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Abstract: 
 
Cellular plasticity describes the ability of cells to transition from one set of phenotypes to 
another. In the context of cancer therapeutics, plasticity refers to transient fluctuations in the 
molecular state of tumor cells, driving the formation of rare cells primed to survive drug 
treatment and ultimately reprogram into a stably resistant fate. However, the biological 
processes governing this cellular plasticity remain unknown. We used CRISPR/Cas9 genetic 
screens to reveal genes that affect cell fate decisions by altering cellular plasticity across a 
range of functional categories. We found that cellular plasticity and cell fate decision making can 
be decoupled in that factors can affect cell fate decisions in both plasticity-dependent and 
independent manners. We discovered a novel mode of altering resistance based on cellular 
plasticity that, contrary to known mechanisms, pushes cells towards a more differentiated state. 
We further confirmed our prediction that manipulating cellular plasticity before the addition of the 
main therapy would result in changes in therapy resistance more than concurrent 
administration. Together, our results indicate that identifying pathways modulating cellular 
plasticity has the potential to alter cell fate decisions  and may provide a new avenue for treating 
drug resistance. 

Introduction 
 
Plasticity is often used to describe the ability of cells to transition from one phenotype to 
another, at times enabling cells to adapt and survive in the face of a variety of stimuli and 
challenges, for instance, in regeneration, wound healing, and the induction of pluripotency. 
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Plasticity itself can typically be decomposed into a stimulus-independent and subsequent 
stimulus-dependent phase. The first phase typically consists of individual, often rare, cells within 
the population being “primed” for the cell fate transition. Then, upon the stimulus, these primed 
cells are selectively reprogrammed to adopt the new phenotype. Thus, a major question in 
single cell biology has been determining the molecular differences specific to these rare primed 
cells before a stimulus and connecting the molecular profile of these primed cells to their 
ultimate fate after the stimulus reprograms them. Recently, a number of studies have developed 
the link between cellular priming and cell fate that underlies plasticity in a number of contexts 1–8. 
However, to date, little is known about the pathways that can manipulate the fluctuations that 
drive this cellular priming and whether that can affect their subsequent fates, leaving their 
molecular basis and potential for therapeutic application largely unrealized. 
 
Therapy resistance in melanoma is an excellent example of cellular plasticity 9,10. Therapies 
such as vemurafenib designed to inhibit particular oncogenic targets can often kill most of the 
tumor cells, but a few remaining cells can continue to proliferate, ultimately repopulating the 
tumor. While the mechanisms underlying this therapy resistance can sometimes be the result of 
a genetic mutation, many recent studies, both in melanoma and other cancers, suggest that 
cellular plasticity may also dictate which cells are able to survive drug treatment, with rare 
primed cells being reprogrammed by the addition of drug into a stably resistant state 8,11–21. In 
melanoma, this rare primed cellular state, which we have also previously referred to as the 
pre-resistant cellular state, is often marked by transiently high expression of several resistance 
marker genes, such as EGFR, NGFR and AXL (Fig. 1A, top). Once these cells are exposed to 
drug, they are reprogrammed into a new cellular fate in which the transient primed phenotype is 
converted to a stably drug-resistant phenotype characterized by massive changes in signaling 
and gene expression profiles. This paradigm of resistance has a number of critical differences 
from the more conventional model of mutational causes of drug resistance—notably, while 
genetic mutations largely arise through spontaneous, stochastic processes, non-genetic 
fluctuations that drive the primed cellular states can in principle occur due to the changes in 
activity of specific biological pathways. Targeting these pathways specifically could have the 
potential to enhance or inhibit the formation of cells in the primed state independent of the 
addition of drug. We were thus interested in dissecting the molecular regulators of cellular 
priming and how those might consequently affect the ultimate drug-resistant fates that cells can 
adopt. 
 
With the advent of CRISPR/Cas9 technology, it is now possible to perform genetic screens to 
identify regulators of various molecular processes. For most cell fate transitions, including 
therapy resistance, virtually all screens have been designed to detect changes to the ultimate 
cellular fate only—i.e., changes in the final number of resistant cells, typically measured as a 
proliferation phenotype 22–25. However, an important aspect of plasticity is the process of 
stimulus-independent priming of rare cells in the population, which in this context is represented 
by the transient fluctuations in single cells that ultimately reprogram into a stably resistant cell 
fate 14. This priming processes may in principle have distinct regulatory mechanisms to that of 
the acquisition of resistance as a whole, presenting an opportunity to leverage screening 
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techniques to specifically identify factors affecting cellular priming before the addition of drug. 
These factors may then also affect the overall degree of drug resistance, but potentially through 
new, previously undiscovered mechanisms that allow for new therapeutic targets that affect 
drug resistance in ways not revealed by classical resistance screens (Fig. 1A, bottom). 
 
We here describe the results of genetic screens designed to capture modulators of single cell 
state variability that subsequently affect cell fate decisions. Specifically, in the context of 
melanoma, we performed pooled CRISPR/Cas9 genetic screens to discover modulators of the 
primed rare cell state that drives drug resistance. This new type of screen pointed to several 
new factors that affect the frequency of primed cells in melanoma populations, and ultimately, 
their resistance to targeted therapies. The transcriptome profiles induced by knocking out these 
factors revealed a novel mechanism that can increase or reduce drug resistance by increasing 
or decreasing the activity of differentiation pathways, respectively, as opposed to the more 
typical increased drug resistance induced by decreased differentiation. Drugs targeting these 
new mechanisms display a variety of synergistic effects when coupled with therapy, which can 
be dependent on the relative timing of drug application. Together, our results indicate that 
modulating cellular plasticity can alter cell fate decisions and may provide a new avenue for 
treating drug resistance. 

Results 

CRISPR/Cas9 genetic screens identify factors that affect primed 
cellular states 
We wanted to identify factors that affected the fluctuations in cellular state that lead to single 
cells being primed to be drug resistant. We took advantage of a clonal melanoma cell line 
(WM989 A6-G3) that we have extensively characterized as exhibiting resistance behavior in cell 
culture that is broadly comparable to that displayed in patients 14,21,26. Phenomenologically, in 
cell culture, we observe that upon addition of a roughly cytostatic dose of the BRAF V600E inhibitor 
vemurafenib (1µM), the vast majority of cells die or stop growing, but around 1 in 2,000-3,000 
cells continues to proliferate, ultimately forming a resistant colony after 2-3 weeks in culture in 
vemurafenib. We have previously demonstrated that prior to the application of drug, there is a 
rare subpopulation of cells (pre-resistant cells) that express high levels of a number of markers, 
and that these “primed” cells are far more likely to become resistant than other cells 14. In order 
to identify modulators of the fluctuations that lead to the formation of this subpopulation of 
primed cells, we designed a large scale loss-of-function pooled CRISPR genetic screen (which 
we dubbed the “priming screen”) comprised of ~13,000 single guide RNAs (sgRNAs) targeting 
functionally relevant domains of ~2,000 proteins, with roughly six distinct single guide RNAs per 
domain (1402 transcription factor targets, 481 kinase targets, 176 epigenetic targets; each 
single guide RNA targets an important functional domain, see Supplemental Tables 1-3) 27–29. 
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To conduct the screen, we stably integrated Streptococcus pyogenes  Cas9 (spCas9) into the 
WM989-A6-G3 cell line, creating the clonal line WM989-A6-G3-Cas9-5a3. 
 
To screen for factors affecting cellular priming, we transduced this pooled library of single guide 
RNAs into this melanoma cell line. In order to ensure adequate sampling of the frequency of 
rare pre-resistant cells in the population, we expanded each cell in the culture to around 
50,000-250,000 cells per each single guide RNA, resulting in a total screen size of roughly a 
billion cells. We then used a combination of magnetic sorting and flow cytometry to isolate cells 
that were positive for both EGFR and NGFR expression, both of which are markers of the 
primed cell subpopulation. We then sequenced the single guide RNAs in this sorted 
subpopulation to determine which single guide RNAs were over- or under-represented as 
compared to the unsorted total population. Here, over-representation suggests that knockout of 
the gene leads to an increased frequency of NGFR HIGH/EGFRHIGH cells and vice versa (Fig. 1B). 
To select “hits” from the screen, we designed a series of criteria to identify and rank targets into 
confidence tiers (see methods for a detailed description of the selection criteria). 
 
Our screen isolated several factors that affected priming for resistance. We obtained a set of 61 
high confidence targets that affected the frequency of NGFR HIGH/EGFRHIGH cells in our screen 
(Fig. 1C, Supplemental Table 4). Of these, 25 increased the frequency of NGFR HIGH/EGFRHIGH 
cells, while the remaining 36 decreased the frequency. Beyond known factors in melanoma 
biology such as SOX10  and  MITF 26,30–32, we identified several new factors not previously known 
to affect resistance to BRAFV600E inhibition. These include DOT1L, which encodes an H3K79 
methyltransferase associated with melanoma oncogenesis 33, and BRD2, which encodes a 
protein that is a member of the BET family, often overexpressed in human melanoma 34. We 
assessed the robustness and generality of our results through a secondary targeted screen in 
which 25 of the 34 high confidence targets tested replicated in the original WM989-A5-G3-Cas9 
line. Furthermore, 20 of those 34 also replicated their effects in another melanoma line 
(451Lu-Cas9) (Supplemental Fig. 2, Supplemental Table 4). Together, these hits represented 
potential candidates for modulating therapy resistance by affecting cellular priming. 
 

Changes in drug resistance can occur by priming-dependent and 
independent mechanisms 
 
Our priming screen was designed to isolate candidates that affected the frequency of cells that 
were in the primed cellular state before the addition of drug. Conceptually, it is also possible that 
there may be a distinct set of factors that can affect the overall rate of resistance without 
affecting the frequency of primed cells. It is useful here to separate the notion of priming, which 
we use to refer to the cellular state  associated with high levels of expression of resistance (i.e., 
NGFRHIGH cells), from the notion of pre-resistance, which is the set of cellular states that, upon 
adding drug, will eventually develop into a stably resistant colony. The former definition is 
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dependent on the state of the cell, whereas the latter is dependent on the drug: for instance, if 
one added a lower concentration of drug that allowed for more resistant colonies to form, the 
initial primed states would remain unchanged, but the number of pre-resistant cells would 
change because more cells became resistant. In this framework, then, one could imagine that 
any particular factor could increase resistance either by increasing the frequency of primed cells 
(Fig. 2B, middle) or by allowing more cells that are partially primed to continue to grow upon 
addition of drug and become resistant; i.e., lowering the putative threshold (Fig. 2A, bottom) (or 
both). 
 
We wanted to measure the degree to which the factors we identified could affect both priming 
and resistance via these two different mechanisms. First, because our first screen was designed 
to identify factors affecting priming, we also ran another genetic screen (as well as a secondary 
targeted screen with another melanoma cell line) with the ultimate readout being number of 
resistant colonies; i.e., a conventional survival screen (“resistance screen”) (Supplemental Figs. 
3-4, Supplemental Table 4). We identified 20 high confidence factors that, when knocked out, 
increased the number of resistant cells and 4 that reduced the number of resistant cells. These 
included factors involved in signaling pathways like MAPK ( CSK) 35,  Wnt/B-catenin ( KDM2A) 36, 
and Hippo (LATS2) 37. 
 
The priming and resistance screens were designed to probe distinct biological behavior, and so 
we predicted that of the factors identified, some would affect the frequency of priming and some 
would affect the putative “threshold” that must be surpassed for the acquisition of resistance 
(and some may affect both). To systematically evaluate whether such differences existed, we 
directly looked on a knockout-by-knockout basis for changes in the frequency of primed cells (by 
NGFR immunofluorescence) in 83 different targets from both the priming and the resistance 
screens, and further looked for changes in resistance (by measuring the number of resistant 
colonies produced) in 35 of those (Fig. 2B, Supp. Fig. 5). We found that these individual 
knockouts exhibited a range of changes in both the frequency of NGFR HIGH cells and the number 
of resistant colonies formed. Firstly, many hits from the priming screen (15/21 tested by both 
immunofluorescence and resistant colony formation) showed the predicted increase and 
decrease in both frequency of priming and concomitant changes to the number of resistant 
colonies (e.g. LATS2, BRD2, respectively; Fig. 2C). This result demonstrates that hits that led to 
changes in the frequency of cells expressing NGFR were associated with changes in priming 
and, consequently, resistance. 
 
