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Abstract 

To complete the genome-to-phenome map, transcriptome-wide association studies (TWAS) 

are performed to correlate genetically predicted gene expression with observed phenotypic 

measurements. However, the relatively small training population assayed with gene 

expression could limit the accuracy of TWAS. We propose Genetic Score Omics Regression 

(GSOR) correlating observed gene expression with genetically predicted phenotype, i.e., 

genetic score. The score, calculated using variants near genes with assayed expression, 

provides a powerful association test between cis-effects on gene expression and the trait. In 

simulated and real data, GSOR outperforms TWAS in detecting causal/informative genes. 

Applying GSOR to transcriptomes of 16 tissue (N~5000) and 37 traits in ~120,000 cattle, 

multi-trait meta-analyses of omics-associations (MTAO) found that, on average, each 

significant gene expression and splicing mediates cis-genetic effects on 8~10 traits. 

Supported by Mendelian Randomisation, MTAO prioritised genes/splicing show increased 

evolutionary constraints. Many newly discovered genes/splicing regions underlie previously 

thought single-gene loci to influence multiple traits. 
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Introduction 

Genome-wide association studies (GWAS) test millions of genome variants, such as single 

nucleotide polymorphisms (SNPs), for association with quantitative traits. Significant 

associations map a quantitative trait locus (QTL) to a genomic region tracked by the 

associated variant. Since most associations involve non-coding genetic variants, gene 

regulation is expected to mediate the effects of many QTL. While this can be investigated by 

associating gene expression with complex traits, the two measurements are not always on the 

same individuals and this prevents the direct association analysis. However, it is possible to 

find a genetic association between predicted gene expression and complex traits where the 

prediction of gene expression is made from SNP genotypes in the individuals with complex 

trait phenotypes, and the prediction equation is trained in other individuals with SNP 

genotypes and gene expression measurements. This is commonly referred to as a 

transcriptome-wide association study (TWAS) 1,2. 

The power of TWAS is determined by the accuracy of predicting gene expression from SNP 

genotypes and by the proportion of phenotypic variance explained by the expression of a 

single gene. Most datasets with gene expression measurements are not large and the 

prediction of gene expression is often limited to cis eQTL because trans effects are small and 

so hard to estimate accurately. Also, given the polygenicity of most complex traits, the 

predicted expression based on cis eQTL of a single gene is likely to explain only a small 

proportion of the variance of a complex trait. 

Here we propose an alternative approach to estimating the genetic association between gene 

expression and complex traits which we call genetic score omics regression (GSOR). The 

datasets with complex trait measurements and SNP genotypes are often very large and can be 

used to train a prediction equation that predicts complex trait genetic values from SNP 
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genotypes. The prediction is called an estimated breeding value (EBV) in animals and plants 

or a polygenic score (PGS) in humans 3. Then this prediction equation can be applied to 

individuals with actual gene expression measurements to correlate gene expression with EBV 

or PGS. Potentially, GSOR has two advantages over traditional TWAS. Firstly, the prediction 

of EBV/PGS should be more accurate because it is trained on a much larger data set than the 

prediction of gene expression. Secondly, the part of the EBV/PGS due to effects of SNPs 

close to the gene, i.e., the local EBV4,5/PGS, can be calculated and correlated with gene 

expression. These SNPs are also those responsible for cis eQTL, so the test for a correlation 

between cis effects on gene expression and complex trait EBV is more powerful than in 

TWAS. The above description of GSOR assumed the use of gene expression measurements, 

but it could be applied to any omics phenotype. Here we use gene expression together with 

RNA splicing. 

GWAS are often followed by a meta-analysis of the effect (beta and se) of variants. Where 

GWAS summary statistics are available for several traits, a multi-trait meta-analysis of 

GWAS can be used to identify variants affecting multiple traits 6, i.e., pleiotropy. Similarly, 

TWAS or GSOR also produces association summary statistics between gene expression and 

multiple phenotypes. Therefore, a multi-trait meta-analysis can also be applied to such 

summary data to investigate the pleiotropic effects mediated by regulatory mechanisms. 

Understanding causal mechanisms behind QTL is important but challenging. In humans, 

large-scale GWAS of both conventional and molecular phenotypes such as gene expression 7 

and RNA splicing 8 improved the understanding of QTL causal effects. In animals, only a 

few causal QTL are identified and one of the most extraordinary QTL is a mutation in the 

gene for diacylglycerol O-acyltransferase 1 (DGAT1) in cattle. This single QTL explains 

30%-40% of the phenotypic variance of milk production traits 9,10. While this QTL was 

previously identified to be caused by a protein-coding mutation 9,11,12, more recent studies 
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indicated regulatory effects 10,13, possibly due to multiple causal mutations. The new 

CattleGTEx 14 and the FAANG consortium 15 provide opportunities to explore the causal 

regulatory mechanisms behind this QTL. 

A complication with the interpretation of GWAS and TWAS results is caused by linkage 

disequilibrium (LD). One SNP may be associated with the expression of a gene and with a 

complex trait because of LD between this SNP and both a QTL for the trait and an eQTL for 

gene expression. However, if all SNPs that affect the expression of the gene have a 

proportional effect on the complex trait, then this is evidence that the gene expression causes 

variation in the complex trait. This is the logic of Mendelian randomization as implemented 

in SMR 16, which we use here to validate our results and explore causality. In addition, genes 

with important functions in mammals may have undergone purifying selection or are under 

evolutionary constraints across species. In this paper, we also investigate whether prioritised 

putatively causal genes show evidence of purifying selection. 

We developed and applied GSOR to transcriptomes from 16 tissues from ~5,000 cattle and 

37 complex phenotypes from 113,000 cattle to dissect the genetic effects on complex traits 

mediated by the transcriptome. We propose a meta-analysis to quantify the pleiotropic effects 

of regulatory loci. We then use Mendelian Randomisation and the ratio of nonsynonymous 

substitution (dN) to synonymous substitution rates (dS) 17 to verify these effects and combine 

GSOR and SMR to dissect causal regulatory mechanisms. We show that blood group genes 

ABO and ACHE (Cartwright blood group) mediate causal effects on protein concentration 

and mastitis via expression and splicing, supporting conserved and widespread regulatory 

effects on mammalian complex traits. 

 

Results 
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Genetic Score Omics Regression (GSOR) 

It is more likely for a population with phenotypic records to have a larger sample size than a 

population with omics datasets, such as gene expression and RNA splicing. Therefore, we 

developed GSOR which estimates the effects (b) of omics features (Ω) on a complex 

phenotype leading to an EBV or PGS, ���. Details are given in the Methods section, but the 

basic form of GSOR is: 

������� = Ω
��
 + �        �������� = Ω
����
 + ��������� = Ω
����� + �   (1-3) 

The response variable is the EBV or PGS for a complex trait (���) estimated using either 

genetic variants close (±1Mb of TSS) to a gene (������) or all other genetic variants (��������), 

or is the total EBV/PGS �������� = ������ + �������� . Accordingly, 
��
 , 
����
  and 
�����  is the 

coefficient of regression of ������, ��������  and �������� , on the gene expression or splicing 

value. GSOR allows the fitting of random effects of a relationship matrix to control for 

population structures or confounding factors. GSOR is freely available at 

https://github.com/rxiangr/GSOR-and-MTAO.git. 

