH}_{3}\right]=9.3$), and ammonia readily permeate biological membranes. Nonetheless, ammonium translocators of the Amt family that act as ammonium scavengers (Wacker et al. 2014) are widely distributed in bacteria, permitting the incorporation into the cells of ammonium that may be found at submicromolar concentrations in the environment. The Amt proteins form trimers (Khademi et al., 2004), and the Anabaena genome contains three amt genes clustered together raising the possibility that their encoded products form heterotrimers (Paz-Yepes et al., 2008). However, although the transcription of the three genes is similarly increased in response to ammonium withdrawal, they are expressed at disparate levels, with amtl being expressed at the highest levels (ca. 10:100:1 for amt4, amtl, amtB, respectively; Flaherty et al., 2011). This is consistent with the known role of Amt1 as the main ammonium transporter in cyanobacteria (Montesinos et al., 1998). It is possible that the Amt trimer of Anabaena is mainly composed of Amt1 with small amounts of Amt4 and AmtB modulating its activity.

Ammonium is incorporated into organic compounds by the glutamine synthetaseglutamate synthase pathway, whose operation was elegantly demonstrated by Wolk et al. (1976) following the assimilation of ${ }^{13} \mathrm{~N}$-labeled N_{2} in Anabaena cylindrica. In this pathway, ammonium is incorporated into glutamate producing glutamine in an ATPdependent reaction catalyzed by glutamine synthetase (GS), and the amido group of glutamine is then transferred to 2 -oxoglutarate (2-OG) by glutamine:oxoglutarate amido transferase (GOGAT) in a reaction that requires reducing power. Most cyanobacterial GOGAT enzymes, including those from Anabaena strains, use reduced ferredoxin as an
electron donor (Martín-Figueroa et al., 2000), thus linking the assimilation of ammonium to photosynthesis.

In whole filaments of Anabaena, whereas the expression of the $g \ln A$ gene encoding GS is increased in response to ammonium withdrawal, expression of $g l s F$ encoding GOGAT remains unaltered (Martín-Figueroa et al., 2000). However, glsF is repressed in the heterocysts, in which expression of $g \ln A$ is increased as compared to that in the vegetative cells. Whereas, to the best of our knowledge, the molecular basis of $g l s F$ repression has not been investigated, expression of $\operatorname{gln} A$ in Anabaena has been shown to take place from a complex promoter region (Tumer et al., 1983), in which one promoter activated by the transcription factor NtcA (see below) is specifically responsible for expression in the heterocysts (Valladares et al., 2004). Cyanobacterial GS is further regulated at the post-transcriptional level by specific proteinaceous inactivating factors (García-Domínguez et al., 1999). In Anabaena, the 67-amino acid residue inactivating factor IF7A is encoded by the gifA gene, which is repressed by NtcA under N-limiting conditions and in the heterocysts, thus ensuring that GS is not inactivated under N deficiency or in the N_{2}-fixing cells (Galmozzi et al., 2010).

NtcA-dependent N control

The negative regulation of pathways for the assimilation of alternative N sources exerted by ammonium takes place mainly at the level of gene expression. In Anabaena, studied pathways that are subjected to repression by ammonium include the nitrate assimilation system (nitrate and nitrite transport and intracellular reduction to ammonium), urea uptake, ammonium translocation and incorporation into glutamine by GS, and N_{2} fixation by nitrogenase (including heterocyst differentiation; see below). At the molecular level, pathway regulation is mainly exerted through transcriptional regulation exerted by the NtcA protein.

NtcA is a transcriptional regulator of universal distribution in the cyanobacterial phylum that orchestrates the circuits of N control. It belongs to the CRP (cAMP receptor protein) family of transcriptional regulators and, similar to other members of this family, consists of an effector-binding N-terminal domain with a β-roll fold, a long dimerization helix, and a C-terminal helix-turn-helix motif for interaction with DNA (Herrero et al., 2001; Zhao et al., 2010). NtcA binds as a dimer to palindromic DNA sites including the sequence signature GTAN8TAC (Luque et al., 1994; Picossi et al., 2014). NtcA binding
to the promoter region of multiple genes related to N assimilation has indeed been detected (e.g., Vázquez-Bermúdez et al., 2002; Valladares et al., 2008). Besides detailed studies of the regulation by NtcA of a number of genes involved in N assimilation and heterocyst differentiation, a global study of NtcA targets by chromatin immunoprecipitation in Anabaena three hours after N step-down revealed more than 2,000 direct targets ascribed to 2,153 genes. The NtcA targets were located in the chromosome and the six plasmids of Anabaena, and included genes related to N scavenging and assimilation, but also genes ascribed to other diverse functional categories, among them genes with a predicted regulatory function, suggesting cascades of NtcA-dependent regulation (Picossi et al., 2014). Thus, NtcA is indeed a global regulator of cyanobacterial physiology.

NtcA can act as a transcriptional activator or repressor (Luque and Forchammer, 2008). In the most commonly found NtcA-activated promoter, an NtcA-binding site is found upstream from, separated by ca. 22 nucleotides, a - 10 promoter determinant, thus conforming to the Class II bacterial-activated promoter. NtcA senses the cellular C-to-N balance by binding 2-OG (Vázquez-Bermúdez et al., 2002; Zhao et al., 2010). Binding of 2-OG to NtcA has a positive, although variable, effect on NtcA binding to DNA. However, at least in vitro, NtcA binding to DNA in the absence of 2-OG can take place. (This contrasts with the requirement of the effector, cAMP, for CRP interaction with DNA at bacterial CRP-regulated promoters.) Beyond this effect on binding to DNA, NtcA and $2-\mathrm{OG}$ are stringently required for the isomerization to the transcriptional Open Complex and, thus, for transcript production at Class II NtcA-activated promoters as studied in vitro using the cloned Anabaena RNA polymerase (Valladares et al., 2008).

Additionally, other types of NtcA-activated promoters have been identified, including Class I promoters, in which an NtcA-binding site is located further upstream from the - 10 determinant, and promoters with degenerated binding sites that involve NtcA co-activators. The relative affinity of NtcA for the different promoters, together with the availability of co-activators, are important determinants of the order of promoter activation upon ammonium withdrawal, conceivably playing an important role in the hierarchy of assimilation of alternative nitrogen sources.

Assimilation of combined \mathbf{N} sources alternative to ammonium

Other than ammonium, cyanobacteria preferentially utilize inorganic N sources, being nitrate and nitrite excellent nitrogenous nutrients, although some amino acids, including arginine and glutamine, and, especially, urea can also be efficiently assimilated by some cyanobacteria such as Anabaena.

Nitrate assimilation

Nitrate can be used as a N source by most heterocyst-forming cyanobacteria. Nitrate is typically taken up by a high-affinity transporter that concentrates nitrate inside the cells to a level that makes it usable by nitrate reductase, which catalyzes the 2-electron reduction of nitrate producing nitrite. Nitrite is then used by nitrite reductase that catalyzes a 6 -electron reduction producing ammonium. Cyanobacterial nitrate and nitrite reductases are metalloenzymes that use reduced ferredoxin as electron donor, thus liking nitrate assimilation to photosynthesis (Flores et al., 2005).

As in many other microorganisms, the genes encoding the nitrate assimilation system are clustered together in the genome of Anabaena (Cai and Wolk, 1997). The nitrate assimilation structural genes form an operon in which the genes are arranged in a very conserved order (5^{\prime} to 3^{\prime}): nirA (nitrite reductase), transporter genes, narB (nitrate reductase) (Fig. 2). In Anabaena, the nitrate uptake system (that can also take up nitrite) is an ABC transporter encoded by genes determining a periplasmic solute-binding protein ($n r t A$) that is distinctly anchored to the cytoplasmic membrane (Maeda et al., 2000), a transmembrane domain protein $(n r t B)$, a nucleotide-binding domain protein that has a C terminal extension homologous to NrtA ($n r t C$), and a conventional nucleotide-binding domain protein ($n r t D$) (Frías et al., 1997). To conform the known structure of ABC transporters, NrtB should form a dimer, and one unit of each NrtC and NrtD constitute the nucleotide-binding module. The NrtC protein may have, in addition to its role as an ATPase, a regulatory role mediated by its NrtA-like domain (see below). Interestingly, some heterocyst-forming cyanobacteria such as Nostoc punctiforme express a Major Facilitator Superfamily (MFS) nitrate/nitrite transporter instead of the ABC transporter (Aichi et al., 2006).

Nitrate assimilation is regulated at the transcriptional and post-transcriptional levels. In the latter, nitrate uptake is inhibited by ammonium in a process that affects the nitrate (nitrite) transporter. As has been shown for some unicellular cyanobacteria (Kobayashi et al., 2005), the NrtA-like domain of NrtC appears to be required for
ammonium-promoted inhibition of nitrate uptake. Additionally, the $\mathrm{P}_{\text {II }}$ protein $(\mathrm{g} \ln B$ gene product -see below) is required for this inhibitory effect to take place (Paz-Yepes et al., 2009). An appealing hypothesis is that the non-phosphorylated $P_{\text {II }}$ protein (which is the form that accumulates in the presence of ammonium) inhibits the transporter but, to the best of our knowledge, a physical interaction between NrtC and $\mathrm{P}_{\text {II }}$ has not yet been demonstrated.

