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IMPORTANCE Alcohol dependence (AD) and major depression (MD) are leading causes of
disability that often co-occur. Genetic epidemiologic data have shown that AD and MD share
a common possible genetic cause. The molecular nature of this shared genetic basis is poorly
understood.

OBJECTIVES To detect genetic risk variants for comorbid AD and MD and to determine whether
polygenic risk alleles are shared with neuropsychiatric traits or subcortical brain volumes.

DESIGN, SETTING, AND PARTICIPANTS This genome-wide association study analyzed criterion
counts of comorbid AD and MD in African American and European American data sets collected
as part of the Yale-Penn study of the genetics of drug and alcohol dependence from February
14, 1999, to January 13, 2015. After excluding participants never exposed to alcohol or with
missing information for any diagnostic criterion, genome-wide association studies were
performed on 2 samples (the Yale-Penn 1 and Yale-Penn 2 samples) totaling 4653 African
American participants and 3169 European American participants (analyzed separately). Tests
were performed to determine whether polygenic risk scores derived from potentially related
traits in European American participants could be used to estimate comorbid AD and MD.

MAIN OUTCOMES AND MEASURES Comorbid criterion counts (ranging from 0 to 14) for AD
(7 criteria) and MD (9 criteria, scaled to 7) as defined by the DSM-IV.

RESULTS Of the 7822 participants (3342 women and 4480 men; mean [SD] age, 40.1 [10.7]
years), the median comorbid criterion count was 6.2 (interquartile range, 2.3-10.9). Under the
linear regression model, rs139438618 at the semaphorin 3A (SEMA3A [OMIM 603961]) locus
was significantly associated with AD and MD comorbidity in African American participants in
the Yale-Penn 1 sample (β = 0.89; 95% CI, 0.57-1.20; P = 2.76 × 10−8). In the independent
Yale-Penn 2 sample, the association was also significant (β = 0.83; 95% CI, 0.39-1.28;
P = 2.06 × 10−4). Meta-analysis of the 2 samples yielded a more robust association (β = 0.87;
95% CI, 0.61-1.12; P = 2.41 × 10−11). There was no significant association identified in European
American participants. Analyses of polygenic risk scores showed that individuals with a higher
risk of neuroticism (β = 1.01; 95% CI, 0.50-1.52) or depressive symptoms (β = 0.87; 95% CI,
0.32-1.42) and a lower level of subjective well-being (β = –0.94; 95% CI, –1.46 to –0.42) and
educational attainment (β = –1.00, 95% CI, −1.57 to –0.44) had a higher level of AD and MD
comorbidity, while larger intracranial (β = 1.07; 95% CI, 0.50 to 1.64) and smaller putamen
volumes (β = –1.16; 95% CI, –1.86 to –0.46) were associated with higher risks of AD and MD
comorbidity.

CONCLUSIONS AND RELEVANCE SEMA3A variation is significantly and replicably associated
with comorbid AD and MD in African American participants. Analyses of polygenic risk scores
identified pleiotropy with neuropsychiatric traits and brain volumes. Further studies are
warranted to understand the biological and genetic mechanisms of this comorbidity, which
could facilitate development of medications and other treatments for comorbid AD and MD.
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A lcohol dependence (AD) and major depression (MD) are
among the world’s leading causes of disability1 and are
frequently comorbid.2 Their co-occurrence is well docu-

mented in clinical and epidemiologic studies,3,4 and shared ge-
netic risks for AD and MD have been identified.5-11 Thus, im-
proved recognition and treatment for comorbid AD and MD
could save lives and benefit society.12

Although the comorbidity of AD and MD is well estab-
lished, the causal links between the 2 disorders have been de-
bated. There is evidence both that AD increases the risk of MD13

and that MD leads to AD.14 Another possibility is that shared
factors increase susceptibility to both disorders. Common ge-
netic factors that predispose individuals to the co-occurrence
of AD and MD have been sought in family, twin, and general
population studies,15-17 with 1 study showing a sex-specific
effect.16

Genome-wide association studies (GWASs) have reported
genome-wide significant findings for AD18,19 and MD.20-22 How-
ever, thus far, no findings have been reported for comorbid AD
and MD.23 In this study, we conducted a GWAS to detect novel
genetic risks for comorbid criterion counts of AD and MD, which
represented the overall severity of comorbid disorders. We also
examined the genetic overlap between the comorbidity and
other neuropsychological traits or subcortical brain volumes
using a polygenic risk score (PRS) approach.24