To compare GSOR with the conventional TWAS, we analysed simulated and real data of 

113,000 cattle with 16M sequence genotypes and 37 complex trait phenotypes and 945 cattle 

with 6M sequence genotypes and gene expression in blood (See Methods). To match with the 

implementation of GSOR, TWAS was also conducted using linear mixed models where gene 

expression predictors were trained by jointly fitting two genomic relationship matrices 

(GRMs) built using cis and trans variants. The predicted gene expression was then correlated 

with the complex trait phenotypes. 
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Using real bovine genotype data and ARS-UCD1.2 genome coordinates, we simulated causal 

cis and trans eQTL for 16,600 genes and created 5 scenarios of nulls where causal eQTL and 

causal QTL did not overlap and 5 alternative scenarios where causal eQTL and causal QTL 

did overlap (see Methods). Using Receiver Operating Characteristic (ROC) analysis of 

results, we showed that GSOR outperformed TWAS in detecting causal genes based on cis-

predicted gene expression (Figure 1a,b) and cis+trans predicted gene expression 

(Supplementary Figure 1a,b). In the current simulation framework, neither GSOR nor TWAS 

had the power to detect causal genes based on trans-predicted gene expression 

(Supplementary Figure 1c,d).  

 

 

Figure 1. Comparison of results between GSOR and TWAS using simulations and real data. 

Receiver Operating Characteristic (ROC) analysis of results from GSOR and TWAS using 

simulated data are shown in (a) and (b), respectively. TPR: true positive rate. FPR: false 
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positive rate. 10 scenarios were simulated with varying heritability (hsq) of traits. 5 traits 

were simulated under the null (Null) where no causal eQTL overlapped with causal QTL and 

another 5 traits were simulated under the alternative (Alt) scenarios where causal eQTL 

overlapped with causal QTL for more than 1000 genes. A comparison of results from real 

data is shown as violin plots in (c) and (d). In bull and cow datasets, the agreement of gene 

expression-phenotype association between cis and trans predicted values were compared. 

The comparison was based on the proportion of genes with the same sign (c) or correlation of 

effects (d), between cis and trans predicted values for 37 traits in each sex.  

 

We next compared the results of GSOR and TWAS by analysing real blood gene expression 

data and 37 traits of 113,000 bulls and cows (Supplementary Table 1). If the increased 

expression of a gene causes a change in a complex trait, we expect the direction of that 

change to be the same for both cis and trans effects on gene expression. We observed that, in 

both sexes across 37 traits, the agreement of the direction of cis and trans effects and the 

correlation of effects between them was higher in GSOR than in TWAS (Figure 1c,d). In 

addition, we estimated the �� value (lower bound on the proportion of truly alternative 

features 18, commonly used to indicate the proportion of replicated associations between 

different analyses 7,14) for results of GSOR and TWAS. We observed relatively higher �� for 

GSOR than TWAS when replicating the gene expression-phenotype between cis and trans 

predicted �� (Supplementary Figure S2a), although for both GSOR and TWAS, �� between 

cis and trans predicted �� was low. We also replicated the gene expression-phenotype 

association between bulls and cows, where we observed a much higher �� for GSOR than 

TWAS using cis predicted �� (Supplementary Figure S2b). Overall, our results support the 

conclusion that GSOR has advantages over conventional TWAS in detecting genes whose 

expression is causally associated with complex traits. 
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Multi-trait meta-analysis of omics-associations (MTAO) 

We applied GSOR to transcriptome data (gene expression and RNA splicing) of 16 tissues 

combining newly generated data with data from CattleGTEx V0 14 with a sample size > 100 

(Supplementary Table 2) and ��� of 37 cow traits (See Methods). Summary statistics of 

GSOR on gene expression and RNA splicing from 16 tissues across 37 traits of 103k cows 

are publicly available at https://figshare.com/s/c10ffab5abf329b1318f. To gain novel insights 

from vast summary statistics from GSOR, we introduce a multi-trait meta-analysis of omics-

associations (MTAO) to quantify the extent of cis pleiotropy mediated by omics. MTAO 

estimates two statistics for each omics feature (including gene expression or splicing events) 

from each tissue: 1) the number of traits affected (� �!��) and 2) the magnitude of multi-trait 

effects (" �!��). The estimation of � �!��  adopted the method from Jordan 2019 19 with 

increased rigor of significance testing (Methods). The estimation of " �!�� models the Chi-

square distribution of signed t-values of each omic feature along with the correlation matrix 

of t-values across 37 traits to approximate the error covariance matrix (Methods). The R 

implementation of MTAO is publicly available at https://github.com/rxiangr/GSOR-and-

MTAO/blob/main/README_MTAO.md. Note that MTAO can be applied to any results 

from omics-wide association testing including the conventional TWAS, as long as the 

regression coefficient (b) and standard error for each omics feature on the phenotype are 

obtained. 

MTAO revealed that gene expression and RNA splicing mediate widespread cis pleiotropic 

effects on complex traits (Figure 2a-b). Across 16 tissues and 37 traits based on 3612 

(SD=1037) significant genes (Supplementary Table 3), on average, the gene expression 

mediated cis pleiotropic effects on 9.7 traits (ranging from 8-13) with an average magnitude 
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of 9.8 (ranging from 9-13). Based on 23,477 (SD=10633) significant introns (Supplementary 

Table 3), on average, splicing of an intron mediated cis pleiotropic effects on 8.4 traits 

(ranging from 8-11) with an average magnitude of 9.1 (ranging from 9-12) (Figure 2c-d).  

 

 

Figure 2. Gene expression and RNA splicing mediated cis pleiotropy. The average number 

of traits (N) associated with a gene expression (a) and the average magnitude (M) of 

pleiotropy with a gene expression (b); and the average N associated with a splicing event (c) 

and the average M of pleiotropy with a splicing event (d) are shown across 16 tissues. The 
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numbers under each plot are the average values of N and M per tissue. The numbers in 

brackets are the sample size of each tissue.  

 

MTAO, Mendelian randomisation, and selection 

MTAO identifies genes whose expression or splicing is associated with multiple traits. 