The expression of the nirA operon is subjected to regulation exerted by the global N -control system, and is transcribed from a Class II NtcA-activated promoter (Frías et al., 1997, 2000). Additionally, in Anabaena, high expression of the nirA operon and production of full nitrate and nitrite reductase activities require a number of genes that are clustered with those of the nirA operon. Both NtcB (a LysR family transcriptional regulator [LTTR]) and CnaT (a putative glycosyl transferase) boost expression (Frías et al., 2000; Frías et al., 2003). Whereas NtcB binds to the nirA promoter region upstream of the NtcA-binding site, CnaT acts through an unknown mechanism. The $n t c B$ gene is expressed also from a Class II NtcA-activated promoter (Frías et al., 2000). Further, the products of two genes, nirB and $\operatorname{nar} M$, are needed to attain high levels of activity of nitrite reductase and nitrate reductase, respectively, and NirA-NirB and NarB-NarM proteinprotein interactions have been found to take place (Frías and Flores, 2010, 2015). High levels of expression of the operon are observed only if nitrate or nitrite (which can be considered physiological inducers) is available. This requirement for nitrate (nitrite) is however not observed in nirA or nirB mutants, which express the operon at high levels in the absence of the inducer (Frías and Flores, 2010), suggesting a role of the NirA/NirB complex as a direct or indirect repressor of the operon (Fig. 2). Whatever the mechanism, the requirement for nitrate (nitrite) ensures that the nirt operon will not be expressed under conditions of severe N deficiency that permit heterocyst differentiation and N_{2} fixation to proceed (see below).

Assimilation of organic N

The genome of Anabaena encodes numerous transporters that can mediate the uptake of organic nitrogenous compounds including amino acids and urea. These are mainly ABC transporters that exhibit K_{s} values in the range of the environmental concentrations of their substrates, from 1 to $50 \mu \mathrm{M}$ for most amino acids except acidic amino acids for which the K_{s} values are substantially higher (Montesinos et al., 1995; Pernil et al., 2015),
and about $0.1 \mu \mathrm{M}$ for urea (Valladares et al., 2002). Thus, assimilation of organic N is likely important in the physiology of Anabaena, and the ability of this cyanobacterium to use arginine, glutamine and urea as N sources has been demonstrated with mutants unable to fix N_{2} under oxic conditions (Herrero and Flores, 1990; Valladares et al., 2002; Burnat et al., 2014). Although the mechanisms of assimilation of organic N have not been investigated in detail, some relevant pathways can be predicted or have been approached experimentally. Thus, (i) glutamine utilization likely involves GOGAT (described above); (ii) arginine utilization appears to take place through two pathways, including an arginine decarboxylase pathway that synthesizes polyamines (Burnat et al., 2018) and an arginine \rightarrow proline \rightarrow glutamate pathway (Burnat and Flores, 2014); and (iii) urea utilization involves urease that hydrolyzes urea to CO_{2} and two molecules of ammonium (Valladares et al., 2002).

Bacterial urease is a Ni^{2+}-containing enzyme composed of three subunits, α (UreC, which bears the catalytic site), β (UreB) and γ (UreA), and maturation of urease requires four additional proteins, UreD, UreE, UreF and UreG (Boer et al., 2014). In Anabaena, these proteins are encoded in two gene clusters: (i) alr3666 (ureD)-alr3667 (ureA)-alr3668 (ureB)-alr3670 (ureC) and (ii) alr0733 (ureE)-alr0734 (ureF)-alr0735 (ureG) (Kaneko et al., 2001), and a mutant lacking urease activity has been isolated that maps at ureG (Valladares et al., 2002). Whereas the urease activity has been found to be expressed constitutively, urea uptake and the urtABCDE genes encoding the ABC transporter for urea are subjected to N control by NtcA ensuring that the ability to take up urea actively is expressed only under N deficiency (Valladares et al., 2002).

\mathbf{N}_{2} fixation and the heterocyst

When no source of combined N is available, Anabaena, Nostoc and phylogeneticallyrelated cyanobacteria enter into a developmental process in which some vegetative cells of the filament differentiate into heterocysts, which are cells specialized for the fixation of N_{2}.

Nitrogenase

The enzymatic complex that catalyzes N_{2} fixation is the product the three structural genes, nifD and nifK encoding nitrogenase, which holds the Fe-S cluster known as the P cluster
and the $\mathrm{Fe}-\mathrm{Mo}$ cofactor in which the nitrogen fixation reaction takes place, and nifH encoding nitrogenase reductase, which holds an Fe-S cluster, binds Mg^{2+}-ATP and transfers electrons to nitrogenase (Rubio and Ludden, 2008). In turn, electrons are received from an electron carrier such as ferredoxin or flavodoxin. Notably, alternative nitrogenases that use an $\mathrm{Fe}-\mathrm{V}$ cofactor or an $\mathrm{Fe}-\mathrm{Fe}$ cofactor are known (Mus et al., 2018). As in most N_{2}-fixing bacteria, in Anabaena the nifHDK genes form an operon and are clustered with other genes encoding nitrogenase maturation proteins and electron donors including ferredoxins (Flores et al., 2015). Whereas most heterocyst-forming cyanobacteria contain only the nitrogenase that is confined to heterocysts ($\mathrm{Fe}-\mathrm{Mo}$ nitrogenase), Anabaena variabilis strain ATCC 29413 is unique among wellcharacterized cyanobacteria in that it expresses three nitrogenases (Thiel and Pratte, 2014). In addition to the Fe -Mo nitrogenase expressed in heterocysts, this cyanobacterium expresses an $\mathrm{Fe}-\mathrm{Mo}$ nitrogenease in vegetative cells under anoxic conditions and an Fe V nitrogenase in heterocysts under conditions of Mo deficiency.

Heterocyst differentiation and function

Cell envelope

Heterocyst formation is first noticed by the production of an extra cell wall envelope that is deposited outside of the pre-existing outer membrane. A polysaccharide layer (HEP) is first produced that consists of repeating units of an oligosaccharide that has a tetrasaccharide backbone $(\rightarrow 3$ mannose $1 \rightarrow 3$ glucose $1 \rightarrow 3$ glucose $1 \rightarrow 3$ glucose 1 \rightarrow) with some of its glucosyl residues substituted by some saccharides (Cardemil and Wolk, 1981). A cluster of hep genes encoding proteins involved in the production of this polysaccharide, as well as some non-clustered hep genes have been identified (Huang et al., 2005; Wang et al., 2007). Although the mechanism of production is unknown, the presence in Anabaena of several hep genes encoding proteins homologous to lipopolysaccharide (LPS) biosynthesis proteins suggests that the heterocyst-envelope polysaccharide may be a modified form of LPS or its production may follow a path similar to that of LPS (Huang et al., 2005). Then, heterocyst-specific glycolipids (HGL), which are long-chain polyhydroxy alcohols with a hexose head group, are produced and deposited beneath the polysaccharide layer (Awai et al., 2009). A cluster of $h g l$ genes and some non-clustered genes required for the production of the HGL layer have been
identified (Fan et al., 2005; Awai and Wolk, 2007; Fiedler et al., 1998). HGL are synthesized by polyketide synthases and at least one glycosyl transferase, and exported by an ATP-driven secretion system formed by DevA (ABC exporter NBD), DevC (ABC transporter TMD), DevB (fusion membrane protein) and HgdD (TolC-like outermembrane protein) (Staron et al., 2011). It is thought that the HGL layer restricts diffusion of gases, thus representing a barrier to entry of oxygen, and that the HEP layer protects HGL from damage (Awai et al., 2009). Some air has nonetheless to enter the heterocyst to provide the substrate $\left(\mathrm{N}_{2}\right)$ for nitrogenase, and hence the simultaneous entry of some O_{2} is unavoidable.

Intracellular membrane systems - Photosynthesis and respiration

Importantly, photosystem II-associated photolysis of water is dismantled in the heterocysts avoiding the intracellular production of O_{2} (reviewed by Magnuson and Cardona, 2016). Indeed, heterocyst formation involves a large reorganization of intracellular membranes, which in vegetative cells are found peripherally and in the heterocysts are largely located around the cell poles constituting the so-called honeycomb membranes (Lang and Fay, 1971). These membranes are sites of respiration that contribute to reduce the O_{2} that enters the heterocyst, and terminal respiratory oxidases exclusively expressed in the heterocysts are known in Anabaena (Valladares et al., 2003, 2007). O_{2} is further reduced in the heterocyst's cytoplasm by flavodiiron proteins specifically expressed in these differentiated cells (Ermakova et al., 2013, 2014), and possibly by L-lactate oxidase (Hackenberg et al., 2011). Respiration in the heterocysts requires a source of reductant that is received from the adjacent vegetative cells. In Anabaena, sucrose appears to be the main source of intercellularly transferred reductant, since inactivation of an invertase, InvB, expressed specifically in the heterocysts blocks diazotrophic growth (López-Igual et al., 2010; Vargas et al., 2011; reviewed in Kolman et al., 2015). Invertases irreversibly cleave sucrose into glucose and fructose, and the oxidative pentose phosphate pathway mediates sugar catabolism in the heterocysts (Summers et al., 1995). Reductant is made available to nitrogenase by a heterocystspecific ferredoxin (FdxH), which is reduced by ferredoxin-NADPH oxidoreductase (FNR) or photosystem I (see discussion in Magnuson and Cardona, 2016). Photosystem I-dependent reduction of FdxH requires donation of electrons by $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ into an electron transport chain involving $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ dehydrogenase and cytochrome $b_{6-} f$
complexes. Energy conservation associated with this electron transport chain and with the operation of respiratory oxidases results in production of ATP that is also needed for nitrogenase function (Magnuson and Cardona, 2016; Valladares et al., 2007; Stal, 2017).