Methods
Participants and Diagnostic Procedures
All participants were recruited for studies of the genetics of sub-
stance dependence conducted from February 14, 1999, to Janu-
ary 13, 2015, as previously described.19,25 The participants were
interviewed using the Semi-structured Assessment for Drug
Dependence and Alcoholism26 to derive DSM-IV27 diagnoses
of lifetime AD and MD criteria. For AD, 7 DSM-IV criteria were
assessed, and for MD, 9 DSM-IV criteria were assessed. The par-
ticipants were grouped into Yale-Penn 1 and Yale-Penn 2 phases
based on their epoch of recruitment and the genotyping plat-
form used. Participants provided written informed consent and
the study was approved by the institutional review board at
each participating site (Yale Human Research Protection Pro-
gram, University of Pennsylvania Institutional Review Board,
University of Connecticut Human Subjects Protection Pro-
gram, Medical University of South Carolina Institutional Re-
view Board for Human Research, and the McLean Hospital In-
stitutional Review Board). Certificates of confidentiality were
obtained from the National Institute on Drug Abuse and the
National Institute on Alcohol Abuse and Alcoholism.

Participants who were not exposed to alcohol (ie, who an-
swered no for the question, “Have you ever had a drink of al-
cohol?”) or with any missing diagnostic criteria were excluded
to reduce the misclassification of phenotypes. Of the total Yale-
Penn sample of 7822 included in the present study, there were
3041 African American participants and 1618 European Ameri-
can participants (Yale-Penn 1) and, additionally, an identically
ascertained 1612 African American participants and 1551
European American participants (Yale-Penn 2). We scaled the

MD criteria uniformly into the same range as those of AD to
weight them comparably for the GWAS. The comorbid crite-
rion counts (ranging from 0 to 14) were then treated as the out-
comes, representing the overall severity of comorbidity.

Genotyping, Quality Control, and Imputation
The Yale-Penn 1 sample was genotyped using the Hu-
manOmni1-Quad array (Illumina) containing approximately
988 000 single-nucleotide polymorphisms (SNPs). The Yale-
Penn 2 sample was genotyped using the HumanCore Exome
array (Illumina) containing approximately 266 000 exomic
SNPs and approximately 240 000 tagging SNPs for genome-
wide imputation. Standard preimputation quality control in-
cluded the removal of individuals and SNPs with call rates less
than 98% and filtering out SNPs with a minor allele fre-
quency less than 1%. To verify and correct the misclassifica-
tion of self-reported race, we performed principal compo-
nent (PC) analysis on SNPs common (pruning by linkage
disequilibrium of r2 > 0.2) to each of the 2 individual geno-
typing arrays and the 1000 Genome phase 3 reference panels
(African populations [AFR], European populations [EUR], East
Asian populations [EAS], South Asian populations [SAS], and
admixed American populations [AMR]) using EIGENSOFT.28,29

The first 10 PCs were used to cluster the participants, distin-
guish African American participants from European Ameri-
can participants, and remove outliers from the 2 groups, which
were subsequently analyzed separately. We conducted a sec-
ond PC analysis within groups, and the first 10 PCs were used
to correct for population stratification. To correct for the pedi-
gree relationships, a pairwise identity by descent was calcu-
lated using PLINK.30 Pairs of individuals who shared more than
25% of identity by descent were assigned to the same family,
while pairs of individuals whose identity by descent propor-
tions did not match the reported genetic relationship were as-
signed to 2 different families.

Additional single-nucleotide variants (SNVs) were im-
puted using Minimac3 implemented in Michigan Imputation
Server (https://imputationserver.sph.umich.edu/index.html)31

and the 1000 Genomes phase 3 reference panel.32 The African
American and European American samples were imputed
separately. Single-nucleotide variants with a Hardy-Weinberg
equilibrium P < 10−5 and a minor allele frequency less than 3%
were excluded from downstream analysis. Single-nucleotide

Key Points
Question What specific genetic risk variants are associated with
comorbid alcohol dependence and major depression?

Findings A replicable genome-wide significant association at
SEMA3A with comorbid alcohol dependence and major depression
was detected in a sample of 4653 African American participants;
there was no significant association in a sample of 3169 European
American participants.