However, this association could be due to LD between eQTL or sQTL and QTL for complex 

traits. To test if variation in gene expression or splicing causes variation in complex traits, we 

conducted the summary data-based Mendelian randomization (SMR) in combination with the 

heterogeneity in dependent instruments (HEIDI) 16 test based on cis eQTL and sQTL mapped 

from 16 tissues and GWAS of 37 traits 20,21 (see Methods). HEIDI tests, including the more 

recent version using multiple top SNPs 22, for heterogeneity in the relationship between the 

effect of a variant on gene expression and the complex trait. Significant heterogeneity implies 

that the association between gene expression and trait is not causal and could be due to LD 

16,23. Where results of SMR are available for multiple traits for a gene or an intron which 

passed the HEIDI test, we also used a multi-trait meta-analysis to combine SMR results 

across traits to identify genes or splicing events causing variation in more than one trait (See 

Methods). Then, we compared the genes/spliced introns prioritised by MTAO and by multi-

trait SMR to check the extent of overlap (Figure 3a, Supplementary Table 4). Fisher’s exact 

tests show that the overlap of prioritised genes/spliced introns between MTAO and SMR is 

on average 2.4 times more than expected by random chance and is significant in most tissues 

(Figure 3a). 
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Figure 3. Supportive evidence for multi-trait meta-analysis of omics-associations (MTAO). 

a: Overlap of prioritised genes/introns between multi-trait meta-analysis of omics-

associations (MTAO) and multi-trait summary data-based Mendelian randomization (SMR). 

Bars represent the odds ratio (OR) of fisher's exact test of the overlap. The dashed blue line 

indicates OR = 1. Bars with transparent colors indicate the p-value of fisher's exact test > 

0.05 after multi-test adjustment (Embryo, Hypothalamus, Macrophage, Ovary and Pituitary in 

gene expression). b: nonsynonymous (dN) to synonymous substitution rate (dS) ratios for 

MTAO prioritised genes compared between Bos taurus taurus cattle (taurus) and other 

mammals (1-to-1 orthologs), including Bos indicus which is a sub-species of cattle. ****: t-test 
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p-value < 1×10-4; ns: t-test not significant. In total 14504 ortholog genes participated in the 

analysis. 

 

In addition, based on 1-to-1 orthology, we compared the dN/dS ratios of genes prioritised by 

MTAO between cattle and other species, including humans, mice and Bos taurus indicus 

which is a sub-species closely related to Bos taurus taurus cattle (Figure 3b). When 

comparing cattle and other species, MTAO prioritised genes showed significantly reduced 

dN/dS ratios than random genes. This suggests that MTAO prioritised genes show relatively 

stronger purifying selection 17 between cattle and other mammals, i.e., evolutionary 

constraint, and therefore that they play important functional roles in mammals. 

 

Detection of trait-relevant tissues 

We next used results obtained from GSOR and SMR together to rank tissues according to 

their relationship with each trait. We used a heuristic index that combined results from 

GSOR, SMR, and HEIDI with the number of genes and individuals to rank tissues for each 

trait (see Methods) (Figure 4). Our analysis shows that blood, milk cells, liver and uterus had 

the highest and most consistent ranking in their connections with the traits analysed. This 

appears to be plausible given our collection of traits has a bias toward milk production and 

fertility. The ranking of tissues on average had a low correlation (spearman rho = 0.35) with 

the sample size and these correlations were not significant (Supplementary Table 5). 
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Figure 4. Ranking of tissues based on their importance to each trait. For each trait, we 

estimated the sum of the effects of GSOR and SMR across genes (or introns) per tissue 

adjusted by the number of genes and individuals. This sum was used to rank tissues for each 

trait. The numbers within cells indicate the tissue ranking from 1 to 16 per trait. The ranking 

for “All_Traits” is the ranking of tissues averaged across all traits. The numbers in brackets 

are the sample size of each tissue. 
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Regulatory mechanisms underlie previously thought single-gene loci 

The most understood yet controversial QTL in cattle is diacylglycerol O-acyltransferase 1 

(DGAT1) previously identified to be caused by a protein-coding mutation and affects milk 

production traits 9,11,12. For the first time, we provide statistical evidence to support that gene 

expression and RNA splicing at DGAT1 are causally linked to many traits in many tissues, 

and such causal links are not restricted to milk production traits (Figure 5a,b). Both MTAO 

and SMR found putative causal effects of DGAT1 expression and/or splicing in blood, liver, 

mammary gland, milk cells, and uterus (Figure 5a-e). DGAT1 expression and splicing had 

putative causal effects on milk production, mastitis (MAS, average correlation with milk 

production traits #̅%��&  = -0.01), gestation length (Gl, #̅%��&  = -0.03), temperament (Temp, 

#̅%��&  = -0.04), and stature (Stat, #̅%��&  = 0.09). Therefore, our analysis supports the 

widespread regulatory causal effects of DGAT1 on multiple traits possibly involving 

expression in many tissues. Another major QTL with regulatory effects reported in animals is 

IGF2 (insulin-like growth factor 2) 24 and results show that RNA splicing of this gene was 

causally linked to many traits in tissues of liver and adipose (Supplementary Figure 3). Also, 

the expression of MGST1 (Microsomal Glutathione S-Transferase 1)25 is causally linked to 

milk production traits in milk cells and the hypothalamus (Supplementary Figure 4). In 

addition, our current analysis did not observe causal regulatory effects from GHR (Growth 

Hormone Receptor, Supplementary Figure 5) with reported missense mutations 26 at sites 

conserved across vertebrates 27.  
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Figure 5. Widespread regulatory causal effects of DGAT1. The heat map of effects of 

DGAT1 expression (a) and splicing (b) across tissues and traits based on GSOR. In these heat 

maps, red spades indicate causal effects inferred using summary-based Mendelian 

randomisation (SMR) independent of LD; black hearts indicate the causal effects confounded 

by LD while black clubs indicate causal effects without testing LD due to not enough SNPs. 

Black dots represent insignificant SMR test and white hyphens indicate no e/sQTL or QTL 

could be used for the SMR test. The dendrogram represents the hierarchical clustering of 

effects. The color scale of heatmaps is based on the magnitude of t (be/se) value of GSOR. c-

d are examples of Mendelian randomisation using the expression eQTL and GWAS of fat%. 

e-f are examples of Mendelian randomisation using splicing sQTL and GWAS of fat%. 