However, while the general trend indicated such a pattern, knockouts of many genes varied 
widely in the degree to which this relationship held (Fig. 2B). For instance, knockout of EP300 
resulted in a ~two-fold increase in the number of NGFR HIGH cells but only a small increase in the 
number of resistant colonies, while knockout of CSK resulted in only a small increase in the 
number of NGFR HIGH but had at least a six-fold increase in the number of resistant colonies (Fig. 
2B-C). (Importantly, the number of colonies for the CSK knockout is an underestimate due to 
difficulties in accurately counting colonies in highly-confluent plates, see Supplemental Fig. 5C 
for zoomed image of colonies, and is most likely why CSK was a dominant hit in our resistance 
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screen.) Conceptually, hits like CSK could operate by lowering the putative threshold of priming 
that cells need to surpass in order to progress to acquire resistance without changing the 
degree of priming in individual cells, thus leading to more resistant colonies without affecting 
priming. Another possibility is that knocking out CSK does change priming, but in a way that is 
not reflected in our measurements, that is, in a change in NGFR expression. While our results 
cannot conclusive exclude this latter possibility, some of our results argue in favor of changes to 
the threshold. For instance, the CSK knockout cell line showed an increase in the number of 
resistant colonies but also an increase in the number of resistant cells that do not form colonies 
(Fig. 2C, Supplemental Fig. 5C). This suggested that, in addition to the usual pre-resistant cells 
that form colonies, an additional set of cells in the CSK knockout line were now enabled to 
survive drug. This suggests that the “threshold” for cells to survive drug may have changed; i.e., 
the mapping between the degree of priming and the ultimate resistant fate has been altered by 
the removal of CSK. 
 
Notably, of the factors identified by the resistance screen, only 5 were also identified in our 
priming screen (Fig. 2D). In principle, if it were possible to run the resistance screen to 
saturation—i.e., isolate all possible factors affecting resistance—then the resistance screen 
should be able to find all priming factors that affect resistance. However, in practice, the number 
of cells required make it very difficult to run these screens to true saturation, and thus it is 
possible that dominant hits that change resistance alone (e.g. CSK) comprised so many cells in 
the pooled resistance screen that other hits associated with changes in priming became difficult 
to detect. This possibility highlights the potential of screens targeting priming to reveal novel 
categories of hits that may otherwise elude detection. 

Changes in the frequency of primed cellular states lead to 
differences in tumor growth in vivo 
 
We found that the factors we identified that modulate cellular priming can further lead to 
differences in overall resistance to BRAFV600E inhibition in cell lines, but we still wondered 
whether these same factors can affect resistance in an in vivo setting, in which complex 
microenvironmental factors may also affect therapy resistance 38. We thus tested whether 
knocking out three of the factors isolated from our cellular priming screen affected resistance in 
vivo : DOT1L  and LATS2 , which increased the frequency of NGFR HIGH/EGFRHIGH cells in vitro, 
and BRD2 , which decreased the frequency of NGFR HIGH/EGFRHIGH cells in vitro (all three also 
exhibited corresponding differences in resistance to BRAFV600E inhibition in vitro ). 
 
After knocking out these targets in WM989-A6-G3-Cas9-5a3, we injected the cells into 
NOD/SCID mice (n=12 mice per knockout) and allowed tumors to develop. We quantified the 
tumor volume in each mouse over time, comparing tumors that developed in mice injected with 
similar cells (WM989-A6-G3-Cas9-5a3) but without any gene knocked out (Fig. 3). Overall, we 
observed patterns consistent with our in vitro results: at the treatment endpoint (see methods) 
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DOT1L knockout tumors treated with a BRAFV600E inhibitor produced tumors that were roughly 
3.5 times larger than controls (p = 0.010), and LATS2  knockout cell lines produced tumors that 
were 1.6 times larger than controls (p = 0.062). On the other hand, the mice that received 
melanoma cells with the BRD2 knockout had tumors that were approximately half as big as 
controls (p = 0.045). (In the absence of drug, both knockout and control melanoma cells showed 
roughly similar growth dynamics (Fig. 3, bottom)). Overall, our results demonstrate that the 
factors isolated by our cellular priming screen also affect the response of tumors to BRAFV600E 
inhibition in vivo.  

Relative timing of targeting variability can affect drug resistance 
 
The fact that many of the factors we identified had different effects on priming vs. full acquisition 
of resistance as measured by resistant colony formation suggested that these factors may work 
by different mechanisms, and that these mechanisms may potentially interact or override each 
other in complex ways dependent on relative timing. For instance, a factor that affects 
specifically priming could affect the number of cells in the pre-resistant state, but once cells are 
subjected to before BRAFV600E inhibition and begin reprogramming towards stable resistance, 
the factor may no longer have any effect. In such a case, inhibiting this factor before  the adding 
the BRAFV600E inhibitor would be critical. 
 
To test for such a possibility, we used the DOT1L inhibitor pimenostat 39,40 (which increases the 
number of colonies resistant to vemurafenib over a range of doses; Supplemental Fig. 7A) to 
see if timing of DOT1L inhibition would affect the formation of resistant colonies. In addition to 
the standard vemurafenib treatment, we both pre-treated with the DOT1L inhibitor for seven 
days before adding vemurafenib and co-treated with the DOT1L inhibitor concurrently with 
vemurafenib (we tested both pre-treatment followed by vemurafenib alone and pre-treatment 
followed by concurrent treatment) (Fig. 4A). We found that pre-inhibition of DOT1L resulted in 
three-fold more colonies than with BRAFV600E inhibition alone, but that co-treatment with the 
DOT1L and BRAFV600E inhibitors led to no change in the number of resistant colonies (Fig. 4B), 
suggesting that DOT1L inhibition is altering the distribution of states of the cells, and 
consequently the number of cells that develop resistance to BRAF V600E inhibition. Our results 
demonstrate that the relative timing of inhibition of cellular priming vis a vis mainline therapy can 
have a profound effect on resistance. 

Knockout of novel genes that increase the frequency of primed 
cell states also increase cellular differentiation 
 
Our screens revealed a large number of factors affecting priming that act across a range of 
biological processes, including a variety of signaling pathways and transcriptional regulatory 
mechanisms. Interestingly, a priori , no particular pathway appeared to dominate the set of 
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identified factors; however it is possible that seemingly unrelated genes nevertheless affect 
priming through common biological processes. 
 
To look for such commonalities, we used RNA sequencing to measure genome-wide transcript 
abundance levels for 266 knockout cell lines targeting 80 different proteins taken from both the 
priming and resistance screens (each targeted with 2-3 separate single guide RNAs; see 
supplementary table 4), reasoning that if two genes participated in a particular biological 
process, then the transcriptomes associated with knocking them out may exhibit similar patterns 
of differential expression.  
 
Initially, we clustered the transcriptome profiles from the different cell lines, including only genes 
differentially expressed in at least one sample (Supplemental Fig. 10A). We found that while the 
transcriptomes induced by some gene knockouts were clearly distinct (such as MITF, SOX10 
and KDM1A), many others appeared to show only relatively small differences from the parental 
cell line, despite the fact that our validation results showed that these knockouts exhibited clear 
effects on the resistance potential of the population. We thus reasoned that while the sets of 
genes whose expression change in our knockouts may be non-overlapping, these genes could 
still belong to similar categories of biological processes; i.e., different knockouts may all affect 
different genes all within a common pathway, for instance differentiation. Thus, using the 
transcriptome of each knockout, we performed a gene set enrichment analysis (GSEA, see 
methods) and obtained an enrichment score for a number of biological processes from the 
Gene Ontology terms database (Fig. 5A) 41. Using these enrichment scores, the knockout lines 
clustered in a more obvious pattern. Notable clusters include cluster 5, containing the canonical 
melanocyte master regulators MITF and SOX10 , and cluster 1, containing DOT1L, LATS2 , 
RUNX3 and GATA4.  
 
Interestingly, knocking out MITF and SOX10 increases drug resistance, as does knocking out 
most members of cluster 1, but the transcriptome profiles of these two clusters appeared to be 
roughly opposite of each other. We inspected the GO gene sets in Group E, which appeared 
maximally different between MITF/SOX10 and cluster 5, and found that these gene sets 
included several related to differentiation, including sets for melanocyte differentiation and 
neural crest differentiation (Fig. 5B). The knockout of MITF and SOX10 appeared to decrease 
the expression of these genes, matching the general consensus that drug resistance is typically 
driven by dedifferentiation 8,26. In that context, the finding that most elements of cluster 1 
increased resistance by further promoting differentiation was unexpected (Fig. 5C), suggesting 
a possible novel mechanism by which one could affect drug resistance; the latter has further 
support from our findings using the DOT1L inhibitor (Fig. 4). This axis of differentiation was 
coordinated across several gene sets, as revealed by principal components analysis of the 
expression heat map (Supplemental Fig. 10B). (Note that the role of MITF in therapy resistance 
is complex in general 42). 
 
Clusters of targets that lead to different degrees of differentiation also seem to correspond to 
distinct phenotypic profiles, meaning the resultant changes in the frequency of NGFR HIGH cells 
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and number of resistant colonies. For instance, the transcriptomes of the knockouts in cluster 1 
seem to mimic many aspects of the transcriptomes of NGFR HIGH, EGFRHIGH, 
NGFRHIGH/EGFRHIGH, and even vemurafenib resistant melanoma cells (e.g. high expression of 
genes involved in cell-matrix adhesion, angiogenesis, and cell migration; Fig. 5A,B). Knockout 
of these targets showed a strong correspondence between the frequency of NGFR HIGH cells and 
the number of colonies that developed under BRAF inhibition, suggesting that the 
increase/decrease in the frequency of pre-resistant cells was the cause of increased/decreased 
resistance (Fig. 5D). Often, this relationship was relatively proportional, as was the case for the 
knockout of LATS2, JUNB, FOSL1, and CBFB. For MITF and SOX10 (cluster 5), however, the 
relationship between the frequency of NGFR HIGH cells and the number of resistant colonies was 
much weaker, with very large changes in the latter but not the former. Accordingly, our 
transcriptomic analysis suggests that these knockouts lead to changes in gene expression that 
are distinct from those of NGFR HIGH/EGFRHIGH cells. 
 
The transcriptome analysis also revealed different categories of knockouts that resulted in a 
reduction  (as opposed to increase) of the number of resistant colonies. Some resistance 
reducing knockouts (BRD8  and PRKAA1) clustered with DOT1L , while another (BRD2) 
clustered with MITF/SOX10. It is possible that these factors work in inverse ways to reduce drug 
resistance by either affecting differentiation or dedifferentiation. Meanwhile, the majority of 
resistance reducing knockouts appeared to cluster separately into distinct clusters, generally 
through changes in the expression of a distinct set of genes. For one cluster (cluster 2), the set 
of genes whose expression was affected included several associated with metabolism (e.g. 
biosynthesis of amino acids and Acyl Co-A metabolism), suggesting that modulation of 
metabolic processes may be a means of reducing drug resistance (Supplemental Table 6). The 
other clusters did not show any coherent set of biological processes affected (e.g. SRC, IRF7, 
PKN2 , among others), rendering that particular pathway or set of pathways rather mysterious. 

Discussion 
We have here demonstrated, using high-throughput genetic screening, that there are genetic 
factors that can alter cellular plasticity in cancer cells, thereby affecting their resistance to 
targeted therapeutics. We identified a variety of new factors that appear to work through new 
pathways that can affect therapy resistance in novel, time-dependent ways. These factors 
revealed new possible vulnerabilities that a conventional genetic screen targeting resistance did 
not uncover, thus demonstrating the potential for screens specifically designed to target single 
cell variability to reveal new biological mechanisms that may subsequently emerge as 
therapeutic opportunities. Drug screens targeting gene expression “noise” have also shown 
similar therapeutic potential 43. 
 
While we isolated several new factors that specifically affected cellular variability, it is important 
to note that no single factor we isolated resulted in a change in cellular variability that was 
stronger than all the rest; i.e., no factor emerged as the “smoking gun”. This may be the result of 
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the fact that our screen did not target all potential regulators. Alternatively, it may be that the 
biology of cellular variability is intrinsically multifactorial, with the coherent activity of many 
factors being required for cells to ultimately enter the highly deviated cellular state responsible 
for phenotypes like drug resistance 15. Larger scale screens may help reveal a more complete 
picture of the origins of rare cell behavior; however, the limitations imposed by the rarity of the 
pre-resistant cellular phenotype make this rather difficult. The raw numbers of cells required to 
properly sample these rare cell behaviors in a pooled genetic screening format remains a major 
technical challenge for the field of rare cell biology. 
 
Indeed, it is the very difficulty of performing these screens at full depth that provides motivation 
for screening for variability rather than simply screening for resistance. If one is primarily 
interested in factors affecting resistance, then in principle such a screen, if carried to saturation, 
would reveal all such factors, including those that exert such an effect via modulation of cellular 
variability. However, the degree of overlap in the factors identified between our variability screen 
and our conventional resistance screen was relatively small. This lack of overlap suggests that 
distinct biological processes may dominate the results of these differently designed screens. 
That of course in turn raises the question of why one might want to perform variability screens at 
all, given that the phenotype of interest is resistance. Our results on timing of variability 
inhibition suggest that while the mechanisms governing rare cell variability may not appear as 
potent as those revealed by conventional resistance screens, the fact that they represent 
distinct mechanisms means that they may present an opportunity to be used in tandem. It is 
also possible that these mechanisms may be more dominant in other, more clinically relevant 
contexts. 
 