Meaning This study enhances understanding of the genetic
mechanisms shared between alcohol dependence and major
depression and has implications both for development of
medications and for other treatments.
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variants with an imputation accuracy of 0.8 or more in both
the Yale-Penn 1 and Yale-Penn 2 samples were kept for the
association analyses. In the Yale-Penn 1 sample, 7 773 845 SNVs
in African American participants and 5 611 755 SNVs in European
American participants were included in the association analyses;
in the Yale-Penn 2 sample, 7 725 291 SNVs in African American
participants and 5 595 246 SNVs in European American
participants were analyzed.

Statistical Analysis
We performed association tests for the criterion counts (rang-
ing from 0 to 14) for comorbid AD and MD. To account for fam-
ily structure, a linear regression model embedded in the gen-
eralized estimation equation33 was applied in the R package
GWAF.34 In the generalized estimation equation model, each
family was treated as a cluster using the independence corre-
lation matrix to estimate the robust variance. All SNVs, both
genotyped and imputed, were tested using an additive model,
adjusted by age, sex, and the first 10 PCs. Analyses were per-
formed separately within each data set and ancestral group.
The association results from 7 572 255 SNVs in African Ameri-
can participants were meta-analyzed across the 2 data sets
using the inverse variance method implemented in the pro-
gram METAL.35 In European American participants, 5 542 675
SNVs were meta-analyzed across data sets. In transpopula-
tion meta-analysis, 5 086 170 SNVs were analyzed. A linkage
disequilibrium score regression (LDSC) was used to distin-
guish confounding from polygenicity.36 Regional associa-
tions were plotted using LocusZoom.37

Polygenic Risk Scores
Polygenic risk scores constructed from GWAS summary sta-
tistics of the same or related traits in other data sets can be used
to test the genetic relationship of those traits with the study
trait, given the hypothesis that complex genetic traits are highly
polygenic and the genetic risks are pleiotropic among differ-
ent traits. As described previously,24 a PRS was calculated as
the sum of the risk alleles with P values less than the thresh-
old of significance, weighted by the effect sizes. The associa-
tion between the constructed PRS and the phenotype was
tested by a linear regression model in the generalized estima-
tion equation, adjusting for age, sex, and the first 10 PCs. The
Yale-Penn 1 and Yale-Penn 2 cohorts were analyzed sepa-
rately and then meta-analyzed. Eight threshold P values
(.00001, .0001, .001, .005, .01, .05, .10, and .50) were consid-
ered. Polygenic profiles of neuropsychological traits from the
Social Science Genetic Association Consortium (https://www
.thessgac.org/data), including depressive symptoms,21

educational attainment,38 neuroticism,21 and subjective
well-being,21 were tested; polygenic profiles of neuropsychiatric
diseases from the Psychiatric Genomics Consortium (https:
//www.med.unc.edu/pgc/results-and-downloads), including
binary anxiety disorders and quantitative anxiety factor
scores,39 bipolar disorder,40 schizophrenia,41 Alzheimer
diseases,42 and smoking behaviors,43 were tested; and polygenic
profiles of human subcortical brain volumes from the ENIGMA
(Enhancing Neuro Imaging Genetics through Meta-Analysis)
Consortium44 (http://enigma.ini.usc.edu/research/gwasma

-of-subcortical-structures/) were tested. Analyses of PRSs were
performed only for the European American participants
because all the public data were from European samples. The
summary data were clumped by linkage disequilibrium with
r2 < 0.2 in a 200-kb window. For comparison, the polygenic
profiles of the above-mentioned traits were tested with AD
(adjusting for MD) and MD (adjusting for AD). A correction for
multiple testing was applied for all polygenic profiles with AD,
MD, and the comorbidity at all threshold P values (504 tests in
total) using the false discovery rate method.45

Results
In total, 7822 participants (3342 women and 4480 men; mean
[SD] age, 40.1 [10.7] years) were included in the analysis.
Among them, 6610 participants (84.5%) were diagnosed as
having at least 1 criterion for AD or MD. The median comorbid
criterion count was 6.2 (interquartile range, 2.3-10.9). A total
of 3041 African American participants and 1618 European
American participants were from the Yale-Penn 1 cohort,
while 1612 African American participants and 1551 European
American participants were from the Yale-Penn 2 cohort
(Table). The distributions of comorbid criterion counts are
shown in eFigure 1 in the Supplement.