14:608086-609040 indicates the location of the spliced intron in DGAT1. 
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Based on the strongest statistical evidence from both GSOR and SMR for major traits of 

dairy cattle (non-linear assessment traits), we found that some traditionally recognised large-

effect “single-gene” loci actually contain several adjacent genes or underlying spliced introns 

potentially causally linked to complex traits (Table 1 and Supplementary Data 1). We 

confirm the regulatory effects on milk production, gestation length, and height of several 

known causal loci, including DGAT1 10 via both gene expression and splicing, MGST125,28 

and MATN329 via gene expression, and CSF2RB30,31 and MUC132 via splicing. However, 

importantly, our evidence supports multiple regulatory loci underlying these major QTL. For 

example, there are 4 other genes (ZNF34, IQANK1, LYNX1 and SPAG1) near DGAT1 

showing potentially causal effects on milk production traits independent of LD. Note that 

each of these genes used a different set of cis eQTL for SMR and HEIDI tests. For example, 

ZNF34 and IQANK1 are neighbor genes for DGAT1, and they had a relatively small number 

of shared cis eQTL with DGAT1, with an average LD-r = 0.7 with eQTLs of DGAT1 

(Supplementary Table 6). Even within DGAT1, there were 7 intronic regions whose splicing 

was potentially causally linked to cattle traits independent of LD (Supplementary Data 1).  
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Table 1. Summary of putatively causal links to cattle traits via gene regulation prioritised by GSOR (p-value shown in PGSOR) and SMR (p-value shown in PSMR and 

PHEIDI). Note that PHEIDI < 0.05 indicates LD confounding. 

Gene Name Chr Start End Tissues Traits PGSOR PSMR PHEIDI 

ENSBTAG00000018804 CELSR2 3 34131464 34157519 Liver ProtP 7E-08 2E-07 0.1484 

ENSBTAG00000001136 ELAPOR1 3 34200677 34215659 Milk_cell ProtP 3E-07 4E-05 0.8247 

ENSBTAG00000014655 MYO1A 5 56378741 56406111 Blood, Liver Ease 3E-12 1E-05 0.0720 

ENSBTAG00000008541 MGST1 5 93497064 93521047 Milk_cell Prot, Fat, Milk, ProtP, FatP 1E-11 9E-17 0.8240 

ENSBTAG00000007556 DYRK4 5 105528525 105552494 Blood Stat 2E-05 4E-07 0.3218 

ENSBTAG00000054859 unknown 5 116545881 116552846 Muscle ProtP 3E-15 7E-07 0.1392 

ENSBTAG00000020893 MATN3 11 78828218 78841622 Blood, Liver Stat 4E-64 8E-07 0.0606 

ENSBTAG00000049030 unknown 11 104152769 104157310 Blood FatP 3E-22 1E-06 0.2623 

ENSBTAG00000012525 ABO 11 104176840 104214809 Jejunum ProtP 2E-07 1E-05 0.9831 

ENSBTAG00000012353 ZNF34 14 309282 313478 Blood Prot, Fat, Milk, ProtP, FatP, Gl 3E-10 2E-14 0.2054 

ENSBTAG00000026356 DGAT1 14 603813 612791 Blood, Mammary Prot, Fat, Milk, ProtP, FatP, Gl 1E-26 2E-28 0.1188 

ENSBTAG00000048486 IQANK1 14 1006976 1027840 Milk_cell, Muscle, Liver Prot, Fat, Milk, ProtP, FatP 3E-07 8E-20 0.0775 

ENSBTAG00000005762 LYNX1 14 1669738 1672645 Milk_cell, Blood, Muscle Prot, Fat, ProtP, FatP 7E-09 8E-19 0.1106 

ENSBTAG00000032544 SPAG1 14 64174147 64208187 Blood Milk, ProtP 5E-12 2E-08 0.5436 

ENSBTAG00000001151 APLP1 18 46566807 46576567 Blood, Milk_cell Fert 8E-22 3E-05 0.5404 

ENSBTAG00000037537 unknown 18 57136169 57143497 Blood Fert, BSize, Stat 6E-15 5E-09 0.0961 

ENSBTAG00000008852 SIGLEC10 18 57462227 57469952 Milk_cell Gl 1E-05 1E-06 0.9951 

ENSBTAG00000000336 unknown 18 61158271 61171888 Blood Gl 3E-06 8E-08 0.8595 

ENSBTAG00000009171 unknown 18 61180951 61189526 Blood Gl 6E-13 1E-10 0.7494 

ENSBTAG00000054918 unknown 18 61272049 61273471 Blood Gl 3E-12 3E-06 0.1134 

ENSBTAG00000045795 KIR2DS1 18 62754722 62761536 Blood Gl 4E-09 2E-10 0.4330 

ENSBTAG00000046944 unknown 19 14327135 14327967 Milk_cell Ease 2E-06 3E-06 0.8298 

ENSBTAG00000051950 unknown 19 27824421 27825794 Liver, Uterus Gl 3E-07 1E-06 0.4830 

ENSBTAG00000052414 HAP1 19 41934418 41945539 Blood MSpeed 2E-40 2E-05 0.8971 

ENSBTAG00000051698 unknown 19 50859602 50861369 Blood, Mammary, Uterus Fat, FatP 6E-37 8E-08 0.0905 

ENSBTAG00000008747 DCXR 19 50873199 50876290 Blood Fat 8E-11 2E-06 0.3317 

ENSBTAG00000053909 NAT9 19 56648056 56652832 Blood Gl 6E-10 1E-05 0.3506 

ENSBTAG00000052397 unknown 25 2502513 2506851 Muscle Scc 2E-06 5E-06 0.2807 

ENSBTAG00000001139 ACHE 25 35762361 35768977 Blood Mas 2E-40 4E-09 0.5087 

ENSBTAG00000001131 SLC12A9 25 35789614 35799221 Blood Mas 6E-07 4E-06 0.1626 

ENSBTAG00000012668 unknown 25 36317416 36319388 Milk_cell Mas 3E-12 2E-06 1.0000 
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We identified many new or unannotated potentially causal loci, including two blood group 

genes, ABO (Histo-blood group) and ACHE (acetylcholinesterase, Cartwright blood group), 

causally linked to protein concentration and mastitis respectively via both gene expression 

and splicing in blood (Table 1 and Supplementary Data 1). Also, DCXR (dicarbonyl and L-

xylulose reductase), which plays a significant role in glucose metabolism and causes human 

pentosuria (NCBI RefSeq) is linked to cattle fat yield via both gene expression and splicing 

in blood. FLII (FLII actin remodeling protein) causally linked to cattle gestation length via 

splicing in milk cells is a gene related to embryogenesis in Drosophila (NCBI RefSeq). 

Transcription factor gene TAF9 (TATA-Box Binding Protein Associated Factor 9) is causally 

linked to cattle milk speed via splicing in blood.  

 

Discussion 

The current study shows that GSOR has advantages over TWAS in finding genes whose 

expression or splicing is associated with complex traits. Many methods can be used to detect 

the association between gene expression and complex traits 33-36. However, the advantage of 

GSOR is due to the use of the large sample size to train the EBV or PGS, i.e., genetic score, 

for complex traits and the ability to calculate a part of this genetic score that is local to the 

gene whose expression is being considered leading to a more powerful test for cis eQTL or 

sQTL effects. 