In our validation studies, for several factors, we measured the effects of knocking out those 
factors on both the number of NGFRHIGH cells (which serves as a proxy for the primed cellular 
state) and the number of resistant colonies upon adding vemurafenib . Interestingly, different 
knockouts affected both of these validation metrics differently, with some (e.g. LATS2) both 
increasing the frequency of NGFR HIGH cells as well as concomitantly increasing the number of 
resistant cells, and some (e.g. CSK) dramatically increasing the frequency of resistant cells 
without a proportional change in the frequency of NGFR HIGH cells. One possible way to 
conceptualize these distinct phenotypic outcomes is that the former category of knockout affects 
primarily cellular priming, i.e., the cellular state, while the latter affects the mapping between 
these primed states and their fates upon addition of vemurafenib. In one simple model, one 
could imagine a distribution of cellular states in the initial population and a threshold whereby 
cells above the threshold survive the drug and those below the threshold do not (Fig. 6). In this 
model, some knockouts may alter the distribution of cells in the initial population, thus rendering 
a different proportion of them above or below the threshold, or may alter the threshold itself, or 
potentially some combination of both. It is wise to caution against this simple interpretation, 
however. First, we note that NGFR expression is just a marker for the pre-resistant state, and it 
may be that factors may affect the frequency of pre-resistant cells without showing any effect on 
NGFR expression, thus giving the false appearance of a change in the mapping. (Arguing 
against this, however, is the fact that the transcriptomes of knockouts such as DOT1L that 
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increase the frequency of NGFR and resistance appear to be similar to the profile of NGFR HIGH 
cells themselves; Fig. 5A). Further molecular profiling of individual cells from these knockouts 
may help reveal the ways in which the molecular state of these cells changes. Secondly, it is 
also likely that the categorization of fates as “resistant” or “dead” is dramatically oversimplified, 
and that there may be a number of different types of resistant cells (anecdotally, we have 
noticed that the resistant cells in some of our knockout lines do appear morphologically different 
from those formed in the unperturbed cell line). Such results suggest that there is a mapping 
from a continuum of initial cellular states to multiple, canalized, or even potentially continuous 
cellular fates. An important future direction is to characterize this mapping and its regulation. 
 
Here, we have focused on cellular variability in the context of drug resistance in cancer. 
However, we have observed similar rare-cell variability in primary melanocytes 14, raising the 
possibility that the same variability may play a role in normal biological processes as well. It is 
thus possible that the factors we have isolated may play a role in regulating variability in these 
normal biological contexts, and it remains to be seen whether such factors act primarily in 
melanocytes or act more generally across different cell types in various tissues. Indeed, we 
believe variability will emerge as a key aspect of cellular plasticity in general, and that framing 
plasticity as a mapping between variable cellular states and ultimate phenotypic fates may 
prove a fruitful conceptual framework. 
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Supplemental Materials 

Material and Methods 
Cell Culture 
We obtained patient-derived melanoma cells (WM989 and 451Lu, female and male, 
respectively) from the lab of Meenhard Herlyn. For WM989 we derived a single cell subclone 
(A6-G3) in our lab 14. We grew these cells at 37°C in Tu2% media (78% MCDB, 20% Leibovitz’s 
L-15 media, 2% FBS, and 1.68mM CaCl2). We authenticated all cell lines via Human STR 
profiling. We periodically tested all cell lines for mycoplasma infections.  
 
Plasmid Construction and single guide RNA Cloning 
All the Cas9 positive melanoma cell lines in this study were derived by lentiviral transduction 
with a Cas9 expression vector (EFS-Cas9-P2A-Puro, Addgene: 108100). All the single guide 
RNAs were cloned into a lentiviral expression vector LRG2.1(Addgene: #108098) , which 
contains an optimized single guide RNA backbone. The annealed single guide RNA oligos were 
T4 ligated to the BsmB1-digested LRG2.1 vector.  To improve U6 promoter transcription 
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efficiency, an additional 5’ G nucleotide was added to all single guide RNA oligo designs that did 
not already start with a 5’ G.  
  
Construction of Domain-Focused single guide RNA Pooled Library 
Gene lists of transcription factors (TF), kinases, and epigenetic regulators in the human genome 
were manually curated based on the presence of DNA binding domain(s), kinase domains, and 
epigenetic enzymatic/reader domains. The protein domain sequence information was retrieved 
from NCBI Conserved Domains Database. Approximately 6 independent single guide RNAs 
were designed against individual DNA binding domains (Supplementary tables 1-3). 27–29 The 
design principle of single guide RNA was based on previous reports and the single guide RNAs 
with the predicted high off-target effect were excluded (Hsu et al. 2013). For the initial pooled 
CRISPR screens, all of the single guide RNAs oligos including positive and negative control 
single guide RNAs were synthesized in a pooled format (Twist Bioscience) and then amplified 
by PCR. PCR amplified products were cloned into BsmB1-digested LRG2.1 vector using Gibson 
Assembly kit (NEB#E2611). For the targeted pooled validation screens, individual single guide 
RNAs were synthesized, cloned, and verified via Sanger sequencing in a 96-well array platform 
(Supplementary table 5). Individual single guide RNAs were pooled together in an equal molar 
ratio. To verify the identity and relative representation of single guide RNAs in the pooled 
plasmids, a deep-sequencing analysis was performed on a MiSeq instrument (Illumina) and 
confirmed that 100% of the designed single guide RNAs were cloned in the LRG2.1 vector and 
the abundance of >95% of individual single guide RNA constructs was within 5-fold of the mean 
(data not shown).  
 
Lentivirus preparation 
We produced lentivirus containing single guide RNAs using HEK293T cells cultured in DMEM 
supplemented with 10% Fetal Bovine Serum and 1% penicillin/streptomycin. When the cells 
reached 90-100% confluency, we mixed the single guide RNA vectors with the packaging vector 
psPAX2 and envelope vector pVSV-G in a 4:3:2 ratio in OPTI-MEM (ThermoFisher Scientific: 
#31985070) and polyethylenimine (PEI, Polysciences: #23966). We collected viral supernatants 
for up to 72 hours twice daily. 
  
Transduction of spCas9 
We introduced the stable expression of spCas9 via spinfection of lentivirus along with 5ug/ml 
polybrene for 25 minutes at 1750 rpm. We exchanged the media ~6 hours post-transduction 
and selected for cells expressing spCas9 via puromycin selection (1-2μg/ml, 1 week). For 
WM989-A6-G3, we generated two cell lines, WM989-A6-G3-Cas9 and 
WM989-A6-G3-Cas9-5a3, the later being a single cell isolate of the bulk Cas9-expressing 
population.  We verified that this cell line was capable of editing the genome and that it still 
contained pre-resistant cells marked by the expression of drug-resistance markers 
(Supplemental Fig. 11). Following the same methodology, we generated a 451Lu-Cas9 cell line 
from 451Lu cells. 
 
Transduction of lentivirus containing single guide RNAs 
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For transfection of melanoma cells, we infected cells with lentivirus and 5ug/ml polybrene for 25 
minutes at 1750 rpm. We exchanged the media ~6 hours post-transfection. We quantified the 
percent of the population transfected by measuring the number of GFP-positive cells at day 5 
post-transfection. For the screens, we aimed to transfect 30% of the population. For all other 
experiments, we aimed to transfect >95% of the population. 
 
Initial pooled CRISPR screens 
We worked with three main pooled single guide RNA libraries in WM989-A6-G3-Cas9-5a3 cells. 
These libraries targeted ~2,000 different kinases, transcription factors, and proteins involved in 
epigenetic regulation. In total, the libraries contained ~13,000 different single guide RNAs 
including non-targeting and cell-viability editing controls (Supplementary tables 1-3). We aimed 
to transfect > 1,000 cells per single guide RNA and isolated ~1,000 cells per single guide RNA 
about a week post-transfection and prior to any selection. These baselines allowed us to 
validate the efficiency of our screen by single guide RNA enrichment/depletion of non-targeting 
controls and of controls that affect cell viability (Supplemental Fig. 1). Additionally, these 
baselines helped us identify single guide RNAs with lethal effects in our cells. Given that we 
were interested in rare cell phenotypes that exist in 1:2000 cells or less, throughout our screens 
we significantly expanded the population of cells to 50,000-250,000 cells per single guide RNA, 
often surpassing a billion cells per screen. This scale allowed us to observe the rare cell 
phenotypes dozens-to-hundreds of times in each of our controls (and in each of our single guide 
RNAs).  
 
The priming screen aimed to identify perturbations that altered the frequency of 
NGFRHIGH/EGFRHIGH cells. To this end, one month after we transfected and expanded the cells, 
we isolated the NGFR HIGH/EGFRHIGH cells via magnetic cell sorting (MACS) followed by 
fluorescence-activated cell sorting (FACS) (see below). We also collected an additional ~1,000 
cells per single guide RNA, without any selection, for comparison. Then, we isolated DNA from 
the cells and built sequencing libraries (see below) to quantify the representation of each single 
guide RNA in the NGFRHIGH/EGFRHIGH population and compare it to the unsorted baseline.  
 
In the resistance screen we aimed to identify proteins important for the development of 
resistance to vemurafenib. Here, we treated the cells as above, except that instead of isolating 
NGFRHIGH/EGFRHIGH cells we grew cells resistant to vemurafenib (see below) by exposing the 
cells to vemurafenib for three weeks. As above, we isolated DNA from the resulting population 
of cells and built sequencing libraries to quantify the representation of each single guide RNA. 
The raw output of all screens was reads per single guide RNA.  
 
To select hits in our screens, we first normalized the output of our screens to reads per million, 
and then calculated the fold change in single guide RNA representation between different 
samples. For our priming screen, we focused on the fold change in single guide RNA 
representation between  NGFR HIGH/EGFRHIGH cells and the bulk population of melanoma cells. 
For the resistance screen, we focused on the fold change in single guide RNA representation 
between cells treated for three weeks with 1μM vemurafenib (a BRAFV600E inhibitor) and cells 
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never exposed to the drug. After normalizing the change in single guide RNA representation of 
each single guide RNA by the median change across all single guide RNAs, we organized our 
hits into tiers (one through four) based on the percent of single guide RNAs against the target 
exhibiting at least a two-fold change in representation. We considered high confidence hits 
those targets where (1)  ≥ 75% (Tier 1) or ≥ 66% (Tier 2) of its single guide RNAs showed at 
least a two-fold enrichment/depletion throughout the screen, and (2) no two single guide RNAs 
showed a significant change (two-fold change) in opposing directions (i.e. one single guide RNA 
is significantly enriched in the selected population while another one is significantly depleted). 
Other targets that showed a two-fold enrichment/depletion throughout the screen, but in less 
than 66% of its single guide RNAs were considered lower confidence hits (Tier 3 and Tier 4). 
Note that we excluded from analysis any single guide RNA with less than 10 raw reads in all 
samples.  
 
Secondary, targeted pooled CRISPR screen 
To validate the replicability and generality of our hits, we designed a pool of single guide RNAs 
for targeted screening that targeted proteins that either emerged as hits in our initial screens or 
did not pass our hit-selection criteria but changed the frequency of NGFR HIGH/EGFRHIGH cells or 
the frequency of cells resistant to vemurafenib (Supplemental Table 5). In this pool, we included 
~3 single guide RNAs per protein target, and carried out the screen in WM989-A6-G3-Cas9-5a3 
cells as well as in another BRAFV600E melanoma cell line, 451Lu-Cas9. As before, we conducted 
a priming screen where we isolated NGFR HIGH/EGFRHIGH cells as well as a resistance screen 
where we exposed cells to 1μM vemurafenib for three weeks. Here too, we first normalized the 
output of our screens to reads per million, and then calculated the fold change in single guide 
RNA representation between different samples. Unlike on our initial screens, here we 
normalized the change in single guide RNA representation to the median change in 
representation of the ten non-targeting single guide RNAs controls included in the screen.  
 
Tumor growth assays in patient-derived xenografts 
All animal experiments were approved by the Institutional Animal Care and Use Committee 
(IACUC) (IACUC #112503X_0) and were performed in an Association for the Assessment and 
Accreditation of Laboratory Animal Care (AAALAC) accredited facility. WM989-A6-G3-Cas9-5a3 
human melanoma cells (1 x 10 6 cells) suspended in 100 ul of PBS were subcutaneously 
injected into 8-week-old NOD/SCID mice (Charles River Laboratories, Wilmington, MA). When 
resulting tumors reached 150 mm3, mice were fed either AIN-76A chow (untreated group, 
placebo) or AIN-76A chow containing 417 mg/kg PLX4720 (treated group). Tumor sizes were 
measured every 3-4 days using digital calipers, and tumor volumes were calculated using the 
following formula: volume = 0.5 x (length x width 2). Mice were euthanized when tumors reached 
~1,500mm3 or upon development of skin necrosis. 
 