Ammonium assimilation - Intercellular metabolite exchange

In heterocysts, ammonium produced by nitrogenase is incorporated into glutamate by GS producing glutamine (Wolk et al., 1976). The heterocysts, however, lack (or have low levels of) GOGAT, which is present at high levels only in vegetative cells (Thomas et al., 1977; Martín-Figueroa et al., 2000). Hence, glutamate for the operation of GS has to be transferred from vegetative cells to heterocysts, which in turn donate glutamine to vegetative cells (Wolk et al., 1976). The heterocysts also synthesize other amino acids including aspartate and arginine (Wolk et al., 1976), which are used to produce cyanophycin (multi-L-arginyl-poly [L-aspartic acid]), a dynamic polymeric N reserve that accumulates conspicuously at the heterocyst poles (Lang et al., 1972). Cyanophycin is synthesized non-ribosomally by cyanophycin synthetase and degraded sequentially by cyanophycinase, which releases β-aspartyl-arginine, and isoaspartyl dipeptidase, which splits the dipeptide making aspartate and arginine available for metabolism. The dipeptidase is present in vegetative cells at higher levels than in heterocysts, implying that β-aspartyl-arginine is transferred (in addition to glutamine) as a N vehicle from heterocysts to vegetative cells (Burnat et al., 2014). Thus, the reduced C/fixed N exchange that takes place between vegetative cells and heterocysts in the diazotrophic filament appears to include sucrose and glutamate moving from vegetative cells to heterocysts and glutamine and β-aspartyl-arginine moving from heterocysts to vegetative cells (Fig. 3). Nonetheless, other (perhaps many) metabolites may also be translocated from vegetative cells to heterocysts, including alanine, which may serve as a source of reductant in the heterocysts (Jüttner, 1983; Pernil et al., 2010), and some reduced forms of sulfur (Giddings et al., 1981). Metabolite exchange between vegetative cells and heterocysts appears to take place by diffusion through proteinaceous structures known as septal junctions that are located in the intercellular septa and join the adjacent cells in the filament (Nürnberg et al., 2015; Flores et al., 2016; Nieves-Morión et al., 2017).

Regulation of heterocyst distribution in the filament

On a different physiological level, heterocysts transfer regulators to the vegetative cells. Indeed, heterocyst distribution along the filament is not random, and in Anabaena growing under N_{2}-fixing conditions, the heterocysts are semi-regularly spaced, separated by stretches of ca. 10-15 vegetative cells. For establishing this heterocyst distribution pattern, the intercellular movement of heterocyst differentiation inhibitors plays an important role. Among these inhibitors, the PatS morphogen is produced at early stages of differentiation in the specific cells undertaking the process and exported to neighboring cells, thus preventing their differentiation (Yoon and Golden, 1998; Corrales-Guerrero et al., 2014). At advanced stages of differentiation, other factors, such as HetN may promote lateral inhibition, thus contributing to maintain the specific heterocyst distribution pattern (Callahan and Buikema, 2001).

Transcriptional regulation of heterocyst differentiation

Heterocyst differentiation requires the action of the products of multiple structural and regulatory genes, which have been identified through the isolation of mutants impaired in the differentiation process and, more recently, by global gene expression studies. Many of the genes needed for heterocyst differentiation are activated at specific stages during the process, only in the differentiating cells (see Herrero et al., 2013; Flores et al., 2018).

Two transcription factors, NtcA and HetR, are essential for heterocyst formation, so that strains bearing inactivated ntcA or hetR genes do not show any hint of differentiation upon N step-down. As NtcA, HetR is a DNA-binding factor, and the structure of a HetR dimer conforming a DNA-binding domain that includes the N terminal helix-turn-helix motifs of both subunits has been published (Kim et al., 2011). More recently, HetR tetramers have been detected to occur in vivo (Valladares et al., 2016). The HetR tetramers are more abundant at intermediate times of heterocyst differentiation, coincident with the period of maximum HetR expression and HetRdependent activation of transcription, and they are undetected in a mutant that does not form heterocysts. When differentiation is completed, HetR tetramers are detected in heterocysts but not in vegetative cells. Moreover, HetR co-purifies with RNA polymerase from Anabaena predominantly in the tetrameric form. These observations support the idea that during heterocyst differentiation the tetrameric HetR can represent an active
form of the regulator (Valladares et al., 2016). Indeed, besides the dimer, complexes of HetR tetramers with DNA have also been detected in vitro (Kim et al., 2013).

Regarding the sequence of gene regulation events promoting heterocyst differentiation upon N step-down, a rise in the cellular levels of 2-OG effects activation of the low levels of NtcA already present in the filament, triggering activation of the expression of the genes het R and $n t c A$ in a mutually-dependent and autoregulatory manner (Muro-Pastor et al., 2002). Activation of hetR by NtcA appears to take place through NrrA (Ehira and Ohmori, 2006), a response regulator that is expressed from a canonical NtcA-dependent Class II promoter (Muro-Pastor et al., 2006). The resulting increased levels of HetR and NtcA are required for the expression of subsequent genes, including those for additional regulators of specific pathways, culminating in expression of nitrogenase activity in the mature heterocyst. As a secondary regulator, NrrA also activates the expression of glycogen catabolism genes and cooperates with NtcA for induction of $\operatorname{sig} E$ encoding the sigma factor SigE that is involved in the expression of genes operating in the mature heterocyst, including nifH and genes of the pentose phosphate pathway (Mella-Herrera et al., 2011; Ehira and Ohmori, 2011).

Mechanistically, a relevant feature of many genes involved in heterocyst differentiation is that they bear complex promoter regions with several successive promoters (see Herrero et al., 2013, and references therein), each with a specific spatiotemporal pattern of expression -with regard to the stage of differentiation and the degree of confinement to the differentiating cells. In vivo, promoters of heterocystdifferentiation genes that are activated early upon N step-down and at significant levels in all the cells of the filament conform to Class II NtcA-activated promoters. On the other hand, promoters activated principally in the differentiating cells require both NtcA and HetR. Although purified HetR has been shown to bind alone to the promoter region of several heterocyst-differentiation genes (Huang et. al., 2004; Videau et al., 2014), it is not known whether HetR alone suffices for transcript production. In the complex promoter region of the $\operatorname{dev} B C A$ operon, involved in the deposition of HGL, besides a distal Class II NtcA-dependent promoter, a proximal promoter is found that, in spite of depending on NtcA and HetR in vivo, presents only a very degenerated NtcA-binding sequence. However, in vitro, NtcA alone binds to this promoter and leads to production of transcripts in the presence of RNA polymerase and 2-OG. Binding of HetR alone could not be detected, but it enhanced the interaction of NtcA with the promoter DNA and
transcript production. Thus, in this promoter HetR acts as an NtcA co-activator (Camargo et al., 2012).

A global determination by chromatin immunoprecipitation of the HetR targets at an intermediate time during heterocyst differentiation has identified 59 binding sites ascribed to 25 genomic regions, of which only 10% included recognized heterocyst differentiation genes (Flaherty et al., 2014). Because the number of genes involved in heterocyst differentiation that in vivo show dependence on HetR is much higher, their requirement may respond to an indirect effect of HetR (e.g., a requirement for increased levels of NtcA or of a secondary, HetR-dependent regulator). In addition, the fact that HetR was detected bound at some vegetative-cell activated promoters implies a function of HetR in vegetative cells, likely as a repressor, as also suggested by the study of hetR mutants (see, e.g., López-Igual et al., 2010).

In Anabaena, another regulatory factor, PipX, is maximally expressed in the cells differentiating into heterocysts, at advanced stages of differentiation, dependent on NtcA and HetR, and is required for full activation of late heterocyst-specific genes (Valladares et al., 2011). At some NtcA-dependent promoters, PipX has been shown to increase NtcA binding and transcription. Thus, PipX represents another NtcA co-activator (Camargo et al., 2014).

In summary, NtcA alone activates promoters induced early after N step-down in all the cells of the filament. Later, HetR participates in the activation of promoters that exhibit specificity for the differentiating cells, and still later, PipX co-operates with NtcA for transcription activation in near-mature heterocysts. Mechanistically, HetR could promote transcription activation in different ways: cooperating with NtcA, acting alone, or indirectly, by promoting increased levels of NtcA that may be required for activation of late NtcA-activated genes or of secondary regulators. Notably, a sequence of NtcA coactivators, HetR and PipX, appears to play an important role in the establishment of the hierarchical series of transcription activation effecting heterocyst differentiation (Fig 4).

Recently, it has been shown that purified HetR is the subject of phosphorylation in vitro (Valladares et al., 2016). Phosphorylation interferes with the formation of HetR tetramers and with HetR binding to DNA. Thus, phosphorylation would represent a mechanism for HetR inactivation (Valladares et al., 2016). On the other hand, the morphogen PatS is a negative effector of HetR. HetR binds PatS in vitro (Feldman et al., 2011) and PatS hampers HetR tetramerization (Valladares et al., 2016) and inhibits HetRbinding to DNA (Huang et al., 2004), whereas in vivo HetR tetramers are more
represented in a mutant that does not produce PatS (and HetN) (Valladares et al., 2016). Thus, the PatS morphogen and phosphorylation could represent two different mechanisms for negative regulation of the activity of HetR, both acting by interfering with HetR tetramerization. During the first stages of heterocyst differentiation, PatS appears to limit the activity of HetR in the vegetative cells that are neighbors to the differentiating cells, thus limiting heterocyst differentiation. Indeed, coupling of fluctuations of het R expression, influenced by PatS and auto-regulation, along the filament appears to play an important role in the generation of the heterocyst distribution pattern (Corrales-Guerrero et al., 2014). In turn, phosphorylation would contribute to inactivation of HetR in the cells that are at advanced stages of differentiation (Valladares et al., 2016).