Applying GSOR and MTAO to the large dataset with transcriptomes and complex traits in 

cattle, we identified widespread genetic regulatory effects on complex traits, i.e., cis 

pleiotropic effects, mediated by the transcriptome. We show that on average each gene 

expression and splicing event mediate cis genetic effects on 10 and 8 traits, respectively, and 

this is comparable to our previous work where on average each variant affects 10 traits 37. 
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This suggests that the genetic effects mediated by cis-regulatory mechanisms on complex 

traits are prevalent. Using a multi-trait meta-analysis of SMR 16, a different approach to 

detect putative causal relationships between omics features and traits, we validate the results 

of MTAO. Also, we found that MTAO prioritised genes show significantly stronger purifying 

selection than random genes, supporting that these genes have important functions in cattle 

and other mammals. These pieces of evidence support that MTAO can be used to identify 

omics features, i.e., regulatory elements, of high importance to complex traits. Apart from 

gene expression and splicing, there are many other types of quantitative omics features such 

as the height of ChIP-seq peaks 38 and allele-specific imbalance 27 which can also be analysed 

by MTAO. Moreover, MTAO is summary-data based so it can be applied to any results from 

GSOR or conventional TWAS, as long as there are beta and standard error estimates for the 

association between the omics feature and the phenotype. Therefore, we expect MTAO to 

have an important place in future large-scale meta-analyses of different GSOR or TWAS 

studies in mammalian species. 

We combined the results from the GSOR and SMR to prioritise tissues related to different 

phenotypes. Across different traits, blood, milk cells, liver, and uterus were the most 

informative tissues for traits analysed. Blood is one of the most common tissues/cell types 

sampled for omics studies due to its easy access. Milk cells can also be relatively easily 

accessed in dairy cattle 39. Although we have adjusted the analysis according to the sample 

size of each tissue, the tissue prioritisation might still have some biases towards those with 

larger sample sizes. 

Understanding the causal nature of large-effect QTL provides opportunities for treatments. 

Here we used results from MTAO and SMR to dissect regulatory causal effects of some 

major cattle loci, including DGAT1. A protein-coding mutation in DGAT1 was previously 

identified as the cause of this QTL’s effect on milk production traits, but there has been 
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speculation that there are multiple causal variants in this region of the genome 12,13. Our 

results, for the first time, show a correlation between DGAT1 expression and splicing and 

numerous traits. DGAT1 expression in blood, liver, mammary gland, pituitary, milk cells, and 

rumen were correlated with milk and non-milk traits. This agrees with the pleiotropy model 

which we previously proposed 32 which is that QTL with a large effect on one trait is likely to 

have small effects on other uncorrelated traits. 

In addition to DGAT1, the expression and splicing of 4 other genes (ZNF34, IQANK1, LYNX1 

and SPAG1) close to DGAT1 was correlated with complex traits. Similar results were 

observed for other loci like MGST1, MUC1, and CSF2RB. This could be because mutations 

could affect the regulation of more than one nearby gene or it could be that these genes affect 

dairy traits directly. It has been demonstrated that multiple causal variants underlie human 

QTL 40. This may be the same for many traits of cattle, although we will need further 

experimental approaches to validate this. 

We also provide statistical evidence for several new loci potentially affecting cattle traits via 

gene expression regulation, including blood group genes (ABO and ACHE). Interestingly, a 

deletion in ABO has been causally linked to pig complex traits via regulation of gut microbes 

41 and here we found the regulatory effects of ABO in the jejunum (Table 1). However, there 

have not been reports regarding potentially causal effects via expression and splicing on 

complex traits linked to ABO or ACHE (Cartwright blood group). To our knowledge, it’s the 

first study to find DCXR related to glucose metabolism and FLII related to prenatal 

development, to have regulatory QTL in cattle. 

In conclusion, we have introduced new methods and meta-analysis strategies to link omics 

information and complex traits. These methods are supported by the analysis of simulated 

and real data and by established Mendelian randomisation methods which account for LD. 
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Our methods detected widespread pleiotropic effects mediated by multiple regulatory 

mechanisms and prioritised many genes and splicing events with potential causal associations 

with cattle traits. Primarily developed in cattle, GSOR and summary-data-based MTAO can 

prioritise informative omics-phenotype associations in any species. 

 

Methods 

RNA-seq data. The RNA-seq and genotype data analysed included those generated by 

Agriculture Victoria Research (AVR) in Victoria, Australia, and those provided by the 

CattleGTEx consortium 14 (Supplementary Table 2). The animal ethics was approved by the 

DJPR Animal Ethics Committee (application numbers 2013-14 and 2018-2019), Australia. 

Blood samples were taken from 390 lactating cows from 2 breeds, and milk samples from 

281 lactating cows from 2 breeds. The processing of samples, RNA extractions, and library 

preparation followed that previously described 28,42. RNA sequencing (RNA-seq) was 

performed on a HiSeq3000 (Illumina Inc) or NovaSeq6000 (Illumina Inc) genome analyzer in 

a paired-end, 150-cycle run. Only RNA-seq data of 356 Holstein and 26 Jersey with > 50 

million reads for milk cells or > 25 million reads for white blood cells and had concordant 

alignment rate 43 > 80% were used. QualityTrim (https://bitbucket.org/arobinson/qualitytrim) 

was used to trim and filter poor-quality bases and sequence reads. Adaptor sequences and 

bases with a quality score of <20 were removed. Reads with a mean quality score less than 

20, greater than 3 N, greater than three consecutive bases with a quality score less than 15, or 

a final length of fewer than 50 bases were discarded. High-quality raw reads were aligned to 

the ARS-UCD1.2 bovine genome 44 with STAR 43 using the 2-pass method. The gene counts 

were extracted by FeatureCount 45. Leafcutter 33 was used to generate junction files which 

were then used to create the RNA splicing phenotype matrix, i.e., intron excision ratio 33.  
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The RNA-seq gene counts of 15 tissues (Supplementary Table 2) where the sample size > 

100 were downloaded from CattleGTEx website http://cgtex.roslin.ed.ac.uk/. The blood 

counts generated by AVR (white blood cells) and CattleGTEx were combined. All gene 

counts were normalised by voom 46 and then underwent quantile normalisation for the 

following analyses. Junction files from CattleGTEx tissues were also downloaded and data 

from each tissue was processed with leafcutter 33 to generate RNA splicing phenotype. Milk 

cell data used in this study was only from AVR.  

Genotype data. The genotype data for Australian animals including those used for e/sQTL 

mapping (blood and milk cells) and association analysis of phenotypes (described later) 

consisted of 16,251,453 sequence variants imputed using Run7 of the 1000 Bull Genomes 

Project 47,48. The details of the imputation were described previously 49. Briefly, the 

imputation of bi-allelic sequence variants was performed with Minimac3 50,51 and those 

variants with imputation accuracy R2 > 0.4 and minor allele frequency (MAF) > 0.005 in both 

bulls and cows were kept. Bulls were genotyped with either a medium-density SNP array 

(50K: BovineSNP50 Beadchip, Illumina Inc) or a high-density SNP array (HD: BovineHD 

BeadChip, Illumina Inc) and cows were genotyped with the BovineSNP50 Beadchip 

(Illumina Inc). The genotype data for CattleGTEx animals were generated previously 14 and 

included a total of more than 6 million sequence variants imputed also using Run7 of the 

1000 Bull Genomes Project. Those variants with the imputation dosage R-squared > 0.8 and 

MAF > 0.001 were kept.  

