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Abstract 

Background: Spastic paraplegia type 4 (SPG4), resulting from heterozygous mutations in the 

SPAST gene, is the most common form among the heterogeneous group of hereditary spastic 

paraplegias (HSPs).   

Objective: To study genetic and clinical characteristics of SPG4 across Canada. 

Methods: The SPAST gene was analyzed in a total of 696 HSP patients from 431 families by 

either HSP-gene panel sequencing or whole exome sequencing (WES). We used Multiplex 

ligation-dependent probe amplification to analyze copy number variations (CNVs), and 

performed in silico structural analysis of selected mutations. Clinical characteristics of patients 

were assessed, and long-term follow-up was done to study genotype-phenotype correlations.  

Results: We identified 157 SPG4 patients from 65 families who carried 41 different SPAST 

mutations, six of which are novel and six are CNVs. We report novel aspects of mutations 

occurring in Arg499, a case with homozygous mutation, a family with probable compound 

heterozygous mutations, three patients with de novo mutations, three cases with pathogenic 

synonymous mutation, co-occurrence of SPG4 and multiple sclerosis, and novel or rarely 

reported signs and symptoms seen in SPG4 patients.  

Conclusion: Our study demonstrates that SPG4 is a heterogeneous type of HSP, with diverse 

genetic features and clinical manifestations. In rare cases, biallelic inheritance, de novo mutation, 

pathogenic synonymous mutations and CNVs should be considered.   
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Introduction 

Spastic paraplegia type 4 (SPG4, OMIM #182601) is the most frequent form of either sporadic 

or familial hereditary spastic paraplegias (HSPs), caused by heterozygous mutations in the 

SPAST gene.
1-3

 With more than 80 potentially causative loci or genes reported to date,
4
 HSPs are 

known to affect 1-10/100,000 of the population,
5
 and autosomal dominant (AD) HSPs comprise 

43%-80% of them.
5-11

 Among all AD-HSPs, 70-80% are categorized as “pure”
12

 with a 

phenotype limited to pyramidal signs in the lower limbs, with or without deep sensory loss and 

sphincter disturbances.
12-15

 Of all pure AD-HSPs, about 40% are caused by SPAST mutations.
12

  

SPAST encodes spastin, which is a protein from the AAA (ATPase associated with 

various cellular activities) family of ATPases.
16, 17

 Spastin controls different aspects of 

microtubule dynamics (e.g. microtubule number, motility, length, disassembly and remodeling), 

and hydrolyses ATP to cleave microtubules,
18, 19

 a necessary step in axonal transport.
20

 Its 

mechanism involves binding to the C-terminus of tubulin and severing tubulin subunits from the 

microtubule in an ATP hydrolysis–dependent manner.
19

 The structure of human spastin residues 

323-610 was solved by cryoelectron microscopy.
21

 The structure reveals an AAA+ ATPase 

homohexamer (Figure 1A), with ATPase active sites located at the interface between every 

adjacent subunit (Figure 1B).
22, 23

 A tubulin peptide runs through the channel, suggesting a hand-

over-hand mechanism of substrate translocation, with five subunits interacting with the peptide 

forming a spiral staircase and one displaced from the peptide/substrate (Figure 1A).
21

 

To date, more than 200 SPAST mutations have been found.
3, 16, 24-26

 Deletion/insertions, 

nonsense, and splice site mutations are distributed throughout the gene, while missense 

mutations are mostly clustered in the AAA domain.
3
 Exon deletions may account for 20% of 

cases in whom point mutations are not detected.
27, 28
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The penetrance of SPG4 is up to 80-90% and is age-dependent,
3
 with age at onset (AAO) 

that may range from infancy to the eighth decade of life.
1, 29

 Most cases present as juvenile or 

adult-onset pure spastic paraplegia with urinary sphincter disturbances, pes cavus, and dysarthria. 

However, SPAST mutations are known to cause clinically heterogeneous manifestations, and a 

high variety of signs and symptoms is reported among carriers of different SPAST mutations. 

This clinical heterogeneity occurs even among patients harboring the same mutations,
30

 

suggesting that other factors affect the clinical presentation of SPG4.  

Although previous studies have deciphered some aspects of this variability, the genotype-

phenotype correlations and some rare features of SPG4 are not fully understood. In this study, 

we analyzed a large cohort of SPG4 patients from Canada to better clarify the genetic and 

clinical spectrum of the disease. 