Ci assimilation

Although certain sugars, especially glucose, fructose and sucrose (Rippka et al., 1979), can be assimilated by some heterocyst-forming cyanobacteria, the bulk of carbon is obtained from $\mathrm{CO}_{2} / \mathrm{CO}_{3} \mathrm{H}^{-}$(generically inorganic carbon, Ci). Inorganic carbon enters the cyanobacterial cell with the aid of active mechanisms and is incorporated into organic material mainly by ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCo), a doorway for the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway. A distinct cyanobacterial feature is the expression of a so-called Carbon Concentrating Mechanism (CCM) that enhances the CO_{2} concentration in the vicinity of RubisCo, thus increasing the efficiency of C assimilation. The mechanism of Ci assimilation has been less investigated in the Nostocales than in unicellular cyanobacteria such as Synechococcus sp. PCC 7942 or Synechocystis sp. PCC 6803. Therefore, in this section, we shall first briefly introduce the topic for cyanobacteria in general and then describe what is known for Anabaena.

Ribulose bisphosphate carboxylase

RubisCo is considered as one of the most abundant enzymes on Earth, perhaps to compensate for a general low activity that results from low catalytic turnover, low affinity for CO_{2} and the concomitant utilization of O_{2} as a substrate alternative to CO_{2}. The carboxylase reaction involves the incorporation of one molecule of CO_{2} into one molecule
of ribulose 1,5-bisphosphate (RuBP) to produce two molecules of 3-phosphoglycerate, whereas the oxygenase reaction involves the incorporation of one molecule of O_{2} into one molecule of RuBP to produce one molecule of 3-phosphoglycerate and one of 2phosphoglycolate, which enters photorespiratory pathways resulting in a loss of fixed C (Kaplan et al., 2008; Allahverdiyeva et al., 2011; Hagemann et al., 2013). The type of RubisCo found in cyanobacteria, as in plants and most algae and phototrophic bacteria, is form 1 RubisCo, which is a hexadecameric enzyme composed of eight catalytic large (ca. 55 kDa) and eight small (ca. 14 kDa) subunits (see Tabita et al., 2007), although variants of this general theme have been found (see below).

The carbon concentrating mechanism of cyanobacteria

Cyanobacteria have evolved a remarkable physiological system, CCM, whose operation increases the efficiency of CO_{2} fixation (Kaplan et al., 2008; Price, 2011). Cyanobacterial CCM systems are integrated by CO_{2} and HCO_{3}^{-}uptake systems, carbonic anhydrases, and a dedicated bacterial micro-compartment, the carboxysome (Kerfeld and Erbilgin, 2015), in which a good part of the cellular RubisCo is confined (Fig. 1). The operation of CCM systems results in a large increase of CO_{2} concentration in the proximity of RubisCo within the carboxysome, thus enhancing carboxylase activity. Two classes of cyanobacteria have been distinguished depending on the type of carboxysome they bear (α-cyanobacteria and β-cyanobacteria). Remarkably, the complement of Ci uptake systems and the type of carboxysomes found across cyanobacteria respond to the characteristics of the natural environment in which they have evolved (see below).

$\mathrm{CO}_{2} / \mathrm{HCO}_{3}-$ uptake systems

Regarding $\mathrm{HCO}_{3}{ }^{-}$transport, two secondary transporters (SbtA and BicA) and one ABC transporter (Cmp, a.k.a. BCT1) have been characterized in cyanobacteria. The cmp $A B C D$ operon encodes the elements of an ABC transporter for HCO_{3}^{-}, with CmpA representing a periplasmic substrate-binding protein for $\mathrm{HCO}_{3}{ }^{-}$that, notably, is anchored to the cytoplasmic membrane (Maeda et al., 2000). Most orthologues of the cmpABCD cluster are found in freshwater unicellular and filamentous cyanobacteria (Price et al., 2008).

The sbtA gene encodes a Na^{+}-dependent high-affinity $\mathrm{HCO}_{3}{ }^{-}$transporter. In the unicellular cyanobacterium Synechocystis sp. PCC 6803, SbtA-mediated transport
requires the product of a nearby gene encoding a $\mathrm{Na}^{+} / \mathrm{K}^{+}$-translocating protein, leading to the proposal that SbtA is energized by $\Delta \mu \mathrm{Na}^{+}$across the cytoplasmic membrane (Shibata et al., 2002). SbtA homologs are present in different unicellular and filamentous β cyanobacteria (Price et al., 2008). The bicA gene encodes a Na^{+}-dependent, low-affinity $\mathrm{HCO}_{3}{ }^{-}$transporter of the SulP family (Price et al., 2004). Homologs of bicA are present in many fresh-water and oceanic cyanobacteria, including the widespread marine Synechococcus and Prochlorococcus strains. Thus, BicA may represent an important path for carbon acquisition at a global scale (Price et al., 2008).

Regarding CO_{2} uptake, the $\mathrm{NDH}-1_{3}$ and $\mathrm{NDH}-1_{4}$ systems, which are specialized $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$ dehydrogenase (NDH-1) membrane complexes, have been characterized (e.g., Shibata et al., 2001). NDH-13, comprised of the proteins NdhD3 and NdhF3 (the NDH1 subunits) and CupA (a.k.a. ChpY), is a low CO_{2}-inducible CO_{2} uptake system with higher maximal rate and affinity than the $\mathrm{NDH}-1_{4}$ system, which is comprised of NdhD4/NdhF4/CupB (a.k.a. ChpX). At least the NDH-13 complex appears restricted to thylakoid membranes (Ohkawa et al., 2001). The model for the operation of these CO_{2} uptake systems proposes a passive, aquaporine-mediated entrance of CO_{2} down a concentration gradient that is maintained by the intracellular hydration of CO_{2} to HCO_{3}^{-} catalyzed by the Cup proteins, which is linked to $\Delta \mu \mathrm{H}^{+}$generated by proton translocation across membranes associated to electron transport by the NdhDF subunits (Tchernov et al., 2001; Badger and Price, 2003). Both CO_{2} uptake systems, $\mathrm{NDH}-1_{3}$ and $\mathrm{NDH}-1_{4}$, can be detected in β-cyanobacteria, whereas picoplanktonic marine strains show only NDH14 (Synechococcus strains) or none of them (Prochlorococcus strains) (Price et al., 2008). Notwithstanding the above brief description of the distribution of $\mathrm{CO}_{2} / \mathrm{HCO}_{3}{ }^{-}$uptake systems in the cyanobacterial phylum, it should be noted that, as far as we know, the search has not been updated with the current wide collection of available cyanobacterial genomes.

The carboxysome

The uptake of Ci species, either through $\mathrm{HCO}_{3}{ }^{-}$transporters or by CO_{2} translocation, leads to the accumulation of $\mathrm{HCO}_{3}{ }^{-}$in the cytoplasm. Free $\mathrm{HCO}_{3}{ }^{-}$enters the carboxysome, which includes RubisCo. All the cyanobacteria so far studied, as well as many chemoautotrophic and a few purple-sulphur phototrophic bacteria possess carboxysomes.

Carboxysomes are polyhedral bodies constituted by a central core made of RubisCo and carbonic anhydrase, which converts $\mathrm{HCO}_{3}{ }^{-}$into CO_{2}, encapsulated into a proteinaceous shell that represents a diffusion barrier for CO_{2} exit and O_{2} entrance, although allowing the movement of HCO_{3}^{-}, the RubisCo substrate RuBP , and the product 3phosphoglycerate. Detailed structural studies of the carboxysome have been performed in recent years revealing a highly-ordered shell structure made of icosahedral facets of hexameric proteins (Kerfeld et al., 2005) connected at the vertices by pentameric proteins (Tanaka et al., 2008; Sutter et al., 2013).

All cyanobacterial carboxysomes share the same overall architecture and way of operation. However, two types of carboxysomes have been distinguished, which differ in the type of RubisCo and carbonic anhydrase included, in the components of the carboxysome shell, the lumen organization, and the process of particle assembly. These two carboxysome types have deep phylogenetic divergence in the cyanobacterial phylum. The so-called β-carboxysomes contain form 1-B RubisCo and the CcmM and/or CcaA carbonic anhydrases, with the shell made of the products of $c c m$ genes. The $r b c L$ and $r b c S$ genes (encoding the large and small RubisCo subunits, respectively) are arranged in the $r b c$ operon that also includes $r b c X$, encoding a putative RubisCo chaperonin. The $c c m$ genes can be spread in the genome, although the core genes including ccmM are frequently arranged in one operon, which can be linked to the $r b c$ operon and the $c c a A$ gene. β-Carboxysomes are widely distributed among the cyanobacterial lineages, being present in fresh-water and marine coastal cyanobacteria (the so-called β-cyanobacteria). In contrast, α-carboxysomes contain form 1-A RubisCo and the CsoSCA carbonic anhydrase, and the shell is made of the products of cso genes. The cso genes are generally arranged in a single operon that may include also some genes encoding CCM elements and form 1-A RubisCo ($c b b L c b b S$). α-Carboxysomes are found in a group of phylogenetically-related oceanic cyanobacteria (the so-called α-cyanobacteria), which may have acquired the cso genes by lateral gene transfer from non-cyanobacterial organisms (for further details see Rae et al., 2013; Kerfeld and Melnicki, 2016). In the cyanobacteria studied to date, the elements of the CCM system, as well as RubisCo, are expressed at higher levels under conditions of Ci-limitation.

CCM of Anabaena

Anabaena belongs to the group of β-cyanobacteria (Price et al., 2008; Kaplan et al., 2008), and as such it presents an $r b c L X S$ operon. In addition, it bears a gene, $r c a$, encoding RubisCo activase that is present only in a few cyanobacteria (Li et al., 1999).