Phenotype data. Data were collected by farmers and processed by DataGene Australia 

(http://www.datagene.com.au/) for the official May 2020 release of National breeding values. 

No live animal experimentation was required. DataGene provided the bull and cow 

phenotypes as de-regressed breeding values or trait deviations for cows, and daughter trait 

deviations for bulls (i.e., progeny test data for bulls). DataGene corrected the phenotypes for 
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herd, year, season, and lactation following the procedures used for routine genetic evaluations 

in Australian dairy cattle. Phenotype data included a total of 8,949 bulls and 103,350 cows, 

including Holstein (6,886♂ / 87,003♀), Jersey (1562♂ / 13,353♀), cross-breed (36♂ / 

5,037♀) and Australian Red (265♂ / 3,379♀) dairy breeds. In total, 37 traits were studied that 

related to milk production, mastitis, fertility, temperament, and body conformation and the 

details of these traits can be found in 49. For AVR blood samples, breed and days in milk 

(DIM) were fitted as fixed effects in the gene expression and splicing GWAS model. For the 

milk samples, experiment, DIM, and the first and second principal components, extracted 

from the expression count matrix, were fitted as fixed effects. Principle components were 

fitted to adjust for the high expression of the major milk protein genes, i.e., casein, in milk 

cells based on previous experiences 28. 

Genetic Score Omics Regression (GSOR). A key feature of GSOR is the use of predicted 

phenotype value, i.e, genetic score (also called estimated breeding value or polygenic score), 

from a large reference population, as the explanatory variable to be associated with gene 

expression levels, splicing events, or other omic features. Another key feature of GSOR was 

the use of variants close to the gene whose expression is being studied to calculate a local or 

cis EBV/PGS. This would then be correlated with the expression or splicing of the gene. Note 

that although the local EBV/PGS was based on effects of SNPs near the gene, all SNP effects 

are trained jointly (described below). Where the total EBV/PGS minus the cis EBV/PGS was 

the trans EBV/PGS. It is generally recommended to use trait variant prediction models that 

jointly fit all variants together, such as gBLUP 52,53 or BayesR 54,55. Here we considered 

gBLUP for computational efficiency. A basic gBLUP model can be described as: 

'� = () + *+, + � (4) 

or  
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'� = () + *� + � (5) 

Where is ( a design matrix, '� is an n × 1 vector of phenotypes and n is the number of 

individuals; ) is a vector of fixed effects and Z is the matrix allocating records to individuals; 

u is a vector of SNP effects with u ~ N(0, -./0) where I is an n × n identity matrix; + is a 

standardized genotype matrix and if models like GCTA 56 were used, +�1 =
(3�1 − 26�) 826�(1 − 6�):  where 3�1 is the number of copies of the 1st allele for the ith SNP of 

the jth individual and 6� is the frequency of the 1st allele; � is an n × 1 vector of the total 

genetic effects of the individuals with g ~ N(0, ;.<0) where ; is the genomic relationship 

matrix (GRM) between individuals, ; = ++′./0/.<0 or ; = ++′ "?  where .<0 = "./0 and 

M is the number of variants to explain .<0; and e is the residual where e ~ N(0, -.!0). As 

Equation (4) and (5) are equivalent 53,56,57, it is possible to transform the BLUP of individual 

genetic score � to BLUP of ,�, i.e., SNP effects jointly estimated: 

,� = +@;A�� "?  (6) 

Equation 6 was implemented with GCTA BLUP 56 in the current study. Estimated ,� can be 

used to predict the genetic score, i.e., breeding value or polygenic score, of new individuals 

based on their genome-wide variant data: �� = +�!B,�. Because the SNP effects ,� was jointly 

estimated, it is also possible to use a subset of variants to predict �� (local EBV/PGS). For 

example, we have previously estimated �� of every 50kb windows of variants 31. In the current 

study, we estimate �� using variants close or distant to omic features such as genes or introns: 

������� = +��
,���
                 (7)�������� = +����
,�����
    (8)�������� = ������ + ��������    (9) 
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Where ������ is the estimated genetic score using effects on phenotype (,���
) and the genotype 

matrix (+��
) of cis variants of omic features; ��������  is the estimated genetic score using 

effects on phenotype (,�����
) and the genotype matrix (+����
) of trans variants; and ��������  
is the total genetic score by summing the cis and trans estimations. In the GSOR, for each 

gene, the cis variants were defined as ±1Mb of the transcription start site of the gene and the 

trans variants are the remaining variants. For each intron, cis variants were defined as those 

within 1Mb down and upstream of the intron (from intron start – 1Mb to intron end + 1Mb) 

and the trans variants are the remaining variants. Once cis and/or trans estimated genetic 

scores of genes/introns were obtained, they were analysed as response variables with gene 

expression or RNA splicing (intron excision ratio) as predictors: 

������� = Ω
��
 + FbH + (IH) + �           (10)�������� = Ω
����
 + FbH + (IH) + �  (11)�������� = Ω
����� + FbH + (IH) + �    (12) 

Where Ω is an n × 1 vector of omics values such as gene expression or RNA splicing 

corrected for other fixed effects such as breed, sex and experiments, 
��
  is the regression 

coefficient of the cis estimated genetic score ����
  KL Ω, 
����
  is the regression coefficient of 

the trans estimated genetic score ������
 on Ω, and 
����� is the regression coefficient of the 

total genetic score �������  on Ω; F was the design matrix for fixed effects for data with omics 

measurements, e.g., breeds; bH was the vector of fixed effects in the omics data; IH was a 

vector of random polygenic effects ~N(0, Gσg
2) which can be optionally fit to adjust 

confounding factors, G = genomic relatedness matrix (GRM) based on all variants and σg
2 

= random polygenic variance, and e is the residual. 

The implementation of GSOR was undertaken in R (v4.0.0) and is publicly available at 

(https://github.com/rxiangr/GSOR-and-MTAO). GSOR can work with or without random 

effects and when it does, it uses the implementation of eigendecomposition of the relationship 
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matrix to speed up the variance components analysis. In the AVR high-performance cluster 

(slurm) system with 1 node, GSOR used 1.6G RAM and took 4.5 minutes to associate 

expression levels of 16,564 genes with the trait genetic score of 945 individuals fitting a 

GRM for each regression.  