Genome-Wide Significant Associations
Genome-wide association studies were performed in each data
set, followed by meta-analyses of African American partici-
pants and European American participants and transpopula-
tion meta-analysis of all African American participants and
European American participants (eFigure 2 and eTable 1 in the
Supplement). A significant association was detected in the Afri-
can American sample of the Yale-Penn 1 cohort (rs139438618,
risk allele G, β = 0.89; 95% CI, 0.57-1.20; P = 2.76 × 10−8) and
was replicated in the Yale-Penn 2 cohort (β = 0.83; 95% CI, 0.39-
1.28; P = 2.06 × 10−4). By meta-analyzing all African Ameri-
can participants, the association was enhanced (β = 0.87; 95%
CI, 0.61-1.12; P = 2.41 × 10−11) (Figure 1). A clear trend was ob-
served in the criterion and minor allele frequency matrix show-
ing that the higher the criterion count, the higher the fre-
quency of the risk allele (eFigure 3 in the Supplement). This
finding argues against the association being biased by criteria
of a single disorder. The SNP rs139438618 is located in an in-
tron of SEMA3A (OMIM 603961), which plays an important role
in normal neuronal pattern development.

Conditional Analyses
To demonstrate that the association of rs139438618 is contrib-
uted to by both disorders rather than being driven by only 1 of
them, we tested the association with AD criterion counts (con-
trolling for MD criterion counts) or MD criterion counts (con-
trolling for AD criterion counts). Both of the associations were
nominally significant (β = 0.30; 95% CI, 0.16-0.44;
P = 1.90 × 10−5 for AD; β = 0.31; 95% CI, 0.10-0.51; P = 3.91 × 10−3

for MD), indicating an additive or synergistic association for co-
morbidity of AD and MD. To test whether the association was
related to age or sex, we split the African American sample into
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older (>40 years of age) and younger groups (≤40 years of age,
adjusting for sex and 10 PCs) and into male and female groups
(adjusting for age and 10 PCs). Each of these approaches showed
a similar association between rs139438618 and comorbid AD
and MD, indicating that the associations were present in all of
the different subgroups (Figure 2) rather than being influ-
enced by either age or sex.

Polygenic Risk Scores
Polygenic risk scores of depressive symptoms (β = 0.87; 95%
CI, 0.32-1.42; P = 1.80 × 10−3) and neuroticism (β = 1.01; 95%
CI, 0.50-1.52; P = 1.03 × 10−4) were positively associated with

the risk for comorbid AD and MD, although those associa-
tions were mainly driven by MD (although the association
between depressive symptoms and MD did not survive mul-
tiple testing correction).46 This finding indicates that there
are shared polygenic risks among neuroticism and MD; a sig-
nificant positive genetic correlation between neuroticism and
MD was reported in a previous study.47 The PRS of educa-
tional attainment (β = –1.00; 95% CI, –1.57 to –0.44;
P = 5.13 × 10−4) and subjective well-being (β = –0.94; 95% CI,
–1.46 to –0.42; P = 4.19 × 10−4) was negatively associated
with risk for comorbidity, revealing shared genetic risks
between neuropsychological traits and comorbid AD and MD.

Table. Demographic Characteristics of the Samples

Characteristic

Yale-Penn 1 Participants Yale-Penn 2 Participants

Total
(N = 7822)

African
American
(n = 3041)

European
American
(n = 1618)

African
American
(n = 1612)

European
American
(n = 1551)

Female sex, No. (%) 1402 (46.1) 668 (41.3) 664 (41.2) 608 (39.2) 3342 (42.7)

Age, mean (SD), y

All participants 41.1 (8.9) 38.0 (10.8) 41.0 (10.9) 39.4 (13.0) 40.1 (10.7)

Male participants 41.9 (8.8) 37.8 (11.0) 41.9 (10.6) 39.0 (12.7) 40.4 (10.7)

Female participants 40.2 (9.0) 38.2 (10.5) 39.7 (11.2) 40.1 (13.4) 39.6 (10.7)

Participants with at least
1 AD or MD criterion,
No. (%)

2541 (83.6) 1484 (91.7) 1260 (78.2) 1325 (85.4) 6610 (84.5)

Comorbid criterion count,
median (IQR)

5.9
(2.0-10.0)

7.2
(4.2-11.7)

5.9
(1.0-10.4)