Regarding Ci transporters, genes encoding homologues of all five systems described above for Ci uptake are detected in the genome of Anabaena (Kaneko et al., 2001; Price et al., 2008; Kaplan et al., 2008). The encoded products are schematically represented in Fig. 1. Experimental evidence is however only available for a Cmp bicarbonate transport system. ORFs alr2877-alr2880, which are homologous to cmpABCD of the unicellular cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803, are expressed together as an operon, at negligible levels in filaments incubated with CO_{2}-enriched air and induced upon incubation in air (LópezIgual et al., 2012). Inactivation of alr2877 specifically impairs the active transport of $\mathrm{HCO}_{3}{ }^{-}$under Ci limitation (López-Igual et al., 2012). Thus, alr2877-alr2880 correspond to the Anabaena cmp operon. However, the alr 2877 mutant still exhibits considerable activity of $\mathrm{HCO}_{3}{ }^{-}$transport, which suggests the presence of additional $\mathrm{HCO}_{3}{ }^{-}$transporters in Anabaena, in accordance to the results of protein homology searching. A putative SbtA orthologue (82 \% identity to SbtA from Synechocystis sp. PCC 6803) is encoded by all2134, and a putative BicA orthologue (65% identity to BicA from Synechococcus sp. PCC 7002) is encoded by all1304. Regarding CO_{2} uptake systems, gene clusters alr4156-alr4157-alr4158 and alr0869-alr0870-alr0871 putatively encode orthologues of the constituents of $\mathrm{NDH}-1_{3}$ and $\mathrm{NDH}-1_{4}$ systems, respectively.

In Anabaena, all0862 encodes a LTTR factor and is induced under conditions of Ci limitation. Inactivation of all0862 abolishes induction of the cmp operon upon Ci stepdown, and decreases $\mathrm{HCO}_{3}{ }^{-}$transport activity in a way similar to that of the cmp mutant. Thus, All0862 represents a CmpR factor of Anabaena, being the $c m p R$ gene positively autoregulated in response to Ci limitation (López-Igual et al., 2012).

In contrast to cmpR of Synechocystis, which is located upstream, in the opposite orientation of $c m p A$, in the Anabaena genome $c m p R$ is located downstream, in the same orientation, of a gene cluster putatively encoding carboxysome ccm genes (all0868 to all0863). This gene cluster is expressed as an operon also activated by Ci deprivation, at higher levels in the $c m p R$ mutant than in the wild type (López-Igual et al., 2012). In addition, CmpR may negatively influence expression of the $r b c L$ operon (López-Igual et al., 2012). Upregulation of the $r b c L$ operon by Ci limitation is also negatively affected by CmpR in Synechococcus sp. PCC 7942 but unaffected in Synechocystis sp. PCC 6803
(Omata et al., 2001). In summary, in Anabaena CmpR activates the cmpA operon and the $c m p R$ gene itself, and represses the $c c m$ and rbc operons (López-Igual et al., 2012). Finally, although in Synechococcus (Nishimura et al., 2008) and Synechocystis (Daley et al., 2012) RuBP and 2-phosphoglycolate have been proposed as effectors of CmpR , no evidence for metabolic effectors is yet available for Anabaena.

Regulation by PacR

In Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7002, the genes for multiple components of CCM, mainly Ci transporters, are regulated by repression mediated by the LTTR factor NdhR (a.k.a. CcmR) (see Price et al., 2008). NdhR binds the effectors 2-OG and 2-phosphoglycolate. Whereas 2-OG increases binding to DNA, thus acting as a NdhR co-repressor, 2-phosphoglycolate (whose cellular levels are high under Ci limitation) decreases binding, thus acting as an inducer of NdhR-repressed genes (Daley et al., 2012; Jiang et al., 2018). In contrast, in Anabaena, multiple genes encoding CCM elements and the $r b c L$ operon are positively regulated under low Ci conditions. Besides the regulation mediated by CmpR described above, a different LTTR factor, PacR (All3953) is involved in regulation of CCM elements (Picossi et al., 2015). The all3953 gene is constitutively expressed with regard to the N and Ci regimes, and its inactivation abolishes rbcL induction upon transference from a high- to a low-carbon regime, but leads to increased $r b c L$ expression under high carbon. Hence, it has been proposed that regulation by PacR implies binding to repressor and activator sites in the $r b c L$ promoter region (Picossi et al., 2015).

A global search for PacR targets by chromatin immunoprecipitation at 3 h after Ci step-down has identified 142 bound regions ascribed to genes of different functional categories, including other regulatory genes, which could expand the physiological range of influence of PacR. Besides $r b c L$, targets of PacR include genes for putative CCM elements: Ci transporter homologs (BicA, NdhF3 and NdhF4) and carboxysome shell proteins. Notably, 2-phosphoglycolate metabolism-related genes and genes encoding some components of the photosystem cores and the electronic transport chains are also regulated by PacR (Picossi et al., 2015). Some of these photosynthetic targets, including those encoding the flavodiiron proteins Flv1A and Flv4 (Ermakova et al., 2013), appear to be involved in avoiding over-reduction of photosynthetic components, which is enhanced under conditions of low Ci availability and could lead to oxidative damage.

Hence, PacR coordinates protection against photodamage and, consistently, growth of a pacR mutant is compromised when subjected to high-light intensity (Picossi et al., 2015). This observation, together with regulation of CCM elements by PacR, identifies this factor as a transcriptional regulator especially suited for coordination of Ci acquisition in the context of oxygenic phototrophy.

Coordinated regulation of \mathbf{C} and \mathbf{N} assimilation in Anabaena

In Anabaena, a number of regulatory circuits have been found to depend on both the C and N regimes. As described above, NtcA (CRP family) orchestrates N -control in response to the 2-OG levels, which are influenced by the metabolic flow of CO_{2} assimilation through the CBB cycle and $\mathrm{NH}_{4}{ }^{+}$assimilation through the GS/GOGAT cycle, and NtcA is a global regulator.

CmpR (LTTR) is a pathway-specific regulator of Ci assimilation that activates the expression of the cmp A operon (bicarbonate uptake) in response to low Ci availability. The $c m p R$ gene is itself positively autoregulated under Ci limitation and, in addition, it is expressed at lower levels in the presence of ammonium than in the absence of combined nitrogen, as well as in an $n t c A$ mutant than in the wild type. Indeed, NtcA-binding upstream $c m p R$ has been shown in vitro. Thus, CmpR is an N - and Ci-responsive regulator (López-Igual et al., 2012). Besides that, NtcA also binds to the cmpA operon promoter, likely with a repressive effect. On the other hand, when Anabaena grows under diazotrophic conditions, the $r b c L$ operon is not expressed in the heterocysts (Elhai and Wolk, 1990), and NtcA binding to a putative site overlapping the translation start of $r b c L$ could be responsible for this repression (Ramasubramanian et al., 1994; Picossi et al., 2014). Thus, the $c m p A$ and $r b c L$ operons and the $c m p R$ gene are coordinately regulated by the CmpR and NtcA transcription factors.

Heterocyst differentiation is regulated by NtcA and HetR in response to a deficit of combined nitrogen, triggered by high 2-OG levels, and the differentiation process includes a drastic reorganization of C metabolism, which becomes basically heterotrophic. The NrrA transcription factor that participates in induction of hetR during differentiation, after $n r r A$ induction by NtcA, is also involved in the activation of genes for glycogen catabolism, glycolysis and the pentose phosphate pathway, with a positive effect on N_{2} fixation. Finally, according to Ci availability and illumination conditions, PacR (LTTR) coordinates regulation of CCM and RubisCo, thus influencing 2-OG levels,
as well as of photosynthetic elements, some of which participate in protection against oxidative damage. Thus, the Anabaena metabolism is coordinately regulated by the availability of C and N , which determines the C -to-N balance, at a global level (Fig. 5).

Acknowledgements

Work in the authors' laboratory was supported by grants BFU2016-77097-P (AH) and BFU2017-88202-P (EF) from Agencia Estatal de Investigación, Spain, co-financed by the European Regional Development Fund (EU). The authors declare that they have no conflict of interests.