To assess growth differences between knockouts and control tumors, we first quantified for 
each mouse the change in tumor size from the initial time point to the time point in question as a 
log2 fold change in tumor volume. We determined statistical significance of the differences 
observed between a knockout and controls at each therapy timepoint with a one-tailed t-test. 
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For each knockout cell line, we then calculated the mean tumor volume and standard error of 
the mean, which we report in Fig. 3. Note that within a given knockout-to-control comparison 
within each of the treatment arms we defined the endpoint as the last point in time at which at 
least 50% of the mice in each group (knockout and control cell line) were still alive.  
 
Immunostains 
For NGFR stain of fixed cells, after fixation and permeabilization, we washed the cells for 10 min 
with 0.1% BSA-PBS, and then stained the cells for 10 min with 1:500 anti-NGFR APC-labelled 
clone ME20.4 (Biolegend, 345107). After two final washes with PBS we kept the cells in PBS. 
For EGFR and NGFR stains of live cells, we incubated melanoma cells in suspension for 1 hour 
at 4C with 1:200 mouse anti-EGFR antibody, clone 225 (Millipore, MABF120) in 0.1% BSA PBS. 
We then washed twice with 0.1% PBS-BSA and then incubated for 30 minutes at 4C with 1:500 
donkey anti-mouse IgG-Alexa Cy3 (Jackson Laboratories, 715-545-150). We washed the cells 
again (twice) with 0.1% BSA-PBA and incubated for 10 minutes with 1:500 anti-NGFR 
APC-labelled clone ME20.4 (Biolegend, 345107). We again washed the cells twice with 0.1% 
BSA-PBS and finally re-suspended them in 1%BSA-PBS. 
 
Isolation of NGFRHIGH /EGFRHIGH cells (MACS + FACS) 
To enrich for NGFR HIGH/EGFRHIGH cells we first immunostained melanoma cells as detailed 
above. Then, we used a Manual Separator for Magnetic Cell Isolation (MACS, with LS columns 
and Anti-APC microbeads). In short, following the manufacturer’s instructions, we incubated 
cells and microbeads at 4C for 15 min, then washed and pelleted the cells via centrifugation. 
After resuspending the cells, we passed them through LS magnetic columns. After enriching for 
NGFRHIGH cells, we proceeded to select only the cells expressing both NGFR and EGFR via 
Fluorescent-Activated Cell Sorting (FACS, MoFlo Astrios EQ).  
 
Growth of resistant colonies 
To grow melanoma cells resistant to BRAFV600E inhibition, we exposed melanoma cells to 1μM 
vemurafenib (PLX4032, Selleckchem S1267) for 2-3 weeks. For the BRAFV600E and MEK 
co-inhibition assays, we also used dabrafenib at 500nM and 100nM (GSK2118436, 
Selleckchem S2807), trametinib at 5nM and 1nM (GSK1120212, Selleckchem S2673), and 
cobimetinib at 10nM and 1nM (GDC-0973, Selleckchem S8041).  
 
Inhibition of DOT1L via small molecule inhibitor 
For all assays involving pharmacological inhibition of DOT1L we used pinometostat at 
concentrations ranging from 1μM to 5μM (EPZ5676, Selleckchem S.7062). 
 
MiSeq library construction and sequencing 
In order to quantify the single guide RNA representation following selection in our screen we 
sequenced the single guide RNAs as per 44. In short, we isolated genomic DNA using the 
Quick-DNA Midiprep Plus Kit (Zymo Research: #D4075) per manufacturer specifications. We 
then PCR-amplified the single guide RNAs using Phusion Flash High Fidelity Master Mix 
Polymerase (Thermo Scientific: #F-548L) and primers that incorporate a barcode and a 
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sequencing adaptor to the amplicon. Our amplification strategy consisted of an initial round of 
parallel PCRs (23-29 cycles of up to 200 parallel reactions per sample. We then pooled the 
PCR reactions and purified them using the NucleoSpin ® Gel and PCR Clean-up kit 
(Macherey-Nagel: #740609.250). We continued with eight PCR cycles using Phusion Flash 
High Fidelity Master Mix Polymerase, followed by column purification with the QIAquick PCR 
Purification Kit (QIAGEN: #28106). We quantified the single guide RNA libraries with the DNA 
1000 Kit (Agilent: #5067-1504) on a 2100 Bioanalyzer Instrument (Agilent: #G2939BA). We 
pooled the barcoded single guide RNA libraries and sequenced via 150-cycle paired-end 
sequencing (MiSeq Reagent Kit v3, Illumina: #MS-102-3001). We then mapped the resulting 
sequences to our reference single guide RNA library and proceeded to select hits. 
 
Cell fixation and permeabilization 
For our imaging assays we fixed cells for 10 min with 4% formaldehyde and permeabilized them 
with 70% ethanol overnight. 
 
Colony formation assays 
For each condition tested, we first plated cells in duplicate (~10-50,000 cells per well of a 6-well 
plate). We fixed and permeabilized one of the duplicates to use as a baseline and exposed the 
second duplicate to the test condition. At the endpoint, we fixed and permeabilized the second 
duplicate.  
 
Image analysis of NGFR immunostains 
We developed a custom MATLAB pipeline for counting cells and quantifying 
immunofluorescence signal of DAPI-stained and NGFR-stained cells 
(https://bitbucket.org/arjunrajlaboratory/rajlabscreentools/src/default/ ). The software stitches 
together a large tiled image, then uses DAPI to identify cells. Using the nuclear area, it then 
looks at a set of pixels near the nucleus to quantify fluorescence intensity of the NGFR staining. 
After quantifying the expression level of NGFR following knockout of select screen targets and 
of non-targeting controls, we quantified the minimum expression level needed to be considered 
an NGFRHIGH cell. First, we selected the top one percent highest expressors of NGFR in each of 
our non-targeting negative controls. Then, within that top one percent we obtained the median 
expression level of the lowest expressor across all controls, and used that as a threshold to 
quantify the frequency of NGFR HIGH cells in each of our knockout samples. Then, we calculated 
the change in frequency of NGFR HIGH cells in each test condition compared to controls and 
obtained a median fold change and standard deviation across all samples with knockout of one 
same protein (~3 different biological samples per protein) . In total, we targeted ~86 different 
proteins across ~258 different knockout biological samples.  
 
Image analysis of colony formation  
We developed a custom MATLAB pipeline for counting cells and colonies in tiled images of 
DAPI-stained cells (https://bitbucket.org/arjunrajlaboratory/colonycounting_v2/src/default/ ). First, 
the software stitches the individual image tiles into one large image by automatically (or with 
user input) determining the amount of overlap between each individual image. Then, the 
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software identifies the location of each cell in the stitched image by searching for local maxima. 
We then manually identify the colony boundaries and quantify the number of colonies in each 
sample. We then calculate the frequency of resistant colonies by dividing the number of 
colonies by the total number of cells present in culture prior to BRAFV600E inhibition. Finally, we 
scale the frequency of colonies to colonies per 10,000 cells and calculate the change in 
frequency between each sample and the median change across controls. 
 
RNA-sequencing and identification of differential expression 
We sequenced mRNA in bulk from WM989-A6-G3 and WM989-A6-G3-Cas9 populations as per 
Shaffer et. al. In addition to quantifying the transcriptome of EGFR HIGHcells, NGFRHIGH, 
NGFRHIGH/EGFRHIGH cells and vemurafenib-resistant cells, we quantified the transcriptional 
changes following the knockout of many tier 1 and tier 2 hits from both the priming and 
resistance screens. In addition to hits from our screens, we also quantified the transcriptome of 
targets that were not tier 1 or tier 2 hits, but show a change in the frequency of 
NGFRHIGH/EGFRHIGH cells or of cells resistant to vemurafenib. In total, we targeted ~83 different 
proteins, each in triplicate (using different single guide RNAs) for a total of 280+ RNA 
sequencing samples. For each sample, we isolated mRNA and built sequencing libraries using 
the NEBNext Poly(A) mRNA Magnetic Isolation Module and NEBNext Ultra RNA Library Prep 
Kit for Illumina per manufacturer instructions. We then sequenced the libraries via paired-end 
sequencing (36x2 cycles) on a NextSeq 500. We aligned reads to hg19 and quantified reads 
per gene using STAR and HTSeq. We then used DEseq2 to identify differentially expressed 
genes. 
 
Gene set enrichment analysis 
To identify “biological signatures” enriched or depleted following the knockout of a given target 
we used the GSEA software ( http://software.broadinstitute.org/gsea/index.jsp ). We focused in 
the Biological Process ontology of the Gene Ontology gene sets ( http://geneontology.org ) to 
obtain enrichment scores.  
 
Grouping of targets based on transcriptomic analysis 
To group targets into classes based on their transcriptional effects, we clustered all RNA-seq 
samples (hierarchical clustering via pheatmap in R) based on the change in expression (as 
obtained by DEseq2) of any gene differentially expressed (two-fold change over control, with an 
adjusted p value ≤ 0.05) in at least one of the 83+ knockouts. We also grouped targets via 
pheatmap based on the enrichment scores obtained via GSEA. To identify the axes that 
account for the variability between each knockout we also performed principal component 
analysis based on the gene set enrichment scores of each knockout. Note that in the 
aforementioned analysis we included the transcriptomes of pre-resistant cells (marked by the 
expression of EGFR alone, NGFR alone, and NGFR and EGFR in combination) and of cells 
resistant to vemurafenib. 
 
Software and data availability 
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All data and code used for the analysis can be found at 
https://www.dropbox.com/sh/t08558cl4mepfm6/AABBvbtlTPSNNPoMC9NTro-9a?dl=0 
The software used for colony growth image analysis can be found at: 
https://bitbucket.org/arjunrajlaboratory/colonycounting_v2/src/default/  . The software used for 
analysis of immunofluorescence images can be found at: 
https://bitbucket.org/arjunrajlaboratory/rajlabscreentools/src/default/ 

Main Figure legends 
Figure 1. Pooled CRISPR screen design to identify modulators of cellular priming in the 
context of drug resistance to targeted therapies in melanoma  
A. (top) In melanoma, the initial molecular profile of a cell (primed vs. un-primed) within an 
otherwise homogeneous population, indicated by green vs. gray coloring of cell, dictates the 
ultimate fate of the cell (e.g. proliferation vs. death) when exposed to therapy. Changing the 
number of cells in a given state (A, middle) can alter the number of resistant colonies that form 
upon addition of the BRAFV600E inhibitor vemurafenib.  
B. We designed a pooled CRISPR screen to detect modulators of the cellular priming that leads 
to drug resistance. After transducing a library of single guide RNAs and expanding the 
population, we isolated cells with high expression of both NGFR and EGFR, then sequenced 
the single guide RNAs to determine which gene knockouts alter the frequency of these cells. 
Changes in the frequency of a given single guide RNA in this population (e.g. targets A and C) 
indicate that these targets may affect the frequency of NGFR HIGH/EGFRHIGH cells in the 
population, and thus may affect frequency of cellular priming.  
C. After transducing a population of melanoma cells and isolating NGFR HIGH/EGFRHIGH cells (see 
Fig. 1B), we quantified the frequency of each single guide RNA in the resulting population. Our 
screening scheme utilized three separate pooled single guide RNA libraries, one targeting 
epigenetic domains (top left), another targeting kinases (bottom left), and a final one targeting 
transcription factors (right). We organized the targets within each single guide RNA library by 
biological process. (While a given target could fall into several categories, each target is 
assigned to a single group and plotted only once.) Each dot represents a single guide RNA, 
grouped by gene target (5-6 single guide RNAs per target), with the log 2 fold change 
representing the number of times the single guide RNA was detected in the sorted population 
versus an unsorted population of melanoma cells transduced with the same library. For display 
purposes, all single guide RNAs with fold changes beyond the axis limits were placed at the 
edge of the axis as indicated. For targets considered “hits” by our rubric (see methods), we 
labeled the single guide RNA dot by the color assigned to that biological process. Dots at the 
bottom of each pane correspond to non-targeting controls (single guide RNAs not targeting any 
loci in the genome) and cell viability controls (e.g. proteins required for cell survival and 
proliferation, but not specifically associated with rare-cell behavior). Supplemental Fig. 1 
provides details on the effect of these editing controls. 
 