7.0
(3.0-11.3)

6.2
(2.3-10.9)

Participants with at least
1 AD criterion, No. (%)

2249 (74.0) 1335 (82.5) 1146 (71.1) 1203 (77.6) 5933 (75.9)

AD criterion count,
median (IQR)

3 (0-6) 4 (1-6) 3 (0-6) 4 (1-6) 3 (1-6)

Participants with at least
1 MD criterion, No. (%)

1579 (51.9) 1059 (65.5) 817 (50.7) 952 (61.4) 4407 (56.3)

MD criterion count (scaled
to 7), median (IQR)

2.3 (0-6.2) 4.7 (0-6.2) 1.2 (0-6.2) 3.9 (0-6.2) 3.9 (0-6.2)
Abbreviations: AD, alcohol
dependence; IQR, interquartile range;
MD, major depression.

Figure 1. Regional Manhattan Plot of rs139438618 in African American Participants
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The association with educational attainment was driven mainly
by AD, while the association with subjective well-being was
contributed to by both disorders (Figure 3 and eTables 2-4 in
the Supplement). However, no association was detected be-
tween the PRS of psychiatric traits and comorbid AD and MD.
A PRS of smoking behavior (age at smoking initiation) was sig-

nificantly associated with comorbid AD and MD (β = 0.95; 95%
CI, 0.31-1.58; P = 3.34 × 10−3), which was explained mainly by
AD alone (eFigure 4 in the Supplement). The PRS of intracra-
nial volume was positively associated with the risk of comor-
bid AD and MD (β = 1.07; 95% CI, 0.50-1.64; P = 2.18 × 10−4) and
was not driven by either single disorder. The PRS of putamen
volume was negatively associated with comorbid AD and MD
risk (β = –1.16; 95% CI, –1.86 to –0.46; P = 1.74 × 10−3) but was
explained mainly by AD alone (eFigure 5 in the Supplement).

Discussion
Alcohol dependence and MD often co-occur owing, in part, to
shared genetic risk factors. Prior GWAS analyses of AD have
identified and/or confirmed risk variants, such as those that map
to alcohol-metabolizing enzyme loci.19 In a GWAS of MD, vari-
ant discovery required either relatively homogenous samples
with severe affection20 or very large samples.22 What is un-
usual about our results is that we identified at least 1 highly sig-
nificant risk locus (genome-wide significant finding in the Yale-
Penn 1 cohort and with a P ~ 2 × 10−4 in the Yale-Penn 2 cohort)
that affects risk for the joint occurrence of these traits, but it
was not identified previously in a GWAS of either trait sepa-
rately. Thus, the phenotype definition that we used appears to
have been a key factor in identifying this risk locus, which shows
pleiotropic effects even on the single-gene level. This finding
constitutes a specific example of pleiotropy that then results
in comorbidity. Presumably, when large enough GWASs for AD
and MD separately are completed, these same loci would be
identified eventually. Large samples might be needed be-
cause, as seen in our results, the phenotype definition would
in these cases (AD or MD taken individually) be incomplete.

We investigated both African American participants and
European American participants and found genetic variants
associated with comorbid AD and MD, which are the first such
genetic findings obtained via a genome-wide design. In the
GWAS analysis, we identified rs139438618, which maps to
SEMA3A, as a genome-wide significant finding in African
American participants in the Yale-Penn 1 cohort. The associa-
tion was replicated in the Yale-Penn 2 cohort, and a remark-
ably strong association (especially considering the moderate
sample size) was observed in the meta-analysis. No associa-
tion was detected in this gene region in European American
participants, indicating a population-specific genetic risk. Re-
sults of conditional analyses showed that the association was
not driven by AD or MD alone. No association at this locus was
detected in the previous GWAS of AD that used a subset of the
same participant sample.19

SEMA3A belongs to the semaphorin family, which is a class
of secreted and membrane proteins that are involved in axon
guidance and neuronal connectivity. SEMA3A acts as either a
chemorepulsive agent, inhibiting axonal outgrowth, or a che-
moattractive agent, stimulating the growth of apical den-
drites. A high level of expression of SEMA3A across various
brain regions was observed in early fetal periods, with a de-
crease thereafter and a relatively low level maintained through-
out adulthood (eFigure 6 in the Supplement; http://www