References

Aichi M, Yoshihara S, Yamashita M, Maeda S, Nagai K, Omata T (2006) Characterization of the nitratenitrite transporter of the major facilitator superfamily (the $n r t P$ gene product) from the cyanobacterium Nostoc punctiforme strain ATCC 29133. Biosci Biotechnol Biochem 70(11):2682-9.
Allahverdiyeva Y, Ermakova M, EisenhutM, Zhang P, Richaud P, Hagemann M, Cournac L, Aro E-M (2011) Interplay between flavodiiron proteins and photorespiration in Synechocystis sp. PCC 6803. J Biol Chem 286(27):24007-24014.
Awai K, Wolk CP (2007) Identification of the glycosyl transferase required for synthesis of the principal glycolipid characteristic of heterocysts of Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 266(1):98-102.
Awai K, Lechno-Yossef S, Wolk CP (2009) Heterocyst envelope glycolipids, in: Wada H, Murata N (Eds.) Lipids in Photosynthesis: Essential and Regulatory Functions, Springer Science + Business Media B.V., pp.179-202.
Badger MR, Price GD (2003) CO_{2} concentrating mechanism in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54(383):609-622.
Boer JL, Mulrooney SB, Hausinger RP (2014) Nickel-dependent metalloenzymes. Arch Biochem Biophys 544:142-52.
Burnat M, Flores E (2014) Inactivation of agmatinase expressed in vegetative cells alters arginine catabolism and prevents diazotrophic growth in the heterocyst-forming cyanobacterium Anabaena. MicrobiologyOpen 3(5):777-92.
Burnat M, Herrero A, Flores E (2014) Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA 111(10):3823-8.
Burnat M, Li B, Kim SH, Michael AJ, Flores E (2018) Homospermidine biosynthesis in the cyanobacterium Anabaena requires a deoxyhypusine synthase homologue and is essential for normal diazotrophic growth. Mol Microbiol (doi: $10.1111 / \mathrm{mmi}$ 14006).
Cai Y, Wolk CP (1997) Nitrogen deprivation of Anabaena sp. strain PCC 7120 elicits rapid activation of a gene cluster that is essential for uptake and utilization of nitrate. J Bacteriol 179(1):258-66.
Callahan SM, Buikema WJ (2001) The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120. Mol Microbiol 40(4):941-50.
Camargo S, Valladares A, Flores E, Herrero A (2012) Transcription activation by NtcA in the absence of consensus NtcA-binding sites in an Anabaena heterocyst differentiation gene promoter. J Bacteriol 194(11):2939-48.
Camargo S, Valladares A, Forchhammer K, Herrero A (2014) Effects of PipX on NtcA-dependent promoters and characterization of the cox 3 promoter region in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. FEBS Lett 588(9):1787-94.
Cardemil L, Wolk CP (1981) Polysaccharides from the envelopes of heterocysts and spores of the bluegreen algae Anabaena variabilis and Cylindrospermun licheniforme. J Phycology 17(3):234-240.
Castenholz, R.W. (2001) Phylum BX. Cyanobacteria (Oxygenic Photosynthetic Bacteria). Bergey's Manual® of Systematic Bacteriology, Vol. 1: The Archaea and the Deeply Branching and Phototrophic Bacteria. Springer New York, pp. 473-599.
Corrales-Guerrero L, Mariscal V, Nürnberg DJ, Elhai J, Mullineaux CW, Flores E, Herrero A (2014) Subcellular localization and clues for the function of the HetN factor influencing heterocyst distribution in Anabaena sp. strain PCC 7120. J Bacteriol 196(19):3452-60.
Daley MES, Kappell AD, Carrick MJ, Burnap LR (2012) Regulation of the cyanobacterial $\mathrm{CO}_{2}-$ concentrating mechanism involves internal sensing of NADP^{+}and α-ketogutarate levels by transcription factor CcmR. PLoS One 7(7) e41286.
Ehira S, Ohmori M (2006) NrrA directly regulates expression of het R during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 188(24):8520-5.
Ehira S, Ohmori M (2011) NrrA, a nitrogen-regulated response regulator protein, controls glycogen catabolism in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. J Biol Chem 286(44):38109-14.
Elhai J, Wolk CP (1990) Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobacterium Anabaena. EMBO J 9(10)3379-3388.
Ermakova M, Battchikova N, Allahverdiyeva Y, Aro EM (2013) Novel heterocyst-specific flavodiiron proteins in Anabaena sp. PCC 7120. FEBS Lett 587(1):82-7.
Ermakova M, Battchikova N, Richaud P, Leino H, Kosourov S, Isojärvi J, Peltier G, Flores E, Cournac L, Allahverdiyeva Y, Aro EM (2014) Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc Natl Acad Sci USA 111(30):11205-10.

Fan Q, Huang G, Lechno-Yossef S, Wolk CP, Kaneko T, Tabata S (2005) Clustered genes required for synthesis and deposition of envelope glycolipids in Anabaena sp. strain PCC 7120. Mol Microbiol 58(1):227-43.
Fay P (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol Rev 56:340-73.
Feldmann EA, Ni S, Sahu ID, Mishler CH, Risser DD, Murakami JL, Tom SK, McCarrick RM, Lorigan GA, Tolbert BS, Callahan SM, Kennedy MA (2011) Evidence for direct binding between HetR from Anabaena sp. PCC 7120 and PatS-5. Biochemistry 50(43):9212-24.
Fiedler G, Arnold M, Hannus S, Maldener I (1998) The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 27(6):1193-202.
Flaherty BL, Van Nieuwerburgh F, Head SR, Golden JW (2011) Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation. BMC Genomics 12:332.
Flaherty BL, Johnson DB, Golden JW (2014) Deep sequencing of HetR-bound DNA reveals novel HetR targets in Anabaena sp. strain PCC7120. BMC Microbiol 14:255.
Flores E, Herrero A (2005) Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem Soc Trans 33(Pt 1):164-7.
Flores E, Frías JE, Rubio LM, Herrero A (2005) Photosynthetic nitrate assimilation in cyanobacteria. Photosynth Res 83(2):117-33.
Flores E, López-Lozano A, Herrero A (2015) Nitrogen fixation in the oxygenic phototrophic prokaryotes (cyanobacteria): the fight against oxygen. In: Biological Nitrogen Fixation, Frans J. De Bruijn (ed.), Vol. 2, pp. 879-889.
Flores E, Herrero A, Forchhammer K, Maldener I (2016) Septal Junctions in Filamentous HeterocystForming Cyanobacteria. Trends Microbiol 24(2):79-82.
Flores E, Picossi S, Valladares A, Herrero A (2018) Transcriptional regulation of development in heterocyst-forming cyanobacteria. Biochim Biophys Acta doi: 10.1016/j.bbagrm.2018.04.006.
Frías JE, Flores E (2010) Negative regulation of expression of the nitrate assimilation nirA operon in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 192(11):2769-78.
Frías JE, Flores E (2015) Induction of the nitrate assimilation nirA operon and protein-protein interactions in the maturation of nitrate and nitrite reductases in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 197(14):2442-52.
Frías JE, Flores E, Herrero A (1997) Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 179(2):477-86.
Frías JE, Flores E, Herrero A (2000) Activation of the Anabaena nir operon promoter requires both NtcA (CAP family) and NtcB (LysR family) transcription factors. Mol Microbiol 38(3):613-25.
Frías JE, Herrero A, Flores E (2003) Open reading frame all0601 from Anabaena sp. strain PCC 7120 represents a novel gene, cnaT, required for expression of the nitrate assimilation nir operon. J Bacteriol 185(17):5037-44.
Gallon JR (1981) The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. TIBS 6:19-23.
Galmozzi CV, Saelices L, Florencio FJ, Muro-Pastor MI (2010) Posttranscriptional regulation of glutamine synthetase in the filamentous cyanobacterium Anabaena sp. PCC 7120: differential expression between vegetative cells and heterocysts. J Bacteriol 192(18):4701-11.
García-Domínguez M, Reyes JC, Florencio FJ (1999) Glutamine synthetase inactivation by protein-protein interaction. Proc Natl Acad Sci USA 96(13):7161-6.
Giddings TH Jr, Wolk CP, Shomer-Ilan A (1981) Metabolism of sulfur compounds by whole filaments and heterocysts of Anabaena variabilis. J Bacteriol 146(3):1067-74.
Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170(8):3584-92.
Hackenberg C, Kern R, Hüge J, Stal LJ, Tsuji Y, Kopka J, Shiraiwa Y, Bauwe H, Hagemann M (2011) Cyanobacterial lactate oxidases serve as essential partners in N2 fixation and evolved into photorespiratory glycolate oxidases in plants. Plant Cell 23(8):2978-90.
Hagemann M, Fernie AR, Espie GS, Kern R, Eisenhut M., Reumann S, Bauwe H, Weber APM (2013) Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biol 15:639-647.
Herrero A, Flores E (1990) Transport of basic amino acids by the dinitrogen-fixing cyanobacterium Anabaena PCC 7120. J Biol Chem 265(7):3931-5
Herrero A, Muro-Pastor AM, Flores E (2001) Nitrogen control in cyanobacteria. J Bacteriol 183(2):41125.

Herrero A, Picossi S, Flores E (2013) Gene expression during heterocyst differentiation, Adv Bot Res 65:281-329.

Hobbie JE, Hobbie EA (2013) Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates. Front Microbiol 4: 324.
Huang X, Dong Y, Zhao J (2004) HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc Natl Acad Sci USA 101(14):4848-53.
Huang G, Fan Q, Lechno-Yossef S, Wojciuch E, Wolk CP, Kaneko T, Tabata S (2005) Clustered genes required for the synthesis of heterocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J Bacteriol 187(3):1114-23.
Jiang; Y-L, Wang X-P, Sun H, Han S-J, Li W-F, Cui N, Lin G-M, Zhang J-Y, Cheng W, Cao D-D, Zhang Z-Y, Zhang C-C, Chen Y, Zhou C-Z (2018) Coordinating carbon and nitrogen metabolic signaling through the cyanobacterial global repressor NdhR. Proc Natl Acad Sci USA 1158(2)403-408.
Jüttner F (1983) ${ }^{14} \mathrm{C}$-labeled metabolites in heterocysts and vegetative cells of Anabaena cylindrica filaments and their presumptive function as transport vehicles of organic carbon and nitrogen. J Bacteriol 155(2):628-33.
Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8(5):205-13; 227-53.
Kaplan A, Hagemann M, Bauwe H, Kahlon S, Ogawa T (2008) In: Herrero A, Flores E (eds.) The Cyanobacteria: Molecular Biology, Genomics and Evolution, Caister Academic Press, Norfolk, UK, pp. 305-334.
Kerfeld CA, Erbilgin O (2015) Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol 23(1)22-34.
Kerfeld CA, Melnicki MR (2016) Assembly, function and evolution of cyanobacterial carboxysomes. Curr Op Plant Biol 31:66-75.
Kerfeld CA, Sawaya MR, Tanaka S, Nguyen CV, 1 Phillips M, Beeby M, Yeates TO (2005) Protein structures forming the shell of primitive bacterial organelles. Science Reports 309: 936-938.
Khademi S, O'Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305(5690):1587-94.
Kim Y, Joachimiak G, Ye Z, Binkowski TA, Zhang R, Gornicki P, Callahan SM, Hess WR, Haselkorn R, Joachimiak A (2011) Structure of transcription factor HetR required for heterocyst differentiation in cyanobacteria. Proc Natl Acad Sci USA 108(25):10109-14.
Kim Y, Ye Z, Joachimiak G, Videau P, Young J, Hurd K, Callahan SM, Gornicki P, Zhao J, Haselkorn R, Joachimiak A (2013) Structures of complexes comprised of Fischerella transcription factor HetR with Anabaena DNA targets. Proc Natl Acad Sci USA 110(19):E1716-23.
Kobayashi M, Takatani N, Tanigawa M, Omata T (2005) Posttranslational regulation of nitrate assimilation in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 187(2):498-506.
Kolman MA, Nishi CN, Perez-Cenci M, Salerno GL (2015) Sucrose in cyanobacteria: from a salt-response molecule to play a key role in nitrogen fixation. Life (Basel) 5(1):102-26.
Lang NJ, Simon RD, Wolk CP (1972) Correspondence of cyanophycin granules with structured granules in Anabaena cylindrica. Arch Mikrobiol 183:313-320.
Li LA, Zianni MR, Tabita FR (1999) Inactivation of the monocistronic rca gene in Anabaena variabilis suggests a physiological ribulose bisphosphate carboxylase/oxygenase activase-like function in heterocystous cyanobacteria. Plant Mol Biol 40(3):467-78.
López-Igual R, Flores E, Herrero A (2010) Inactivation of a heterocyst-specific invertase indicates a principal role of sucrose catabolism in heterocysts of Anabaena sp. J Bacteriol 192(20):5526-33.
López-Igual R, Picossi S, López-Garrido J, Flores E, Herrero A (2012) N and C control of ABC-type bicarbonate transporter Cmp and its LysR-type transcriptional regulator CmpR in a heterocyst-forming cyanobacterium, Anabaena sp. Environ Microbiol 14(4):1035-48.
Luque I, Forchhammer K (2008) Nitrogen assimilation and C/N balance sensing. In: Herrero A, Flores E (eds.) The Cyanobacteria: Molecular Biology, Genomics and Evolution, Caister Academic Press, Norfolk, UK, pp. 335-382.
Luque I, Flores E, Herrero A (1994) Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J 13(12):2862-9. Erratum in: EMBO J 13(23):5794.
Maeda S, Price GD, Badger, MR, Enomoto C, Omata T (2000) Bicarbonate binding activity of the CmpA protein of the cyanobacterium Synechococcus sp. Strain PCC 7942 involved in active transport of bicarbonate. J Biol Chem 275(27):20551-20555.
Magnuson A, Cardona T (2016) Thylakoid membrane function in heterocysts. Biochim Biophys Acta 1857(3):309-19.