 

Methods   

Population 

A total of 696 HSP patients from 431 families were recruited in eight medical centers across 

Canada (Montreal, Quebec, Ottawa, Toronto, Hamilton, Calgary, Edmonton, and Vancouver) as 

part of CanHSP, a Canadian consortium for the study of HSP. Details about the diagnosis and 

recruitment process has been previously reported.
31

 Clinical assessments were done including 

family history, demographic data, developmental history, AAO, and HSP core symptoms (lower 

extremity weakness and spasticity, extensor plantar responses, hyperreflexia, and bladder 

dysfunction). Other neurological, as well as non-neurological clinical presentations of HSP, were 

also assessed. For a group of the patients, the Spastic Paraplegia Rating Scale (SPRS), which is 
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an indicator of severity in HSP, was measured.
32, 33

  For another subset of patients, brain and/or 

spine MRI were performed. The disease was deemed pure unless the patient had at least one sign 

not attributable to the lateral corticospinal tract or pyramidal tract, including ataxia, intellectual 

disability, cognitive decline, language development delay, extrapyramidal signs, visual 

dysfunction, epilepsy, deafness, dysarthria, optic atrophy, peripheral neuropathy, and dystonia; in 

which case the disease was classified as complex.  

All the data is stored in a central database at McGill University. All patients signed 

informed consent forms and the institutional review board approved the study protocol.   

Genetic and data analysis 

DNA was extracted from peripheral blood using a standard procedure.
34

 Initially, HSP-gene 

panel sequencing was performed on 379 patients. Then, 194 genetically undiagnosed patients, 

and additional 206 patients who were not analyzed with panel sequencing (400 patients in total 

from 291 families), went through whole exome sequencing (WES).  

For WES, the Agilent SureSelect Human All Exon v4 kit for capture and targeted 

enrichment of the exome was used. To analyze the WES data, we used a list of 785 HSP-related 

genes or genes associated with similar neurological disorders which cause spasticity 

(Supplementary Table 1). Illumina HiSeq 2000/2500/4000 system was used for sequencing 

captured samples. Using Burrows-Wheeler Aligner (BWA), the sequence reads were then 

aligned against the human genome (GRCh37 assembly).
35

 We used the Genome Analysis 

ToolKit (GATK)
36

 and Annotate Variation (ANNOVAR)
37

 for variant calling and annotation, 

respectively. We excluded variant calls with a genotype quality less than 97 and less than 30x 

depth of coverage. Integrated Genomics Viewer was used to visually inspect the detected 
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variants, and suspicious variants were validated by Sanger Sequencing. Sanger Sequencing was 

also used for assessing sporadic patients’ parents, to determine if the proband had a de novo 

mutation. 

SPAST variants (NM_014946) were initially selected based on identifying missense and LoF 

alleles, including frame-shift, splice-site, nonsense, and copy number variations (CNVs) with a 

minor allele frequency less than 0.01 in gnomAD.
38

 The variants’ pathogenicity has been 

determined using VarSome,
39

 according to the American College of Medical Genetics and 

Genomics (ACMG) guideline. Variants classified as “Benign” and “Likely Benign”, as well as 

intronic splice site variants higher than ±3 were excluded from the analysis. To detect CNVs,  

ExomeDepth
40

 was used on WES data, followed by 48 selected samples that went through 

Multiplex ligation-dependent probe amplification (MLPA) testing (MRC Holland, Amsterdam, 

The Netherlands) to confirm or exclude suspected SPAST CNVs. InterPro
41

 was applied to 

identify domains and corresponding sites in the protein.  

Statistical analysis 

To determine the association between two categorical variables, one categorical variable with 

one continuous variable, and two continuous variables, Pearson chi-squared test, Mann-Whitney 

U test, and Spearman’s rank correlation coefficient were used, respectively. P-value was set at 

<0.05 and Bonferroni correction for multiple comparisons was applied when necessary. SPSS 

was used to perform all statistical analyses.  

In silico structural analysis 

The atomic coordinates of human spastin bound to a glutamate-rich peptide, ADP, BeF3 and 

Mg
2+

 and D. melanogaster spastin bound to a glutamate-rich peptide, ADP, ATP and Mg
2+

were 
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downloaded from the Protein Data Bank (ID 6PEN and 6P07). The effect induced by each 

mutation was evaluated using the “mutagenesis” toolbox in The PyMOL Molecular Graphics 

System, Version 2.4.0 Schrödinger, LLC. and the DynaMut server 

http://biosig.unimelb.edu.au/dynamut/.
42

 

 

Results 

Cohort characteristics  

We identified 65 families (15.1% of the families in HSP cohort), and a total of 157 patients 