Conventional Transcriptome-Wide Association Studies (TWAS). Opposite to GSOR, a 

conventional TWAS essentially associates predicted gene expression in a large population 

with phenotypes of this population. The variant predictor was directly trained in the 

population where omics data was available. To make results from GSOR and TWAS 

comparable, we conducted TWAS using linear mixed model approaches and the variant 

predictors were trained using the omics data from blood which had the largest sample size 

across all tissues analysed. To train the variant predictor, a 2-GRM model was analysed for 

each omic feature which is similar to equation 5: 

yP = () + *��P��� + *��P����� + � (13) 

Where yP is an n × 1 vector of omics values such as gene expression or RNA splicing, ) is a 

vector of fixed effects; �P��� is an n × 1 vector of the total genetic effects of the individuals 

with g ~ N(0, ;��
.<0) where ;��
 is the GRM built by cis variants of the omic feature; �P����� 

is an n × 1 vector of the total genetic effects of the individuals with g ~ N(0, ;����
.<0) where 

;����
 is the GRM built by trans variants of the omic feature; Z is the matrix allocating 

records to individuals; e is the error term. Once ��P��� and ��P����� were obtained, equation (6) 

was applied to estimate SNP BLUP for omics data: ,�P���, ,�P����� and ,�P�����, which were 

used to predict the omics scores, ��P���, ��P����� and ��P����� in the population with phenotypic 

records with equations 7-9. Then, predicted gene expression values were analysed as 

explanatory variables to associate with phenotypes: 
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'� = ���P���)��
 + Fb� + (I�) +  �           (14)��P�����)����
 + Fb� + (IS) + �   (15)��P�����)����� + Fb� + (I�) + �    (16)  

Where '� is an n × 1 vector of phenotypes, )��
 is the regression coefficient for cis estimated 

omics score ��P���, )����
  is the regression coefficient for trans estimated omics score ��P�����, 

and )�����  is the regression coefficient for the total omics score ������� ;    F was the design 

matrix for fixed effects, e.g., breeds; b� was the vector of fixed effects in the dataset with 

phenotypic records; I� is random effects based on the genomic relationships between 

individuals with phenotypic data which can be optionally fit to adjust confounding factors 

and e is the residual. The training of variant predictors of omics data used gBLUP 

implementation of MTG2 and the TWAS used the implementation of OSCA 58.  

Simulations. To compare GSOR with TWAS, we simulated data where causal variants that 

affect gene expression and phenotypes were overlapped. We used the 6 million sequence 

genotypes from the blood dataset to simulate 16,600 gene expression phenotypes with the 

following framework: 1) gene coordinates from bovine ARS-UCD1.2 reference genome were 

used; 2) the expression of each gene had 1-2 causal cis eQTL and 0-3 causal trans eQTL (on 

different chromosome to the gene) so that all genes had causal cis eQTL but not all genes had 

causal trans eQTLand genes had causal cis eQTL only or both causal cis and trans eQTL; 3) 

across 16,600 genes, 1049 had causal cis and/or trans eQTLs overlapping with causal QTL 

under the alternative scenario (described later) 268 of which had causal trans eQTL 

overlapping with causal QTL; 4) in total, 1,771 causal eQTL in the expression data were also 

causal QTL; 5) the effects of cis causal eQTL were randomly sampled from a uniform 

distribution where the minimum was 0.05 and the maximum was 0.5; 6) the effects of trans 

causal eQTL were randomly sampled from a uniform distribution where the minimum was 

1e-6 and maximum was 0.05; this was to make average effects of trans eQTL 10 times 
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smaller than cis eQTL; 7) the heritability of the expression of genes was sampled from a 

normal distribution where the mean h2 was 0.25 and the standard deviation was 0.2; only 

positive values were allowed.  

Sixteen million sequence genotypes from more than 100K cows were used to simulate cow 

phenotypes with the following framework: 1) 5000 causal variants were defined and used to 

simulate 10 traits; 2) the first 5 traits (1-5) were simulated under the null where their 5000 

causal variants did not overlap with causal eQTLs. These 5 traits had heritabilities of 0.4, 0.5, 

0.6, 0.65 and 0.7, respectively; 3) the second set of 5 traits (6-10) were simulated under the 

alternative scenario, with the same heritability settings, but the 5000 causal SNPs overlapped 

with causal eQTL as described above. All simulations used the framework from GCTA 

GWAS model 56. 

Comparison between GSOR and TWAS. In simulations, a gene was defined as a causal 

gene if it had both causal eQTL and QTL, i.e, the same SNP was both eQTL and QTL. All 

genes analysed were then classified as causal or non-causal and this was analysed using the 

Receiver Operating Characteristic (ROC) curves against p-values from GSOR and TWAS. 

ROC analysis used the R package ‘pROC’ and resultant ROC curves were presented using 

ggplot2. In analysing real data, we compared gene-trait associations between cis and trans-

predictions. In GSOR, both cis and trans variants were used to predict genetic scores to be 

associated with gene expression. In TWAS, both cis and trans variants were also used to 

predict omics values to be associated with phenotypes. For a gene, while we could not expect 

its association with a trait to be significant based on both cis and trans predictions, we could 

expect its trait association to have the same direction of effect in both cis and trans 

predictions. Therefore, we compared the proportion of significant genes with the same 

direction of effect in both cis and trans predictions between GSOR and TWAS. Genes with p 
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< 0.05 in both cis (��P���) and trans predicted (��P�����) analysis in GSOR or TWAS were used 

for the comparison. 

Omics mediated cis pleiotropy. GSOR estimates the effects (beta) and standard error of 

each gene expression or splicing event on a trait. Combining these results across traits could 

provide insights into pleiotropy. Focusing on the cis-predicted genetic score, we performed a 

meta-analysis to quantify the extent of multi-trait effects of each gene expression or splicing 

event. The results of the analysis indicated the extent of cis pleiotropy mediated by omics. 

For each gene expression or splicing event, the t value (beta/se) from GSOR for each 

associated trait was obtained to model the number of traits (� �!��) affected and the 

magnitude (" �!��) of such pleiotropic effects. To estimate � �!�� , the t values across traits 

were decorrelated using the Mahalanobis transformation described by Jordan et al. 2019 19. 