Mareš J, (2017) Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system. Hydrobiologia. doi: 10.1007/s10750-017-3373-2.
Martín-Figueroa E, Navarro F, Florencio FJ (2000) The GS-GOGAT pathway is not operative in the heterocysts. Cloning and expression of $g l s F$ gene from the cyanobacterium Anabaena sp. PCC 7120. FEBS Lett 476(3):282-6.
Mella-Herrera RA, Neunuebel MR, Kumar K, Saha SK, Golden JW (2011) The sigE gene is required for normal expression of heterocyst-specific genes in Anabaena sp. strain PCC 7120. J Bacteriol 193(8):1823-32.
Montesinos ML, Herrero A, Flores E (1995) Amino acid transport systems required for diazotrophic growth in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 177(11):3150-7.
Montesinos ML, Muro-Pastor AM, Herrero A, Flores E (1998) Ammonium/methylammonium permeases of a cyanobacterium. Identification and analysis of three nitrogen-regulated amt genes in Synechocystis sp. PCC 6803. J Biol Chem 273(47):31463-70.
Muro-Pastor AM, Valladares A, Flores E, Herrero A (2002) Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol Microbiol 44(5):1377-85.
Muro-Pastor AM, Olmedo-Verd E, Flores E (2006) All4312, an NtcA-regulated two-component response regulator in Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 256(1):171-7.
Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW (2018) Exploring the alternatives of biological nitrogen fixation. Metallomics 10(4):523-538.
Nieves-Morión M, Mullineaux CW, Flores E (2017) Molecular diffusion through cyanobacterial septal junctions. mBio 8(1):e01756-16.
Nishimura T, Takahashi Y, Yamaguchi O, Suzuki H, Maeda S, Omata T (2008) Mechanism of low $\mathrm{CO}_{2}-$ induced activation of the cmp bicarbonate transporter operon by a LysR family protein in the cyanobacterium Synechococcus elongatus strain PCC 7942. Mol Microbiol 68(1):98-109.
Nürnberg DJ, Mariscal V, Bornikoel J, Nieves-Morión M, Krauß N, Herrero A, Maldener I, Flores E, Mullineaux CW (2015) Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. mBio 6(2): 002109 .
Ohkawa H, Sonoda M, Shibata M, Ogawa T (2001) Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystis sp. Strain PCC 6803. J Bacteriol 183(16)4938-4939.
Omata T, Gohta S, Takahashi Y, Harano Y, Maeda S (2001) Involvement of a CbbR homolog in low CO2induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183 (6):18911898.

Pakrasi H, Zehr JP (2017) Cyanobacteria are oxygenic phototrophic prokaryotes. Science (http://science.sciencemag.org/content/355/6332/1436/tab-e-letters).
Paz-Yepes J, Merino-Puerto V, Herrero A, Flores E (2008) The amt gene cluster of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 190(19):6534-9.
Paz-Yepes J, Flores E, Herrero A (2009) Expression and mutational analysis of the glnB genomic region in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 191(7):2353-61.
Pernil R, Herrero A, Flores E (2010) Catabolic function of compartmentalized alanine dehydrogenase in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 192(19):5165-72.
Pernil R, Picossi S, Herrero A, Flores E, Mariscal V (2015) Amino acid transporters and release of hydrophobic amino acids in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. Life (Basel) 5(2):1282-300.
Picossi S, Flores E, Herrero A (2014) ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium. BMC Genomics 15:22.
Picossi S, Flores E, Herrero A (2015) The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena. Environ Microbiol 17(9)3341-3351.
Ponce-Toledo RI, Deschamps P, Lopez-Garcia P, Zivanovic Y, Benzerara K, and Moreira D (2017) An early-branching freshwater cyanobacterium at the origin of plastids. Curr Biol 27:386-391.
Price (2011) Inorganic carbon transporters of the cyanobacterial CO_{2} concentrating mechanism. Photosynth Res 109:47-57.
Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proc Natl Acad Sci USA 101(52)18228-18233.
Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO_{2} -concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engeenering into plants. J Exp Bot 59(7):1441-1461.
Rae BD, Long BM, Badger MR, Price GD (2013) Functions, Compositions, and Evolution of the Two

Types of Carboxysomes: Polyhedral Microcompartments That Facilitate CO_{2} Fixation in Cyanobacteria and Some Proteobacteria. Microbiol Mol Biol Rev 77(3):357-379.
Ramasubramanian TS, Wei T-F, Golden J-W (1994) Two Anabaena sp. strain PCC 7120 DNA-binding factors interact with vegetative cell- and heterocyst-specific genes. J Bacteriol 176(5)1214-1223.
Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1-61.
Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93-111.
Schirrmeister BE, Gugger M, Donoghue PC (2015) Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology 58(5):769-785.
Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S, Kaplan A (2001) Distinct constitutive and low-CO_{2}-induced CO_{2} uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. Proc Natl Acad Sci USA (98(20):11789-11794.
Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M, Fukuzawa H, Kaplan A, Ogawa T (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria. J Biol Chem 277(21):18658-18664.
Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci USA 110(3):1053-8.
Soo RM, Hemp J, Parks DH, Fischer WW, Hugenholtz P (2017) On the origins of oxygenic photosynthesis and aerobic respiration in cyanobacteria. Science 355(6332):1436-1440.
Stal LJ (2017) The effect of oxygen concentration and temperature on nitrogenase activity in the heterocystous cyanobacterium Fischerella sp. Sci Rep 7(1):5402.
Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225-74.
Staron P, Forchhammer K, Maldener I (2011) Novel ATP-driven pathway of glycolipid export involving TolC protein. J Biol Chem 286(44):38202-10.
Summers ML, Wallis JG, Campbell EL, Meeks JC (1995) Genetic evidence of a major role for glucose-6phosphate dehydrogenase in nitrogen fixation and dark growth of the cyanobacterium Nostoc sp. strain ATCC 29133. J Bacteriol 177(21):6184-94.
Sutter M, Wilson SC, Deutsch S, Kerfeld CA (2013) Two new high-resolution crystal structures of carboxysome pentamer proteins reveal high structural conservation of CcmL orthologs among distantly related cyanobacterial species. Photosynth Res 118:9-16.
Tabita RF, Hanson TE, Li H, Satagopan S, Singh J, Chan S (2007) Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev 71(4):576-599.
Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO (2008) Atomic-level models of the bacterial carboxysome shell. Science Reports 319: 1083-1086.
Tchernov D, Helman Y, Keren N, Luz B, Ohad I, Reinhold L, Ogawa T, Kaplan A (2001) Passive entry of CO_{2} and its energy-dependent intracellular conversion to $\mathrm{HCO}_{3}{ }^{-}$in cyanobacteria are driven by a photosystem I-generated $\Delta \mu \mathrm{H}^{+}$. J Biol Chem 276(26):23450-23455.
Thiel T, Pratte BS (2014) Regulation of three nitrogenase gene clusters in the cyanobacterium Anabaena variabilis ATCC 29413. Life (Basel) 4(4):944-67.
Thomas J, Meeks JC, Wolk CP, Shaffer PW, Austin SM (1977) Formation of glutamine from $\left[{ }^{13} \mathrm{~N}\right]$ ammonia, $\left[{ }^{13} \mathrm{~N}\right]$ dinitrogen, and $\left[{ }^{14} \mathrm{C}\right]$ glutamate by heterocysts isolated from Anabaena cylindrica. J Bacteriol 129(3):1545-55.
Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103:5442-7.
Tumer NE, Robinson SJ, Haselkorn R (1983) Different promoters for the Anabaena glutamine synthetase gene during groth using molecular or fixed nitrogen. Nature 306:337-342.
Valladares A, Montesinos ML, Herrero A, Flores E (2002) An ABC-type, high-affinity urea permease identified in cyanobacteria. Mol Microbiol 43(3):703-15.
Valladares A, Herrero A, Pils D, Schmetterer G, Flores E (2003) Cytochrome c oxidase genes required for nitrogenase activity and diazotrophic growth in Anabaena sp. PCC 7120. Mol Microbiol 47(5):123949.