Figure 2. Effects of modulators of cellular priming on resistant colony formation 
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A. In melanoma, the frequency of primed cells in the population dictates the degree of 
resistance to BRAFV600E inhibition. Changes to the mapping between cellular priming and a cell’s 
response to the drug can alter the number of resistant colonies that form upon addition of the 
BRAFV600E inhibitor vemurafenib.  
B. Relationship between the frequency of NGFR HIGH cells (x-axis) and the number of resistant 
colonies (y-axis). We plot the frequency of NGFR HIGH cells as the mean log 2 fold change over 
three replicates in the number of NGFR HIGH cells following knockout of the gene indicated, 
normalized by cells with non-targeting sgRNAs. (For variability of the effect size across 
replicates of a given target, see Supplemental Fig. 5). We quantified the log 2 fold change in the 
number of resistant colonies in the knockout cell line as compared to the non-targeting control 
cell lines. Orange points are targets identified as high confidence hits (Tier 1 and Tier 2) in the 
cellular priming screen; blue are those identified as high confidence hits in the resistance 
screen; purple are those identified as high confidence hits in both screens; gray, those that may 
have shown an effect in either or both screens, but were not classified as high confidence hits in 
either screen. 
C. To validate the phenotypic effect of targets identified by our genetic screens, we knocked out 
83 of the targets and quantified both the frequency of NGFR HIGH cells by immunofluorescence 
using anti-NGFR antibodies (top) and the number of resistant colonies (bottom) that form upon 
BRAFV600E inhibition. Here we show example validation of BRD2 and LATS2 knockouts (hits in 
the cellular priming screen) and of CSK knockouts (hit in the resistance screen only). The 
schematic represents the effect of the knockout in the priming screen on the frequency of 
NGFRHIGH/EGFRHIGH cells.  
D. Effect overlap between hits from the cellular priming and resistance screens. Each target’s 
position (dots) represents the number of times (as median log2 fold change) the single guide 
RNAs were detected in the NGFRHIGH/EGFRHIGH population vs. an unsorted population of 
melanoma cells (priming screen, x-axis), or in the population of cells resistant to vemurafenib vs. 
the population of cells prior to treatment (resistance screen, y-axis). Orange labels correspond 
to high confidence targets (Tier 1 and Tier 2) in the cellular priming screen; blue corresponds to 
high confidence targets in the resistance screen; purple corresponds to high confidence targets 
in both screens. The effects of all targets in both screens are displayed as a density histogram.  
 
Figure 3. Effect of modulators of cellular priming on growth of BRAFV600E-resistant tumors 
in vivo 
A. Tumor volume as a function of time in patient-derived xenografts (NOD/SCID mice) treated 
with a BRAFV600E inhibitor (top) or vehicle control (bottom). Here, we inject each mouse with 
DOT1L-, LATS2-, or BRD2-knockout WM989-A6-G3-Cas9 cells (orange) or with the same cell 
line without a gene knockout (gray). The values plotted represent the mean tumor volume 
across mice caryying the same knockout. Error bars represent the standard error of the mean. 
*** are timepoints at which the difference in tumor volume between knockout and control groups 
reached p ≤ 0.05. Similarly, * represents p = 1 ≤≥ 0.05 (see methods). Each group started with n 
= 6 mice, and we plotted the mean tumor volume up until both knockout and negative control 
groups have at least n = 3 each.  
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Figure 4. Effect of targeting cellular priming at different times relative to BRAFV600E 
inhibition  
A. To assess the effect of DOT1L inhibition (green arrows, pinometostat at 4µM) at different 
times on a cell’s ability to survive BRAFV600E inhibition, we first established a baseline number of 
colonies that grow when WM989-A6-G3 cells are exposed to 1µM of vemurafenib for three 
weeks (leftmost panel). Then, in a separate population, we either inhibited BRAFV600E and 
DOT1L simultaneously (co-treatment), inhibited DOT1L first (seven days) and then BRAFV600E 

(three additional weeks; pre-treatment), or inhibited DOT1L before (seven days) and during 
three weeks of vemurafenib treatment (pre-treatment and co-treatment).  
B. Number of resistant colonies that result from each therapeutic regimen in Fig. 2C as the 
mean fold change over baseline (vemurafenib alone) for three replicates normalized to the 
number of cells in culture prior to BRAFV600E inhibition. Error bars indicate the standard error of 
the mean over triplicates. 
 
Figure 5. Gene set enrichment analysis of the transcriptional effects induced by the 
knockout of select screen targets 
A. The heatmap represents biclustering analysis of different knockout cell lines (rows) based on 
the Gene Set Enrichment Analysis score of Gene Ontology gene sets (Biological process GO 
terms, columns in heatmap). Within the heatmap, red indicates enrichment in the sense that 
there are more differentially upregulated genes in knockout vs. control in that gene set than 
expected by chance, whereas blue indicates enrichment of downregulated genes (shade 
indicates degree of enrichment). Each target knockout (rows) represents transcriptomes of 
biological triplicates (unless otherwise stated on Supplemental Table 4). Target labels (rows) in 
green indicate genes whose knockout increased the frequency of NGFR HIGH/EGFRHIGH cells in 
the screen, while red indicates targets whose knockout increased the number of cells resistant 
to vemurafenib, and gray indicates targets that decreased the frequency of either 
NGFRHIGH/EGFRHIGH  cells or of cells resistant to vemurafenib. As before, we organized targets 
into high confidence hits (Tier 1 and Tier 2) and low confidence hits (Tiers 3 and Tier 4) based 
on the percentage of single guide RNAs against a target that showed at least a two-fold change 
in the initial screen (see knockout color key).The asterisks next to the label indicate the tier (Tier 
1, ****; Tier 2, ***; Tier 3, **; Tier 4, *). Information regarding validation rates of each tier can be 
found in the supplemental figures 8 and 9. Based on the dendrogram on the left, we grouped 
targets into six clusters. We also clustered gene sets (columns) into groups, labeled by the 
letters on top of the heatmap. The white boxes inside the heatmap demark groups of gene sets 
specifically upregulated in a given cluster. 
B. Select list of gene sets in groups D and E from Figure 5A. For a complete list of gene sets 
within each group, see supplementary table 6.  
C. Relationship between the expression of genes involved in neural crest differentiation (x-axis) 
and the number of colonies resistant to vemurafenib (y-axis) following the knockout of a target. 
For each knockout, we plot the expression of neural crest differentiation genes as the 
enrichment score obtained through gene set enrichment analysis for the neural crest 
differentiation gene set (GO term). We quantified the log 2(fold change) in the number of 
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resistant colonies in the knockout cell line as compared to the non-targeting control cell lines. 
Colors represent the cluster grouping of each knockout based on Figure 5A.  
D. Relationship between the frequency of NGFR HIGH cells (x-axis) and the number of resistant 
colonies (y-axis). We plot the frequency of NGFR HIGH cells as the median log 2(fold change) over 
three replicates in the number of NGFR HIGH cells following knockout of the indicated gene 
normalized by cells with non-targeting single guide RNAs. (For variability of the effect size 
across replicates of a given target, see Supplemental Fig. 5.) We quantified the log 2(fold 
change) in the number of resistant colonies in the knockout cell line as compared to the 
non-targeting control cell lines. We color-coded all targets by groupings based on their 
transcriptomes (see Fig. 5A) following knockout of the gene indicated.  
 
Figure 6. Model of pre-resistant threshold and cellular priming in the development of 
resistance to targeted therapies 
Variability in the expression of various markers are associated with an individual cell’s 
probability to survive drug treatment. In one simple model, cellular variability occurs along a 
single ordinate, which can be conceptualized as the degree of “greenness”. In this model, there 
is a threshold (red line, top panel) that divides cells along this axis into those that adapt to the 
drug and become resistant vs. those that no longer proliferate when challenged with drug. Here, 
there are at least two ways by which one could conceivably alter the number of cells that survive 
the drug. In one scenario (middle) the distribution of “greenness” could change, leading to more 
cells being above the threshold, leading to more resistant colonies. In another scenario, the 
distribution of phenotypes remains unchanged, but the threshold itself moves, also leading to 
more resistant colonies. Our results suggest (but do not prove) that both scenarios may play out 
to varying degrees as a result of different genes being knocked out. 

Supplemental Figure legends 
 
Supplemental Figure 1. Effect of negative and positive control single guide RNAs in the 
CRISPR screens. Our pooled CRISPR screen included non-targeting single guide RNAs as 
negative controls (gray bars, 50+ single guide RNAs) as well as single guide RNAs affecting cell 
viability as positive controls (red bars, 25+ single guide RNAs). We quantified the change in 
representation of these single guide RNAs over time and report the log 2 fold change in 
representation from six days after transfection to right before selection (vemurafenib exposure 
or selection by NGFR and EGFR expression). We expect positive controls to lose 
representation over time more often than negative controls. Our screening scheme utilized three 
separate pooled single guide RNA libraries, one targeting kinases (top), another targeting 
epigenetic domains (middle), and a final one targeting transcription factors (bottom). 
 
Supplemental Figure 2. Secondary validation of hits across multiple cell lines by 
secondary targeted CRISPR screening.  
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We assessed the robustness and generality of the effect of hits identified in the priming screen 
(WM989-A6-G3-Cas9-5a3, black bars) by carrying out a secondary screen containing single 
guide RNAs for 34 of the high confidence hits (Tiers 1 and 2) we identified in the priming screen, 
as well as another 52 lower confidence factors from Tiers 3 and 4 (these lower confidence hits 
may also have been high confidence hits in the resistance screen). See Supplemental Table 5 
for a list of the targets. We carried out this screen in WM989-A6-G3-Cas9 (orange bars) as well 
as in another BRAFV600E melanoma cell line (451Lu-Cas9, blue). Within each tier, names labeled 
in green correspond to targets whose single guide RNAs are enriched in NGFR HIGH/EGFRHIGH 
cells in the initial screen and gray represents targets whose single guide RNAs are 
underrepresented in these rare cells. We plotted the median log 2 fold change in single guide 
RNA representation (normalized by non-targeting controls) across three single guide RNAs. 
Error bars represent the standard deviation of the fold change across all single guide RNAs for 
a given target. Dotted error bars in red extend beyond the limits of the graph. Note that the limits 
of the axes vary between tiers. We found that 25 of the 34 high confidence hits showed at least 
a two fold change in the frequency of NGFR HIGH/EGFRHIGH cells concordant with the effects 
detected in the original screening clonal cell line (WM989-A6-G3-Cas9-5a3). In 451Lu-Cas9 
cells, 20 of the 34 targets also showed a change in the frequency of NGFR HIGH/EGFRHIGH cells, 
with 11 of those exhibiting at least a two-fold change. Although quantitatively they were not as 
strong as the effects of the Tier 1 and 2 hits, even Tier 3 and 4 hits displayed qualitative 
agreement in these secondary screens.  
 
Supplemental Figure 3. Screen for factors modulating number of resistant colonies upon 
BRAFV600E inhibition.  
A. We performed a pooled CRISPR screen to detect modulators of the number of drug-resistant 
cells that grow in the presence of the BRAFV600E inhibitor vemurafenib. After transducing a library 
of single guide RNAs and expanding the population, we exposed the cells to the BRAFV600E 
inhibitor vemurafenib (1µM) for 3 weeks, after which we sequenced the single guide RNAs in 
the surviving population. Changes in the frequency of detection of a given single guide RNA 
indicates that its target may affect the ability of a cell to survive and proliferate upon BRAFV600E 
inhibition. 
B. After transfecting a population of melanoma cells, we exposed them to vemurafenib 
(BRAFV600E inhibitor, 1μM) for three weeks to grow resistant colonies. We then sequenced the 
DNA to quantify the single guide RNA representation of each target in the resulting population, 
using the same libraries as in Fig. 1. As before, we ranked the targets into tiers based on the 
percent of single guide RNAs that exhibited at least a two-fold change in representation 
throughout the screen (Tier 1, ≥ 75%; Tier 2, ≥ 66%; Tier 3, ≥ 50%; Tier 4, < 50%), thus 
reflecting the degree of confidence we have in the hit (High confidence hits: Tiers 1 and 2; Low 
confidence hits: Tiers 3 and 4). In this screen, we identified 24 high confidence factors. For a 
more detailed description see the methods section.  
 
Supplemental Figure 4. Secondary validation of hits across multiple cell lines by 
secondary targeted CRISPR screening.  
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 We assessed the robustness and generality of the effect of hits identified in the initial resistance 
screen (WM989-A6-G3-Cas9-5a3, black bars) by carrying out a secondary screen containing 
single guide RNAs for nine high confidence targets (as well as 77 targets that either affected 
vemurafenib resistance but did not pass the thresholds to be called a hit, or affected the 
frequency of NGFR HIGH/EGFRHIGH cells; Supplemental Table 5 for a list of all the targets). We 
carried out this screen in WM989-A6-G3-Cas9 (orange bars) as well as in another BRAFV600E 

melanoma cell line (451Lu-Cas9, blue). Within each tier, names labeled in red correspond to 
targets whose single guide RNAs are enriched in cells resistant to vemurafenib in the initial 
screen and gray represents targets whose single guide RNAs are underrepresented in these 
cells. We plotted the median log 2 fold change in single guide RNA representation (normalized by 
non-targeting controls) across three single guide RNAs. Error bars represent the standard 
deviation of the fold change across all single guide RNAs for a given target. Dotted error bars in 
red extend beyond the limits of the graph. Note that the limits of the axes vary between tiers. In 
WM989-A6-G3-Cas9, we found that seven of the nine targets replicated the effect that we 
observed originally. For 451Lu-Cas9, the same seven factors showed similar effects. 
 