Then, we adopted the method from Jordan et al 2019 19 with a more stringent significance 

test: 

� �!�� = L(|W�| > 2) (17) 

Where L(|W�| > 2) is the number of t values, out of the total number of K traits, of the omic 

feature i with a magnitude greater than 2. Two is used because it represents a standard t value 

in a normal distribution with a significance cutoff of p = 0.045. The significance test of � �!��  

used Y#K6 �!�� = (� �!�� − 1) Z?  where Y#K6 �!��  is the proportion of traits significantly 

affected by the omics feature. To obtain the p-value, Y#K6 �!��  was then tested against the 

probability of 0.045 which is the probability of the t value being greater than 2 in the normal 

distribution. The reason for using 
(� �!�� − 1) Z?  instead of using 

� �!�� Z?  (used by Jordan 

et al. 201919) is when � �!��= 1, i.e., the omics feature only affects one trait, then this does 

not qualify as pleiotropy, which is defined as genetic effects on more than 1 trait.  
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To estimate the magnitude of mediated pleiotropy, we used:  

" �!�� = 8W� @[A�W� (18) 

Where W� is the effects (beta/se) from GSOR for each omics feature, W� @ is the transpose of W� 
and [A�, [ is the K ×K correlation matrix based on the t values for each trait. To obtain the 

significance of " �!�� , 8W�@[A�W�  0 =  W�@[A�W� was tested against the \0 distribution with 

degrees of freedom K. This approach was adopted from Bolormaa 2014 et al. 6 and Xiang et 

al. 2017 and 2020 32,59 and gives identical results using the method from Jordan et al 201919, 

but without the need for decorrelation of t values. The Rscript to conduct the meta-analysis of 

� �!��  and " �!��  are publicly available at https://figshare.com/s/c10ffab5abf329b1318f.  

Summary data-based Mendelian Randomization (SMR). To verify the results from 

MTAO, we conducted SMR using mapped cis eQTL and sQTL (±1Mb from the gene or 

intron) from 16 tissues and GWAS results from 37 traits 20. Because cis eQTL or sQTL rely 

on SNPs very close to each other which usually have high LD, the heterogeneity in dependent 

instruments (HEIDI) 16 test is an effective analysis to distinguish causal from LD. The 

mapping of eQTL and sQTL are detailed in 21. Briefly, we first used a linear mixed model 

approach to map cis eQTL and sQTL in GCTA: yP = () + *���� + +] + � (19); where yP 

is an n × 1 vector of omics values such as gene expression or RNA splicing, ) is a vector of 

fixed effects like breeds, different experiments or PEER 60 factors; �P��� is an n × 1 vector of 

the total genetic effects of the individuals with g ~ N(0, ;���.<0) where ;��� is the GRM built 

by all the variants; + is the design matrix of variant genotypes (0, 1, 2) and ] is the variant 

additive effect; e is the error term. We then saved the eQTL mapping results in the BESD 

format (https://yanglab.westlake.edu.cn/software/smr/#BESDformat), which is the required 

data format for SMR. We selected eQTL or sQTL with p < 5e-6 for SMR analysis and a 

multi-SNP-based SMR test was chosen. Because the RNA-seq data was based on worldwide 
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cattle breeds, we used the 1000-bull whole-genome sequence run7 data 61 as the reference 

panel for SMR.  

Multi-trait meta-analysis of SMR and comparison with MTAO. For a gene or an intron, 

SMR estimates beta and standard error for a trait, based on the top e/sQTL. Therefore, we can 

apply equation 21 to W^_` = 
^_` a�^_`?  (20) obtained for different traits to test the 

hypothesis that a gene or an intron has causal effects on more than 1 trait. This meta-analysis 

also matched the framework of MTAO described above. After calculating the chi-square p-

value of multi-trait SMR for each gene and intron similar to equation 18, in each tissue, we 

count the four following numbers: 1) total number of genes or introns testable between 

MTAO and SMR; 2) number of genes or introns with p < 0.05 in MTAO; 3) the number of 

genes or introns with p < 0.05 in multi-trait SMR and 4) the number of genes or introns with 

p < 0.05 in both MTAO and multi-trait SMR. Then, for each tissue, we used these four counts 

to generate a contingency table for a Fisher’s exact test [fisher.test(…, alternative='greater') 

in R v4.0.0] of the significance of the overlap between MTAO and SMR more than expected 

by random chance. The odds ratio of overlap was obtained from each fisher’s exact test and 

the p-value was adjusted for multi-testing.  

dN/dS. We retrieved the dN and dS values precalculated by Ensembl (version 99) using R 

library biomaRt(). dN and dS values were retrieved between cattle (Bos taurus) and humans 

(Ensembl short label: hsapiens), between cattle and mouse (mmusculus), between cattle and 

pigs (sscrofa), between cattle and sheep (oaries), between cattle and goat (chircus) and 

between Bos taurus and Bos indicus (bihybrid, i.e., UOA_Brahman_1). Then the ratio was 

calculated as dN/dS for all genes participating in the analysis. Only genes with the orthology 

type as 1-to-1 homology were used in the analysis. The significance of the difference in 

means of log2(dN/dS) between all genes and MTAO prioritised genes was tested in a t-test.  
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Relevant tissues for traits. For results from GSOR for each tissue and trait, there is a beta 

and se, and therefore, Wb^c` , estimated for each gene or splicing event. Also, there are results 

from SMR described above for each gene/splicing which can be combined with results from 

GSOR to prioritise informative tissues. The squared t-value of a SNP from GWAS can be 

used to estimate the amount of phenotypic variance explained 20. In the current study, to link 

different tissues to traits, we calculated the following heuristic index: 

∑ [ ( Wb^c` × �ghi�jklml)0 − 1]opq�q� rK�0[(���s�t)0 × (�<!�!)0]u  (21) where the magnitude of 

effects of each gene or intron (|Wb^c`|) was adjusted by the magnitude of effect of the SMR 

test (|W^_`|) and the HEIDI test (|Wvwxyx|), so that it is positively related to the causal effects 

from SMR and negatively related to the LD confounding from HEIDI. The sum of squares 

was also adjusted for the number of genes and individuals analysed for each tissue and the 

log scale adjustment made the denominator a linear variable like the numerator. Equation 21 

was then used to prioritise informative tissues. Genes and introns were excluded from the 

analysis if their nominal p-value was > 0.05 in GSOR and SMR and p-value <0.05 in HEIDI 

test. 

 

Data and code availability 

The newly generated RNA-seq data (356 blood and 268 milk cells) will be made public via 

NCBI SRA (accession available upon manuscript publication). Other RNA-seq data can be 

accessed via the CattleGTEx consortium (http://cgtex.roslin.ed.ac.uk/). Summary statistics 

for genes and splicing events associated with 37 traits of 110,000 cows across 16 tissues are 

publically available at https://figshare.com/s/c10ffab5abf329b1318f. The DNA sequence data as 

part of the 1000 Bull Genomes Consortium61,62 are available to consortium members and the 
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membership is open. Sequence data of 1832 samples from the 1000 Bull Genome Project 

have been made publicly available at https://www.ebi.ac.uk/eva/?eva-study=PRJEB42783. 

DataGene Australia (http://www.datagene.com.au/) are custodians of the raw phenotype and 

genotype data of Australian farm animals. Access to these data for research requires 

permission from DataGene under a Data Use Agreement. Other supporting data are shown in 

the Supplementary Materials of the manuscript. 

Code and tutorials for GSOR and MTAO are available at https://github.com/rxiangr/GSOR-

and-MTAO. The linear mixed model analysis used GCTA 56. 
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