Figure 2. Conditional Analysis of rs139438618 and Associations
in Different Groups
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Figure 3. Associations Between Comorbid Alcohol Dependence (AD)
and Major Depression (MD) and Polygenic Risk Scores
for Neuropsychological Traits
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6.43 × 10–3AD –0.41 (–0.70 to –0.11)

.35MD –0.21 (–0.65 to 0.23)

Educational attainment, P =.50

–1.5 –1.0 0 1.51.0
β (95% CI)

P ValueTraits β (95% CI)
1.03 × 10–4AD + MD 1.01 (0.50 to 1.52)

.23AD 0.16 (–0.10 to 0.42)
6.84 × 10–4MD 0.67 (0.28 to 1.06)

Neuroticism, P =.50

–1.5

–0.5

–0.5

–0.5

–0.5

0.5

0.5

0.5

0.5–1.0 0 1.51.0
β (95% CI)

P ValueTraits β (95% CI)
4.19 × 10–4AD + MD –0.94 (–1.46 to –0.42)

.07AD –0.25 (–0.51 to 0.02)

.01MD –0.49 (–0.88 to –0.10)

Subjective well-being, P =.01

Association with AD was adjusted for MD; association with MD was adjusted
for AD.

Research Original Investigation Genetic Risk Variants Associated With Comorbid Alcohol Dependence and Major Depression

1238 JAMA Psychiatry December 2017 Volume 74, Number 12 (Reprinted) jamapsychiatry.com

© 2017 American Medical Association. All rights reserved.

Downloaded From: https://jamanetwork.com/ on 08/26/2022

http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2017.3275&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2017.3275
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2017.3275&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2017.3275
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2017.3275&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2017.3275
https://www.ncbi.nlm.nih.gov/snp/139438618
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamapsychiatry.2017.3275&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2017.3275
http://www.brainspan.org
http://www.jamapsychiatry.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamapsychiatry.2017.3275


.brainspan.org).48 Persistent expression of SEMA3A was
observed in mature human and rat brains, including the
olfactory system, the cerebral cortex, and the entorhinal-
hippocampal system.49 Existing evidence indicates that
SEMA3A is associated with many traits related to the central
nervous system, including schizophrenia,50 Alzheimer
disease,51 and iris patterns.52 However, the molecular mecha-
nisms involved in AD and MD are largely unknown.

Changes in the expression of SEMA3A could change the neu-
ral circuits that predispose individuals to central nervous sys-
tem traits.50,51,53 SEMA3A alleles have been shown to be asso-
ciated with genetic disorders of neuronal migration, autism
spectrum disorders, epilepsy, and several other disorders.53 The
specific contribution of variation in SEMA3A to the possible
causes of AD and MD remains to be determined. No expres-
sion quantitative trait loci effect was detected for the top SNP
and variants sharing high linkage disequilibrium in the gen-
eral health population by Genotype-Tissue Expression,54 but this
outcome is consistent with the observed expression patterns and
the hypothesis that the risk-associated variation alters expres-
sion changes in certain brain regions early in development that
might trigger eventual vulnerability to comorbid AD and MD.

Analyses of PRSs tested for shared polygenic risk with sev-
eral other central nervous system traits. As would be ex-
pected, there was an association between AD and MD comor-
bidity and depressive criteria (β = 0.87; 95% CI, 0.32-1.42;
P = 1.80 × 10−3). A personality trait—neuroticism—was shown
to be genetically correlated with psychiatric disorders, such as
MD and anorexia nervosa.47 Consistent with this observation,
we also observed shared genetic risks among individuals with
neuroticism and individuals with comorbid AD and MD
(β = 1.01; 95% CI, 0.50-1.52; P = 1.03 × 10−4), which was driven
mainly by MD (β = 0.67; 95% CI, 0.28-1.06; P = 6.84 × 10−4).

There are complex links between genetic factors and
social environment in depression, and negative correlations
between MD and educational attainment55 and between MD
and subjective well-being21 have been identified. However,
the genetic correlation between comorbid AD and MD and
these neuropsychological traits (educational attainment and
subjective well-being) has not been studied previously, to our
knowledge. We found that the PRSs of educational attain-
ment (β = –1.00; 95% CI, –1.57 to –0.44; P = 5.13 × 10−4) and
subjective well-being (β = –0.94; 95% CI, –1.46 to –0.42;
P = 4.19 × 10−4) were, as expected, protective in relation to
the risk of comorbid AD and MD.