Supplemental Figure 5. Validation of effects of hits from priming and resistance screens 
by via NGFR immunofluorescence and resistant colony formation.  
A. Frequency of NGFR HIGH cells following the knockout of select targets. Each bar represents the 
change in the number of NGFR HIGH cells following knockout of the gene indicated over 
replicates, each using a different single guide RNA. Error bars represent the standard error of 
the mean across the replicates. We carried out each measurement over three replicates, but 
excluded samples with low cell density (< 500 cells). The star above or below the bars indicate 
targets where, after excluding samples with low cell numbers, n = 1.  Tier refers to the degree of 
confidence we have in each particular hit, with tier 1 representing highest confidence hits for 
which ≥ 75% of the single guide RNAs passed a threshold of two-fold change in the initial 
screens. We performed this analysis for hits from both the priming screen (top) and the 
resistance screen (bottom). 21 of 34 high confidence hits from the priming screen showed at 
least a 50% increase or decrease in the frequency of NGFR HIGH cells  over control. Of the lower 
confidence hits (Tier 3 and Tier 4)  21 out of 49 targets increased or decreased the frequency of 
NGFRHIGH cells by 50% or more.  
B. Resistance phenotype of melanoma cells following the knockout of hits from the initital 
screens. Each bar represents the log 2 fold change over non-targeting control in the number 
colonies able to grow in vemurafenib following knockout of the gene indicated. The number of 
colonies for each target is normalized to the number of cells present in culture before BRAFV600E 

inhibition, reported as number of colonies per every 10,000 cells in culture prior to treatment 
(see methods). As before, the different tiers represent the percent of single guide RNAs against 
a given target exhibiting at least a two-fold change throughout the initial (left) priming or (right) 
resistance screens. On the left panel, we labeled in green and gray the effect a given target has 
in the frequency of NGFR HIGH/EGFRHIGH cells (based on the initial priming screen). On the right 
panel, we labeled in red and gray the effect a given target has in the number of cells that resist 
BRAFV600E inhibition (based on the initial resistance screen). In this plot each bar represents one 
experimental replicate. See Supplemental Fig. 6 for replicates.  
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C. These images show the effect of CSK knockout on a cell’s ability to develop resistance to 
BRAFV600E  inhibition. Here, we plated CSK-knockout WM989-A6-G3-Cas9-5a3 cells and 
exposed them to 1μM vemurafenib for three weeks. As before, after the treatment we counted 
the number of resulting colonies and compared it to the number of colonies resulting from 
WM989-A6-G3-Cas9-5a3 cells without the knockout. Note that the number of resistant cells in 
the CSK sample is too large to accurately identify individual colonies. We only counted colonies 
we could clearly delineate, and thus, the number of colonies reported is an underestimate. 
 
Supplemental Figure 6. Validation of effects hits by resistant colony formation. 
Resistance phenotype of melanoma cells following the knockout of hits from the initial screens. 
Each bar represents the log 2 fold change over non-targeting control in the number of colonies 
able to grow following knockout of the gene indicated. The number of colonies for each target is 
normalized to the number of cells present in culture before BRAFV600E inhibition, reported as 
number of colonies per every 10,000 pre-treatment cells (see methods). As before, the different 
tiers represent the percent of single guide RNAs against a given target exhibiting at least a 
two-fold change throughout the initial (top) priming or (bottom) resistance screens. On the top 
panel, we labeled in green and gray the effect a given target has in the frequency of 
NGFRHIGH/EGFRHIGH cells (based on the initial priming screen). On the bottom panel, we labeled 
in red and gray the effect a given target has in the number of cells that resist BRAFV600E inhibition 
(based on the resistance screen). In this plot each bar represents one experimental replicate 
(distinct from the one in Supplemental Fig. 5B). 
 
Supplemental Figure 7. Effect of pharmacological inhibition of DOT1L on resistance to 
BRAFV600E and MEK inhibition.  
A. Resistance phenotype of melanoma cells following pharmacological inhibition of DOT1L. We 
pre-treated melanoma cells for seven days with either DMSO, or various concentrations of the 
DOT1L inhibitor pinometostat (EPZ5676). Then, we exposed the cells to 1μM vemurafenib for 
three weeks. 
B. To assess the effect of DOT1L inhibition on cellular proliferation, we the compared the 
population size of WM989-A6-G3 cells over time treated with either 4μM of pinometostat 
(DOT1L inhibitor) or with DMSO. The population size is estimated by the amount of nucleic 
acids present in the population using a CyQuant GR dye. The values represent mean 
fluorescence signal over triplicates. Error bars represent standard error of the mean.  
C. Resistance phenotype of melanoma cells to BRAFV600E and MEK inhibitors following 
pharmacological inhibition of DOT1L. We pre-treated melanoma cells for seven days with either 
DMSO or 4μM of pinometostat. We then exposed the cells to one of two BRAFV600E inhibitors 
(vemurafenib and dabrafenib, left panels), to one of two MEK inhibitors (cobimetinib and 
trametinib, middle panels), or to a combination of a BRAFV600E and MEK inhibitor (vemurafenib + 
cobimetinib; dabrafenib + trametinib, right panels). White arrows point to a few of the many 
colonies that grew under each condition.  
 
Supplemental Figure 8. Percent of targets from the priming screen that validate. To 
assess the sensitivity of our screen, we validated the effect observed in the initial priming screen 
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for a select group of targets via NGFR immunofluorescence. Here, each dot represents an 
individual single guide RNA, and we plot the change in single guide RNA representation 
between NGFR HIGH/EGFRHIGH cells and controls (as measured in the priming screen). We then 
organize all sgRNAs into tiers (y-axis, tiers one through four) based on the percent of single 
guide RNAs against a target showing at least a two-fold change in representation on 
NGFRHIGH/EGFRHIGH cells. In red, we labeled targets that when tested again produced at least a 
50% change in the frequency of NGFR HIGH cells. In black, we labeled targets that we tested but 
did not validate, and in gray we show targets we did not test. We display the percent of genes 
tested and validated at each tier on the right.  
 
Supplemental Figure 9. Percent of targets from the resistance screen that validate. 
To assess the sensitivity of our screen, we validated the effect observed in the initial resistance 
screen for a select group of targets via colony formation assays. Here, each dot represents an 
individual single guide RNA, and we plot the change in single guide RNA representation 
between cells resistant to vemurafenib and cells that have never been exposed to the drug (as 
measured in the resistance screen). We then organize all single guide RNAs into tiers (y-axis, 
tiers one through four) based on the percent of single guide RNAs against a target showing at 
least a two-fold change in representation on drug resistant cells. In red, we labeled targets that 
when tested again produced at least a 50% change in the frequency colonies resistant to 
BRAFV600E inhibition. In black, we labeled targets that we tested but did not validate, and in gray 
we show targets we did not test. We display the percent of genes tested and validated at each 
tier on the right.  
 
Supplemental Figure 10. Transcriptional effects induced by knockout of select screen 
targets.  
A. The heatmap represents the biclustering analysis of different screen targets (rows) based on 
the change in expression of all genes differentially expressed in at least one knockout 
(columns). Within the heatmap, red indicates an increase in expression following the knockout, 
while blue indicates a decrease in gene expression (see heatmap color key). Each target (rows) 
represents transcriptomes of biological triplicates (unless otherwise stated on Supplemental 
Table 4). Target labels (rows) in green indicate genes whose knockout increased the frequency 
of NGFRHIGH/EGFRHIGH cells in the initial screen. In red are those whose knockout increased the 
number of cells resistant to vemurafenib, and in gray are those that decreased the frequency of 
either NGFRHIGH/EGFRHIGH cell or of cells resistant to vemurafenib. As before, we organized 
targets into confidence tiers indicated by the number of asterisks, based on the percent of single 
guide RNAs against that target that showed an effect in the initial screen (see knockout color 
key). 
B. We performed principal component analysis of the transcriptional effects induced by the 
knockout of select screen targets. We used as input the gene set enrichment scores from Fig. 
5A to identify primary axes that account for the greatest degree of transcriptome variability 
across knockout cell lines. The color indicates the effect of the knockout in the initial priming 
screen. The size of the dot indicates the degree of confidence we have in each particular hit 
based on the percent of the single guide RNAs against a target that passed a threshold of 
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two-fold change in the initial priming screen. In black, we labeled melanoma cells where we did 
not knockout any targets but either enriched for EGFR HIGH cells, NGFRHIGH cells, 
EGFRHIGH/NGFRHIGH cells, or for cells resistant to vemurafenib. 
 
Supplemental Figure 11. Technical validation of WM989-A6-G3-Cas9-5a3 cell line.  
A. WM989-A6-G3-Cas9-5a3 cells expressing NGFR, EGFR, and both NGFR and EGFR are 
more likely to survive and proliferate in the presence of vemurafenib 14. Here, we show the 
number of colonies that grow upon vemurafenib exposure in a mixed population of 
WM989-A6-G3-Cas9-5a3 or in the same population but enriched for EGFR HIGH cells, NGFRHIGH 
cells, or NGFRHIGH/EGFRHIGH cells.  
B. In this plot, we show the single guide RNA representation (as percent GFP-positive cells) of 
controls over time in WM989-A6-G3 cells with or without Cas9 expression. Negative controls 
(black) are single guide RNAs aimed at ROSA26, a non-expressing gene in human melanoma. 
Positive controls (red) target proteins necessary for cell viability. Only cells expressing both 
Cas9 and a positive control single guide RNA should disappear from the population over time. 

Supplemental Tables 
All tables can be found at: 
https://www.dropbox.com/sh/t08558cl4mepfm6/AABBvbtlTPSNNPoMC9NTro-9a?dl=0 
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Figure 1. Pooled CRISPR screen design to identify modulators of cellular priming in the context of drug resistance to targeted therapies in melanoma. 

A. (top) In melanoma, the initial molecular profile of a cell (primed vs. un-primed) within an otherwise homogeneous population, indicated by green vs. gray coloring of cells, dictates the ultimate behavior of the cell 

when exposed to therapy (e.g. proliferation vs. death). Changing the number of primed cells (A, bottom) can alter the number of resistant colonies that form upon addition of the BRAFV600E inhibitor vemurafenib. 

B. We designed a pooled CRISPR screen to detect modulators of the cellular priming that leads to drug resistance. After transducing a library of single guide RNAs and expanding the population, we isolated cells 

with high expression of both NGFR and EGFR, then sequenced the single guide RNAs to determine which gene knockouts alter the frequency of these cells. Changes in the frequency of a given single guide RNA in 

this population (e.g. targets A and C) indicate that these targets may affect the frequency of NGFRHIGH/EGFRHIGH cells in the population, and thus may affect the frequency of cellular priming.

C. After transducing a population of melanoma cells and isolating NGFRHIGH/EGFRHIGH cells (see Fig. 1B), we quantified the frequency of each single guide RNA in the resulting population. Our screening scheme 

utilized three separate pooled single guide RNA libraries, one targeting epigenetic domains (top left), another targeting kinases (bottom left), and a final one targeting transcription factors (right). We organized the 

targets within each single guide RNA library by biological process. (While a given target could fall into several categories, each target is assigned to a single group and plotted only once.) Each dot represents a 

single guide RNA, grouped by gene target (5-6 single guide RNAs per target), with the log
2
 fold change representing the number of times the single guide RNA was detected in the sorted population versus an 

unsorted population of melanoma cells transduced with the same library. For display purposes, all single guide RNAs with fold changes beyond the axis limits were placed at the edge of the axis as indicated. For 

targets considered “hits” by our rubric (see methods), we labeled the single guide RNA dot by the color assigned to that biological process. Dots at the bottom of each pane correspond to non-targeting controls 

(single guide RNAs not targeting any loci in the genome) and cell viability controls (e.g. proteins required for cell survival and proliferation, but not specifically associated with rare-cell behavior). Supplemental Fig. 1 

provides details on the effect of these editing controls.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2019. ; https://doi.org/10.1101/638809doi: bioRxiv preprint 

https://doi.org/10.1101/638809
http://creativecommons.org/licenses/by-nc-nd/4.0/


NGFRHIGH cell

D
A

P
I

N
G

F
R

 i
m

m
u
n
o
fl
u
o
re

s
c
e
n
c
e

Resistant 

colony

Negative control BRD2 Knockout LATS2 Knockout

Figure 2

Effect in 

the priming 

screen

c
o
lo

n
y
 f
o
rm

a
ti
o
n
 a

s
s
a
y

Changes to the frequency of primed cells affect the degree 

of resistance of the population

Changes to the mapping between primed states and 

survival can also affect the frequency of resistance

Resistance to a drug depends on the frequency of primed 

cells in the population

Drug-naive 

population

+ Drug

(e.g. BRAFV600E inhibition)

Drug-resistant 

population

Highly primed 

cell

Resistant 

colony

un-primed cell dies 

with BRAFV600E 

inhibition

primed cell survives 

BRAFV600E inhibition 

and proliferates

A

cell now highly 

primed for 

survival

cell NOT in the highly  

primed state can now 

become resistant

Priming screen

(median log
2
 fold change of sgRNAs in the priming screen)