Valladares A, Muro-Pastor AM, Herrero A, Flores E (2004) The NtcA-dependent P1 promoter is utilized for $g \ln A$ expression in N_{2}-fixing heterocysts of Anabaena sp. strain PCC 7120. J Bacteriol 186:733743.

Valladares A, Maldener I, Muro-Pastor AM, Flores E, Herrero A (2007) Heterocyst development and diazotrophic metabolism in terminal respiratory oxidase mutants of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 189(12):4425-30.
Valladares A, Flores E, Herrero A (2008) Transcription activation by NtcA and 2-oxoglutarate of three genes involved in heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 190(18):6126-33.
Valladares A, Rodríguez V, Camargo S, Martínez-Noël GM, Herrero A, Luque I (2011) Specific role of the cyanobacterial PipX factor in the heterocysts of Anabaena sp. strain PCC 7120. J Bacteriol 193(5):1172-82.
Valladares A, Flores E, Herrero A (2016) The heterocyst differentiation transcriptional regulator HetR of the filamentous cyanobacterium Anabaena forms tetramers and can be regulated by phosphorylation. Mol Microbiol 99(4):808-19.
Vargas WA, Nishi CN, Giarrocco LE, Salerno GL (2011) Differential roles of alkaline/neutral invertases in Nostoc sp. PCC 7120: Inv-B isoform is essential for diazotrophic growth. Planta 233(1):153-62.
Vázquez-Bermúdez MF, Flores E, Herrero A (2002) Analysis of binding sites for the nitrogen-control transcription factor NtcA in the promoters of Synechococcus nitrogen-regulated genes. Biochim Biophys Acta 1578(1-3):95-8.
Videau P, Ni S, Rivers OS, Ushijima B, Feldmann EA, Cozy LM, Kennedy MA, Callahan SM (2014) Expanding the direct HetR regulon in Anabaena sp. strain PCC 7120. J Bacteriol 196(5):1113-21.
Wacker T, Garcia-Celma JJ, Lewe P, Andrade SL (2014) Direct observation of electrogenic $\mathrm{NH}_{4}{ }^{+}$transport in ammonium transport (Amt) proteins. Proc Natl Acad Sci USA 111(27):9995-10000.
Wang Y, Lechno-Yossef S, Gong Y, Fan Q, Wolk CP, Xu X (2007) Predicted glycosyl transferase genes located outside the HEP island are required for formation of heterocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J Bacteriol 189(14):5372-8.
Wolk CP, Thomas J, Shaffer PW, Austin SM, Galonsky A (1976) Pathway of nitrogen metabolism after fixation of ${ }^{13} \mathrm{~N}$-labeled nitrogen gas by the cyanobacterium, Anabaena cylindrica. J Biol Chem 251(16):5027-34.
Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282(5390):935-8.
Zehr JP, Shilova IN, Farnelid HM, Muñoz-Marín MC, Turk-Kubo KA (2017) Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol 2:16214.
Zhao MX, Jiang YL, He YX, Chen YF, Teng YB, Chen Y, Zhang CC, Zhou CZ (2010) Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2oxoglutarate. Proc Natl Acad Sci USA 107(28):12487-92.

Figure legends:

Fig. 1. Schematic of the pathways of assimilation of the main sources of combined nitrogen and of inorganic carbon in cells of an undifferentiated filament of Anabaena. ABC transporters for nitrate and nitrite (Nrt) and urea (Urt) and an ammonium translocator (Amt) mediate uptake of nitrogenous nutrients. The nitrate reduction system consists of reduced ferredoxin $\left(\mathrm{Fd}_{\mathrm{red}}\right)$-dependent nitrate reductase (NarB) and nitrite reductase (NirA), and the Ni^{2+}-containing urease consists of several subunits (UreABC). Ammonium is incorporated into glutamate by ATP-dependent glutamine synthetase (GS) producing glutamine, whose amido group is transferred to 2 -oxoglutarate (2-OG) by reduced ferredoxin-dependent glutamate synthase (GOGAT). 2-OG is a product of carbon assimilation. Anabaena is predicted to express the inorganic carbon transport systems common in cyanobacteria: $\mathrm{NDH}-1_{3}$ (localized in the thylakoid) and $\mathrm{NDH}-1_{4}$ (which may also be localized in the thylakoid) participate in CO_{2} uptake with high and low affinity, respectively, producing bicarbonate; secondary, sodium-dependent SbtA and BicA permeases transport bicarbonate into the cells with high and low affinity, respectively; and the ABC transporter Cmp concentrates bicarbonate in the cells dependent on ATP. Bicarbonate diffuses into the carboxysome where it is dehydrated by carbonic anhydrase (CA), and where CO_{2} is combined with ribulose 1,5 -bisphosphate (produced by the Calvin-Benson-Bassham cycle -not shown) by RubisCo to produce 3phosphoglycerate (3-PG) that follows metabolism down to 2-OG. The prevalence of some specific transporters and pathways depends on environmental conditions as explained in the text. Stoichiometries are not depicted.

Fig. 2. Schematic of the nitrate assimilation gene cluster and its regulation in Anabaena. The nitrate assimilation structural genes (nirA [nitrite reductase], nrtABCD [ABC transporter], narB [nitrate reductase]) form an operon, whose expression is activated by NtcA bound to 2-oxoglutarate (2-OG) and the LTTR factor NtcB, both of which bind to the nirA promoter. Expression of $n t c B$ is itself activated by NtcA+2-OG. Full expression of the nirA operon also requires the glycosyl transferase-like protein CnaT acting through an unknown mechanism. NirB and NarM are required for Anabaena to show full nitrite reductase (NirA) or nitrate reductase (NarB) activity, respectively. In the absence of a substrate (nitrate or nitrite), the NirA/NirB complex appears to negatively affect expression of the nirA operon.

Fig. 3. The dissimilar filaments of Anabaena. (A) Micrographs showing fragments of filaments of Anabaena grown with nitrate or N_{2} as nitrogen source. Note the presence of heterocysts only in the latter (white arrowhead, intercalary heterocyst; black arrowhead, terminal heterocyst) (micrographs courtesy of Sergio Camargo, CSIC, Seville). (B) Schematic of filaments of Anabaena grown with combined nitrogen or N_{2}. The homogeneous metabolism in the cells of filaments grown with combined nitrogen ([N], upper filament) and the metabolic specialization in cells of diazotrophic filaments (lower filament; the central cell is a N_{2}-fixing heterocyst) is highlighted. In the left-hand cell of the upper filament, the role of transcription factors NtcA (with effector 2-oxoglutarate [2OG]) and PacR in the regulation of nitrogen and carbon assimilation, respectively, is highlighted. In the diazotrophic filament, intercellular exchange of metabolites (sucrose and glutamate in exchange for glutamine and b-aspartyl-arginine) and transfer of regulators (PatS- and HetN-derived morphogens) from heterocysts or prospective heterocysts to adjacent vegetative cells are indicated. HetR plays a role in heterocyst differentiation, and NtcA (with 2-OG) plays a role in heterocyst differentiation and in the mature heterocyst. Note that septal junctions (blue lines) that mediate intercellular molecular exchange are present in all types of cells.

Fig. 4. Upon nitrogen deficiency, the low amount of NtcA present in the cells of filaments growing with combined nitrogen (depicted in black) is activated in response to an increase in the 2-oxoglutarate (2-OG) levels (activated NtcA depicted in red). This should suffice to activate early genes involved in heterocyst differentiation, including the nrrA gene. Then, NrrA and NtcA promote activation of the hetR gene, initially in clusters of cells. Self and mutual activation of HetR and NtcA results in high levels of both regulators, with an increased single cell specificity promoted by lateral inhibition of the PatS morphogen (not depicted). Then, HetR-dependent genes are activated in specific cells, including the pip X gene that is activated at late stages. Activity of HetR will thereafter decay (with a possible role of HetR phosphorylation) and transcription dependent on both NtcA and PipX will predominate in the mature heterocyst. The width of the horizontal bars at the bottom represent cellular levels of NtcA (red), HetR (blue) and PipX (purple) during differentiation.

Fig. 5. Schematic representation of specific and cross regulatory interactions in the assimilation of nitrogen and carbon and in photosynthesis/high-light stress in Anabaena. NtcA is a global transcriptional regulator that coordinates N assimilation in response to the 2-oxoglutarate levels, which are largely determined through the activity of the Calvin-Benson-Bassham (CBB) and GS/GOGAT cycles. NtcB is a pathway-specific regulator of nitrate assimilation that enhances activation by NtcA of the nir operon, and the ntcB gene is activated by NtcA. CmpR is a pathway-specific regulator of Ci assimilation that activates the expression of the cmp operon (bicarbonate uptake) and represses RubisCo and carboxysome genes in response to low Ci availability; the cmpR gene is activated by NtcA. PacR coordinates regulation of elements of the carbon concentrating mechanism, RubisCo and photosynthetic elements including some for protection against oxidative damage, according to Ci availability and illumination conditions. In addition, NtcA participates in the regulation of the $r b c L$ operon during heterocyst differentiation. Thus, the metabolism of Anabaena is globally regulated by the C-to-N balance. CA, carbonic anhydrase; 2-OG, 2-oxoglutarate; 3-PG, 3-phosphoglycerate.