We also found PRS associations with comorbid AD and MD.
For AD alone, an association was observed for a PRS of anxi-
ety factor scores (β = 0.58; 95% CI, 0.29-0.87; P = 7.00 × 10−5).
A PRS for the age of onset of smoking was positively associ-
ated with comorbid AD and MD (β = 0.95; 95% CI, 0.31-1.58;
P = 3.34 × 10−3), an association that was driven mainly by AD
(β = 0.61; 95%, CI 0.29-0.93; P = 1.98 × 10−4), with a higher
number of cigarettes per day associated with a greater risk of
AD (β = 0.44; 95% CI, 0.14-0.74; P = 4.39 × 10−3). Opposite ef-
fects of smoking cessation were observed for AD and MD taken
individually: current smoker status was strongly associated
with a higher risk of AD (β = –0.96; 95% CI, –1.28 to –0.63;
P = 7.56 × 10−9), while former smokers (defined as those who

had quit smoking for >1 year43) showed a higher risk of MD
(β = 0.88; 95% CI, 0.40-1.36; P = 3.26 × 10−4). Although smok-
ing cessation could pose a risk for the development of MD,56

the genetic causal relationship between long-time smoking ces-
sation and depression is still unknown. More research is needed
to understand the genetic mechanisms and shared genetic risks
among these and other psychiatric traits.

There was an association between the PRS for intracranial
volume, such that a greater intracranial volume was associ-
ated with a greater risk of comorbid AD and MD (β = 1.07; 95%
CI, 0.50-1.64; P = 2.18 × 10−4). Volumes of several specific sub-
cortical regions have previously been shown to be associated
with AD,57-60 with other regions associated with MD.61-64 We
tested the volume of 7 different subcortical regions44 and found
that a smaller putamen volume was associated with a greater
risk of comorbid AD and MD (β = –1.16; 95% CI, –1.86 to –0.46;
P = 1.22 × 10−3), an association that was explained by AD only
(β = –0.78; 95% CI, –1.15 to –0.42; P = 2.77 × 10−5), consistent with
a previous magnetic resonance imaging study.57 Furthermore,
pallidum volume was negatively associated with risk for AD
(β = –0.54; 95% CI, –0.84 to –0.24; P = 3.99 × 10−4). However,
we did not observe any association between subcortical vol-
ume PRS and MD, in line with the results of the largest mag-
netic resonance imaging study to date, which reported that sub-
cortical volumes might not differ between individuals with
depression and healthy individuals.65

Several factors complicate prior research, such as small
sample sizes in magnetic resonance imaging studies, trait
heterogeneity, possible confounding by comorbid illnesses that
frequently were not assessed, and the complex interactions be-
tween these traits and the underlying brain structure. An-
other limitation is that all of these PRS analyses were re-
stricted to European American individuals owing to a lack of
GWAS analyses for African American individuals. This restric-
tion reflects a limitation in the published GWAS literature and
the summary statistics that are available to the research com-
munity. Results from African American individuals could be
different. There is a clear need to expand the diversity of popu-
lations in genetic studies.

Conclusions
Genetic variants in the SEMA3A gene were replicably associ-
ated with comorbid AD and MD in the African American indi-
viduals. Our results are specific to the African American par-
ticipants. The trait distribution differs somewhat by population
in our sample (Table). Our data do not allow for strong sup-
port of any particular hypothesis regarding the observed ge-
netic differences by population. Differences in disease etiol-
ogy by population cannot be excluded, but differences in
environmental factors, epistasis, or random variation in our
sample provide equally satisfactory possible explanations. The
association signals detected in this study do not explain the un-
derlying genetic architecture for susceptibility to comorbid AD
and MD, although they do provide substantial insight into the
problem and 1 novel mechanism. Analyses of PRSs provided
evidence of shared polygenic risk variants between comorbid
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AD and MD and neuropsychological traits and subcortical brain
volumes. Our findings thus support the conclusion that these
comorbid traits may be to some extent, and may be considered
for some purposes, a single diagnostic, or even genetic, entity:
that is, among individuals with comorbid AD and MD, there are

some in whom the risk for both illnesses is influenced by a single,
or a few, variants. Further efforts to elucidate the molecular risk
factors and the causal mechanisms for comorbid AD and MD will
require larger samples to enable a focus on lower-frequency and
rare variants that may have large effects.
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