R
e
s
is

ta
n
c
e
 s

c
re

e
n

(m
e
d
ia

n
 l
o
g

2
 f
o
ld

 c
h
a
n
g
e
 o

f 
s
g
R

N
A

s

 i
n
 t
h
e
 r

e
s
is

ta
n
c
e
 s

c
re

e
n
)

Hit in priming screen
Hit in resistance screen

Hit in both screens

effect of all 

targets in the 

screens

D

● ●●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●● ●
●

●

● ● ●
●

●
●

●

●

●
●

● ●

●●
●

●
● ●

●

●

●

●●
●●

●●

● ●

●

●●
●

●

●

●
●●

●

●
●

●

●

●

●●

●

●
●
●● ●

●

●
●

●
●

LATS2

PKN2

PRKRIR

RUNX3

SRF

−2.5

0.0

2.5

5.0

−5 0 5

x 
=
 y

Coalesced 

resistant colonies

CSK Knockout

C

Frequency of NGFRHIGH cells

(mean log
2
 fold change over control)

#
 o

f 
c
o
lo

n
ie

s
 r

e
s
is

ta
n
t 

to
 v

e
m

u
ra

fe
n
ib

(l
o
g

2
 f

o
ld

 c
h
a
n
g
e
 o

v
e
r 

c
o
n
tr

o
l)

Hit in the priming screen

●

●

●●●

●

●

●
●

●

● ●

●

●

●

●
●

●●

●

●

●
●

●● ●

●

●
●

●●

●

●

ADCK3

BRD2

BRD8
CBFB

CSK

DOT1L

DSTYK

EGFR

EP300

FEZF2

FOSL1 GATA4

JUN

JUNB

KDM1A

KMT2D

LATS2

MAP2K7
MAP3K1

MITF

MTF1

MYBL1

NFAT5

NSD1PKN2 PRKAA1

PRKRIR

RUNX3

SOX10

SRFSTK11

SUV420H1

TADA2B

−3

0

3

6

9

−4 −2 0 2

x = y

Hit in the resistance screen
Hit in both screens
Low confidence targets tested

B

Figure 2. Effects of modulators of cellular priming on resistant colony formation.

A. (top) In melanoma, the frequency of primed cells in the population dictates the degree of resistance to BRAFV600E inhibition. Changes to the mapping between cellular priming and a cell’s 
response to the drug (A, bottom) can alter the number of resistant colonies that form upon addition of the BRAFV600E inhibitor vemurafenib. 

B. Relationship between the frequency of NGFRHIGH cells (x-axis) and the number of resistant colonies (y-axis). We plot the frequency of NGFRHIGH cells as the mean log
2
 fold change over 

three replicates in the number of NGFRHIGH cells following knockout of the gene indicated, normalized by cells with non-targeting sgRNAs. (For variability of the effect size across replicates of 

a given target, see Supplemental Fig. 5). We quantified the log
2
 fold change in the number of resistant colonies in the knockout cell line as compared to the non-targeting control cell lines. 

Orange points are targets identified as high confidence hits (Tier 1 and Tier 2) in the cellular priming screen; blue are those identified as high confidence hits in the resistance screen; purple 

are those identified as high confidence hits in both screens; gray, those that may have shown an effect in either or both screens, but were not classified as high confidence hits in either 

screen. 

C. To validate the phenotypic effect of targets identified by our genetic screen, we knocked out 83 of the targets and quantified the frequency of NGFRHIGH cells by immunofluorescence using 

anti-NGFR antibodies (top). In a subset of those (35 targets) we also quantified the number of resistant colonies (bottom) that form upon BRAFV600E inhibition. Here we show example 

validation of BRD2 and LATS2 knockouts (hits in the cellular priming screen) and well as of CSK knockout (hit in the resistance screen only). The schematic represents the effect of the 

knockout in the cellular priming screen on the frequency of NGFRHIGH/EGFRHIGH cells.

D. Effect overlap between hits of cellular priming and resistance screens. Each target’s position (dots) represents the number of times (as median log
2
 fold change) the single guide RNAs 

were detected in the NGFRHIGH/EGFRHIGH population vs. an unsorted population of melanoma cells (priming screen, x-axis), or in the population of cells resistant to vemurafenib vs. the 

population of cells prior to treatment (resistance screen, y-axis). Orange labels correspond to high confidence targets (Tier 1 and Tier 2) in the cellular priming screen; blue corresponds to 

high confidence targets in the resistance screen; purple corresponds to high confidence targets in both screens. The effects of all targets in both screens are displayed as a density 

histogram.
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Figure 3. Effect of modulators of cellular priming on growth of BRAFV600E-resistant tumors in vivo.

Tumor volume as a function of time in patient-derived xenografts (NOD/SCID mice) treated with a BRAFV600E inhibitor (top) or vehicle control (bottom). Here, we injected each mouse 

with DOT1L-, LATS2-, or BRD2-knockout WM989-A6-G3-Cas9 cells (orange) or with the same cell line without a gene knockout (gray). The values plotted represent the mean tumor 

volume across mice carrying the same knockout. Error bars represent the standard error. *** are time points at which the difference in tumor volume between knockout and control 

groups reached p ≤ ,0.05. Similarly, * represents p = 0.1 ≤≥ 0.05 (see methods). Each group started with n = 6 mice, and we plotted the mean tumor volume up until both knockout 
and negative control groups have at least n = 3 mice each. 

Figure 3
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Figure 4. Effect of targetting cellular priming at different times relative to BRAFV600E inhibition. 

A. To assess the effect of DOT1L inhibition (green arrows, pinometostat at 4µM) at different times on a cell’s ability to survive BRAFV600E inhibition, we first established a baseline number of 

colonies that grow when WM989-A6-G3 cells are exposed to 1µM of vemurafenib for three weeks (leftmost panel). Then, in a separate population, we either inhibited BRAFV600E and DOT1L 

simultaneously (co-treatment), inhibited DOT1L first (seven days) and then BRAFV600E (three additional weeks; pre-treatment), or inhibited DOT1L before (seven days) and during three weeks of 

vemurafenib treatment (pre-treatment and co-treatment).

B. Number of resistant colonies that result from each therapeutic regimen in Fig. 4A as the mean fold change over baseline (vemurafenib alone) for three replicates normalized to the number of 

cells in culture prior to BRAFV600E inhibition. Error bars indicate the standard error of the mean over triplicates.  
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Figure 5. Gene set enrichment analysis of 

the transcriptional effects induced by the 

knockout of select screen targets. 

A. The heatmap represents biclustering 

analysis of different knockout cell lines (rows) 

based on the Gene Set Enrichment Analysis 

score of Gene Ontology gene sets (Biological 

process GO terms, columns in heatmap). 

Within the heatmap, red indicates enrichment 

in the sense that there are more differentially 

upregulated genes in knockout vs. control in 

that gene set than expected by chance, 

whereas blue indicates enrichment of 

downregulated genes (shade indicates degree 

of enrichment). Each target knockout (rows) 

represents transcriptomes of biological 

triplicates (unless otherwise stated on 

Supplemental Table 4). Target labels (rows) in 

green indicate genes whose knockout 

increased the frequency of NGFRHIGH/EG-

FRHIGH cells in the screen, while red indicates 

targets whose knockout increased the number 

of cells resistant to vemurafenib, and gray 

indicates targets that decreased the frequency 

of either NGFRHIGH/EGFRHIGH  cells or of cells 

resistant to vemurafenib. As before, we 

organized targets into high confidence hits 

(Tier 1 and Tier 2) and low confidence hits 

(Tiers 3 and Tier 4) based on the percentage 

of single guide RNAs against a target that 

showed at least a two-fold change in the initial 

screen (see knockout color key).The asterisks 

next to the label indicate the tier (Tier 1, ****; 

Tier 2, ***; Tier 3, **; Tier 4, *). Information 

regarding validation rates of each tier can be 

found in the supplemental figures 8 and 9. 

Based on the dendrogram on the left, we 

grouped targets into six clusters. We also 

clustered gene sets (columns) into groups, 

labeled by the letters on top of the heatmap. 

The white boxes inside the heatmap demark 

groups of gene sets specifically upregulated in 

a given cluster.

B. Select list of gene sets in groups D and E 

from Fig. 5A. For a complete list of gene sets 

within each group, see supplementary table 6. 

C. Relationship between the expression of 

genes involved in neural crest differentiation 

(x-axis) and the number of colonies resistant 

to vemurafenib (y-axis) following the knockout 

of a target. For each knockout, we plot the 

expression of neural crest differentiation genes 

as the enrichment score obtained through 

gene set enrichment analysis for the neural 

crest differentiation gene set (GO term). We 

quantified the log
2
(fold change) in the number 

of resistant colonies in the knockout cell line 

as compared to the non-targeting control cell 

lines. Colors represent the cluster grouping of 

each knockout based on Fig. 5A. 

D. Relationship between the frequency of 

NGFRHIGH cells (x-axis) and the number of 

resistant colonies (y-axis). We plot the 

frequency of NGFRHIGH cells as the median 

log
2
(fold change) over three replicates in the 

number of NGFRHIGH cells following knockout 

of the indicated gene normalized by cells with 

non-targeting single guide RNAs. (For 

variability of the effect size across replicates of 

a given target, see Supplemental Fig. 5.) We 

quantified the log
2
(fold change) in the number 

of resistant colonies in the knockout cell line 

as compared to the non-targeting control cell 

lines. We color-coded all targets by groupings 

based on their transcriptomes (see Fig. 5A) 

following knockout of the gene indicated.
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Figure 6. Model of pre-resistance threshold and cellular priming in the 

development of resistance to targeted therapies. 

Variability in the expression of various markers is associated with an individual cell’s 
probability to survive drug treatment. In one simple model, cellular variability occurs 

along a single ordinate, which can be conceptualized as the degree of “greenness”. 

In this model, there is a threshold (red line, top panel) that divides cells along this 

axis into those that adapt to the drug and become resistant vs. those that no longer 

proliferate when challenged with drug. Here, there are at least two ways by which 

one could conceivably alter the number of cells that survive the drug. In one 

scenario (middle) the distribution of “greenness” could change, leading to more cells 

being above the threshold, leading to more resistant colonies. In another scenario, 

the distribution of phenotypes remains unchanged, but the threshold itself moves, 

also leading to more resistant colonies. Our results suggest (but do not prove) that 

both scenarios may play out to varying degrees as a result of different genes being 

knocked out.

Cellular states

Cellular states
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Supplemental Figure 1. Effect of negative and positive control single guide RNAs in the CRISPR screens. Our pooled CRISPR screen included non-targeting single 

guide RNAs as negative controls (gray bars, 50+ single guide RNAs) as well as single guide RNAs affecting cell viability as positive controls (red bars, 25+ single guide RNAs). 
We quantified the change in representation of these single guide RNAs over time and report the log2 fold change in representation from six days after transfection to right 

before selection (vemurafenib exposure or selection by NGFR and EGFR expression). We expect positive controls to lose representation over time more often than negative 
controls. Our screening scheme utilized three separate pooled single guide RNA libraries, one targeting kinases (top), another targeting epigenetic domains (middle), and a 
final one targeting transcription factors (bottom). 
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Supplemental Figure 2. Secondary validation of hits across multiple cell lines by secondary targeted CRISPR screening. We assessed the robustness and generality of the effect of hits 

identified in the priming screen (WM989-A6-G3-Cas9-5a3, black bars) by carrying out a secondary screen containing single guide RNAs for 34 of the high confidence hits (Tiers 1 and 2) we identified 
in the priming screen, as well as another 52 lower confidence factors from Tiers 3 and 4 (these lower confidence hits may also have been high confidence hits in the resistance screen). See 
Supplemental Table 5 for a list of the targets. We carried out this screen in WM989-A6-G3-Cas9 (orange bars) as well as in another BRAFV600E melanoma cell line (451Lu-Cas9, blue). Within each 
tier, names labeled in green correspond to targets whose single guide RNAs are enriched in NGFRHIGH/EGFRHIGH cells in the initial screen and gray represents targets whose single guide RNAs are 

underrepresented in these rare cells. We plotted the median log
2
 fold change in single guide RNA representation (normalized by non-targeting controls) across three single guide RNAs. Error bars 

represent the standard deviation of the fold change across all single guide RNAs for a given target. Dotted error bars in red extend beyond the limits of the graph. Note that the limits of the axes vary 
between tiers. We found that 25 of the 34 high confidence hits showed at least a two fold change in the frequency of NGFRHIGH/EGFRHIGH cells concordant with the effects detected in the original 

screening clonal cell line (WM989-A6-G3-Cas9-5a3). In 451Lu-Cas9 cells, 20 of the 34 targets also showed a change in the frequency of NGFRHIGH/EGFRHIGH cells, with 11 of those exhibiting at least 
a two-fold change. Although quantitatively they were not as strong as the effects of the Tier 1 and 2 hits, even Tier 3 and 4 hits displayed qualitative agreement in these secondary screens.
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Supplemental Figure 3. Screen for factors modulating number of resistant 

cells upon BRAFV600E inhibition. 

A. We performed a pooled CRISPR screen to detect modulators of the number of 

drug-resistant cells that develop in the presence of the BRAFV600E inhibitor 

vemurafenib. After transducing a library of single guide RNAs and expanding the 

population, we exposed the cells to the BRAFV600E inhibitor vemurafenib (1µM) for 3 

weeks, after which we sequenced the single guide RNAs in the surviving 

population. Changes in the frequency of detection of a given single guide RNA 

indicates that its target may affect the ability of a cell to survive and proliferate upon 

BRAFV600E inhibition.

B. After transfecting a population of melanoma cells, we exposed them to 

vemurafenib (BRAFV600E inhibitor, 1μM) for three weeks to grow resistant colonies. 
We then sequenced the DNA to quantify the single guide RNA representation of 

each target in the resulting population, using the same libraries as in Fig. 1. As 

before, we ranked the targets into tiers based on the percent of single guide RNAs 

that exhibited at least a two-fold change in representation throughout the screen 

(Tier 1, ≥ 75%; Tier 2, ≥ 66%; Tier 3, ≥ 50%; Tier 4, < 50%), thus reflecting the 
degree of confidence we have in the hit (High confidence hits: Tiers 1 and 2; Low 
confidence hits: Tiers 3 and 4). In this screen, we identified 24 high confidence 

factors. For a more detailed description see the methods section. 
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Supplemental Figure 4. Secondary validation of hits across multiple cell lines by secondary 
targeted CRISPR screening. We assessed the robustness and generality of the effect of hits 

identified in the initial resistance screen (WM989-A6-G3-Cas9-5a3, black bars) by carrying out a 

secondary screen containing single guide RNAs for nine high confidence targets (as well as 77 targets 

that either affected vemurafenib resistance but did not pass the thresholds to be called a hit, or affected 

the frequency of NGFRHIGH/EGFRHIGH cells; see Supplemental Table 5 for a list of all the targets). We 

carried out this screen in WM989-A6-G3-Cas9 (orange bars) as well as in another BRAFV600E 

melanoma cell line (451Lu-Cas9, blue). Within each tier, names labeled in red correspond to targets 

whose single guide RNAs are enriched in cells resistant to vemurafenib in the initial screen and gray 

represents targets whose single guide RNAs are underrepresented in these cells. We plotted the 

median log
2
 fold change in single guide RNA representation (normalized by non-targeting controls) 

across three single guide RNAs. Error bars represent the standard deviation of the fold change across 

all single guide RNAs for a given target. Dotted error bars in red extend beyond the limits of the graph. 

Note that the limits of the axes vary between tiers. In WM989-A6-G3-Cas9, we found that seven of the 

nine targets replicated the effect that we observed originally. For 451Lu-Cas9, the same seven factors 

showed similar effects.
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Supplemental Figure 5. Validation of effects of hits from priming and resistance screens by via NGFR immunofluores-

cence and resistant colony formation. 

A. Frequency of NGFRHIGH cells following the knockout of select targets. Each bar represents the change in the number of 
NGFRHIGH cells following knockout of the gene indicated over replicates, each using a different single guide RNA. Error bars 
represent the standard error of the mean across the replicates. We carried out each measurement over three replicates, but 
excluded samples with low cell density (< 500 cells). The star above or below the bars indicate targets where, after excluding 
samples with low cell numbers, n = 1.  Tier refers to the degree of confidence we have in each particular hit, with tier 1 
representing highest confidence hits for which ≥ 75% of the single guide RNAs passed a threshold of two-fold change in the 
initial screens. We performed this analysis for hits from both the priming screen (top) and the resistance screen (bottom). 21 of 
34 high confidence hits from the priming screen showed at least a 50% increase or decrease in the frequency of NGFRHIGH cells  

over control. Of the lower confidence hits (Tier 3 and Tier 4)  21 out of 49 targets increased or decreased the frequency of 
NGFRHIGH cells by 50% or more. 
B. Resistance phenotype of melanoma cells following the knockout of hits from the initital screens. Each bar represents the log

2
 

fold change over non-targeting control in the number colonies able to grow in vemurafenib following knockout of the gene 
indicated. The number of colonies for each target is normalized to the number of cells present in culture before BRAFV600E 

inhibition, reported as number of colonies per every 10,000 cells in culture prior to treatment (see methods). As before, the 
different tiers represent the percent of single guide RNAs against a given target exhibiting at least a two-fold change throughout 
the initial (left) priming or (right) resistance screens. On the left panel, we label in green and gray the effect a given target has in 
the frequency of NGFRHIGH/EGFRHIGH cells (based on the initial priming screen). On the right panel, we label in red and gray the 
effect a given target has in the number of cells that resist BRAFV600E inhibition (based on the initial resistance screen). In this 
plot, each bar represents one experimental replicate. See Supplemental Fig. 6 for replicates. 
C. These images show the effect of CSK knockout on a cell’s ability to develop resistance to BRAFV600E  inhibition. Here, we 
plated CSK-knockout WM989-A6-G3-Cas9-5a3 cells and exposed them to 1μM vemurafenib for three weeks. As before, after 
the treatment we counted the number of resulting colonies and compared it to the number of colonies resulting from 
WM989-A6-G3-Cas9-5a3 cells without the knockout. Note that the number of resistant cells in the CSK sample is too large to 

accurately identify individual colonies. We only counted colonies we could clearly delineate, and thus, the number of colonies 
reported is an underestimate. 
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Knockout increases the frequency of NGFRHIGH/EGFRHIGH cells in the priming screen
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Supplemental Figure 6
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Supplemental Figure 6. Validation of effects of hits by resistant colony formation. 

Resistance phenotype of melanoma cells following the knockout of hits from the initial screens. 
Each bar represents the log

2
 fold change over non-targeting controls in the number of colonies 

able to grow following knockout of the gene indicated. The number of colonies for each target is 
normalized to the number of cells present in culture before BRAFV600E inhibition, reported as 

number of colonies per every 10,000 pre-treatment cells (see methods). As before, the different 
tiers represent the percent of single guide RNAs against a given target exhibiting at least a 

two-fold change throughout the (top) priming or (bottom) resistance screens. On the top panel, we 
labeled in green and gray the effect a given target has in the frequency of NGFRHIGH/EGFRHIGH 

cells (based on the priming screen). On the bottom panel, we labeled in red and gray the effect a 
given target has in the number of cells that resist BRAFV600E inhibition (based on the resistance 

screen). In this plot, each bar represents one experimental replicate (distinct from the one in 
Supplemental Fig. 5B).
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Supplemental Figure 7. Effect of pharmacological inhibition of 

DOT1L on resistance to BRAFV600E and MEK inhibition. 

A. Resistance phenotype of melanoma cells following pharmacological 
inhibition of DOT1L. We pre-treated melanoma cells for seven days with 
either DMSO, or various concentrations of the DOT1L inhibitor 
pinometostat (EPZ5676). Then, we exposed the cells to 1μM 
vemurafenib for three weeks.
B. To assess the effect of DOT1L inhibition on cellular proliferation, we 
compared the population size of WM989-A6-G3 cells over time treated 
with either 4μM of pinometostat (DOT1L inhibitor) or with DMSO. The 
population size is estimated by the amount of nucleic acids present in the 
population using a CyQuant GR dye. The values represent mean 
fluorescence signal over triplicates. Error bars represent standard error 
of the mean. 
C. Resistance phenotype of melanoma cells to BRAFV600E and MEK 
inhibitors following pharmacological inhibition of DOT1L. We pre-treated 
melanoma cells for seven days with either DMSO or 4μM of pinometo-
stat. We then exposed the cells to one of two BRAFV600E inhibitors 
(vemurafenib and dabrafenib, left panels), to one of two MEK inhibitors 
(cobimetinib and trametinib, middle panels), or to a combination of a 
BRAFV600E and MEK inhibitor (vemurafenib + cobimetinib; dabrafenib + 
trametinib, right panels). White arrows point to a few of the many 
colonies that grew under each condition. 
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(log2 fold change over non-targeting controls)

Target tiers

% of sgRNAs against a target showing at 
least a two-fold change in representation in 

the priming screen
Frequency of NGFRHIGH/EGFRHIGH cells

Validation rate
Percent of targets tested showing a change 

in the frequency of NGFRHIGH cells via 
immunofluorescence

Target tested AND validated

Target tested BUT did not validate

Target not tested

Color key

Supplemental Figure 8
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Supplemental Figure 8. Percent of targets from the priming screen that validate. To assess the sensitivity of our screen, we validated the effect observed in the initial priming 
screen for a select group of targets via NGFR immunofluorescence. Here, each dot represents an individual single guide RNA, and we plot the change in single guide RNA representa-
tion between NGFRHIGH/EGFRHIGH cells and controls (as measured in the initial priming screen). We then organize all sgRNAs into tiers (y-axis, tiers one through four) based on the 
percent of single guide RNAs against a target showing at least a two-fold change in representation on NGFRHIGH/EGFRHIGH cells. In red, we labeled targets that when tested again 
produced at least a 50% change in the frequency of NGFRHIGH cells. In black, we labeled targets that we tested but did not validate, and in gray we show targets we did not test. We 
displayed the percent of genes tested and validated at each tier on the right. 
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% of sgRNAs against a target showing at 
least a two-fold change in representation in 

the resistance screen

Target tested AND validated

Target tested BUT did not validate

Target not tested

Color key

Validation rate
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(log2 fold change over non-targeting controls)
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Supplemental Figure 9

−10 −8 −6 −4 −2 0 2 4 6 8

Supplemental Figure 9. Percent of targets from the resistance screen that validate. To assess the sensitivity of our screen, we validated the effect observed in the initial 
resistance screen for a select group of targets via colony formation assays. Here, each dot represents an individual single guide RNA, and we plot the change in single guide 
RNA representation between cells resistant to vemurafenib and cells that have never been exposed to the drug (as measured in the initial resistance screen). We then 
organize all single guide RNAs into tiers (y-axis, tiers one through four) based on the percent of single guide RNAs against a target showing at least a two-fold change in 
representation on drug resistant cells. In red, we labeled targets that when tested again produced at least a 50% change in the frequency colonies resistant to BRAFV600E 

inhibition. In black, we labeled targets that we tested but did not validate, and in gray we show targets we did not test. We displayed the percent of genes tested and validated 
at each tier on the right. 
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Supplemental Figure 10. Transcriptional effects induced by knockout of select screen targets. 

A. The heatmap represents the biclustering analysis of different screen targets (rows) based on the change in expression of 

all genes differentially expressed in at least one knockout (columns). Within the heatmap, red indicates an increase in 
expression following the knockout, while blue indicates a decrease in gene expression (see heatmap color key). Each target 
(rows) represents transcriptomes of biological triplicates (unless otherwise stated on Supplemental Table 4). Target labels 

(rows) in green indicate genes whose knockout increased the frequency of NGFRHIGH/EGFRHIGH cells in the screens. In red are 

those whose knockout increased the number of cells resistant to vemurafenib, and in gray are those that decreased the 
frequency of either NGFRHIGH/EGFRHIGH cell or of cells resistant to vemurafenib. As before, we organized targets into 

confidence tiers indicated by the number of asterisks, based on the percent of single guide RNAs against that target that 
showed an effect in the screen (see knockout color key).
B. We performed principal component analysis of the transcriptional effects induced by the knockout of select screen targets. 
We used as input the gene set enrichment scores from Fig. 5A to identify primary axes that account for the greatest degree of 
transcriptome variability across knockout cell lines. The color indicates the effect of the knockout in the initial priming screen. 
The size of the dot indicates the degree of confidence we have in each particular hit based on the percent of the single guide 

RNAs against a target that passed a threshold of two-fold change in the priming screen. In black, we labeled melanoma cells 
where we did not knockout any targets but either enriched for EGFRHIGH cells, NGFRHIGH cells, EGFRHIGH/NGFRHIGH cells, or for 

cells resistant to vemurafenib.
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Supplemental Figure 11

Supplemental Figure 11. Technical validation of WM989-A6-G3-Cas9-5a3 cell line. 

A. WM989-A6-G3-Cas9-5a3 cells expressing NGFR, EGFR, and both NGFR and EGFR are more likely to survive and proliferate in the presence of vemurafenib (Shaffer et al. 2017). 

Here, we show the number of colonies that grow upon vemurafenib exposure in a mixed population of WM989-A6-G3-Cas9-5a3 or in the same population but enriched for EGFRHIGH 

cells, NGFRHIGH cells, or NGFRHIGH/EGFRHIGH cells. 

B. In this plot, we show the single guide RNA representation (as percent GFP-positive cells) of controls over time in WM989-A6-G3 cells with or without Cas9 expression. Negative 

controls (black) are single guide RNAs aimed at ROSA26, a non-expressing gene in human melanoma. Positive controls (red) target proteins necessary for cell viability. Only cells 

expressing both Cas9 and a positive control single guide RNA should disappear from the population over time.
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