(22.5% of HSP patients) with SPG4. Mean AAO was 22 years (0-67, SD: 19.89), and it followed 

a bimodal distribution; the first peak in the first 5 years of life, and the second peak from 35 to 

44 years of age (Supplementary Figure 1). Mean age at examination was 43.4, and mean disease 

duration was 21 years. Patients with longer disease duration presented with higher SPRS scores 

(Spearman’s correlation coefficient; p = 0.048). In contrast, age at onset was not associated with 

the severity of the disease (Spearman’s correlation coefficient; p = 0.934). Complex HSP was 

seen in 24/65 (36.9%) of the probands, and 37/157 (23.6%) of all the patients. No significant 

differences were seen between male and female patients in AAO and other clinical 

manifestations. Table 1 details the clinical presentation of the patients. 

We detected 41 different SPAST mutations in our cohort (Table 2). Most mutations 

(22/34, 64.7%) occurred between amino acids 374 and 567, in the AAA cassette. Among the 

missense mutations, 15/20 (75%) were clustered in AAA cassette, while LoF mutations were 

more evenly distributed across gene (Figure 2). Presentation of the disease did not differ 

significantly between the two types of mutation (Table 1).  
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Novel SPAST mutations  

Of the 41 different SPAST mutations in our cohort, six were novel, including p.(Trp77Ter), 

p.(Glu366AspfsTer28), p.(Gly382_Pro383insArg), p.(Phe403Leu), p.(Arg498AlafsTer30), and 

p.(Ser597ThrfsTer3). We performed in silico analysis to investigate the impact of these 

mutations on the structure and activity of spastin, with exception of p.(Trp77Ter), as Trp77 is not 

visible in any structure of spastin and could not be investigated.  

Glu366 is located in the loop365-377 and the frameshift mutation p.(Glu366AspfsTer28) 

changes all the residue subsequent to residue 365 and inserts a stop codon at position 394. This 

mutation truncates residues 394 to 616 which includes residues involved in oligomerization and 

ATP-binding, which will abrogate its enzymatic activity. Gly382 and Pro383 are located in the 

nucleotide-binding loop382-389.
43

 Residues Gly385 and Asn386 interact directly with the ADP, in 

a conformation that is shaped by the Pro383 and Pro384 (Figure 1C). The mutation 

p.(Gly382_Pro383insArg) lengthens this loop and likely destabilizes the interaction between the 

protein and the nucleotide. Phe403 forms a pi-stacking interaction with Phe439 and hydrophobic 

interactions with neighbouring residues (Figure 1D). Thus, mutation p.(Phe403Leu) would 

destabilize the domain and impair the ATPase activity. 

In this structure, Arg498 and Arg499 are both involved in coordinating ADP. Arg498 is 

making direct interaction with the β phosphate of the nucleotide located in the active site, while 

Arg499 stabilizes helix455-470 and coordinates BeF3, a phosphate structural analog (Figure 1E). 

By homology with D. melanogaster spastin structure (PDB ID: 6P07), those residues seem to be 

also involved in ATP β and γ phosphate coordination (Figure 1F). As a result, we can 
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hypothesize that the BeF3 in the active site is mimicking the γ phosphate on an ATP. Mutation 

p.(Arg498AlafsTer30) causes residues 498 and 499 to be serine and valine residues, which 

would prevent ATP stabilization. In addition, this frame shift terminates the protein after residue 

528, further disrupting the ATP-binding domain. This mutation will therefore abolish the 

ATPase activity. Finally, mutation p.(Ser597ThrfsTer3) will induce a frame shift at residue 597 

and truncate the protein at residue 600. The missing C-terminal residues form a helix involved in 

intersubunit interactions. This mutation would therefore destabilize the hexameric assembly, 

which would disrupt the ATPase activity. 

 

Founder French-Canadian mutations and known CNVs 

The most frequent SPAST mutation in our cohort, p.(Gly559Asp), which has previously been 

suggested to be a founder mutation in French-Canadian population
44

, was carried by 8 families 

(12.3%) and 15 patients in total (9.5%). Seven out of 24 French-Canadian probands (29%) 

harbored this mutation, while among all the patients with other or unknown ancestral 

backgrounds, this mutation was present in only one out of 29 probands (3.4%, p=0.011). 

Moreover, the mutation p.(Phe403Leu) was only detected in patients with French-Canadian 

ancestral background, in 5 patients from 2 families, suggesting it may be a founder mutation. 

Seven patients (4.5%) from six families (9.2%) carried a CNV (Supplementary Table 2), all of 

which have been previously reported. 
27

 

 

Earlier age at onset and specific clinical features in patients with mutations in SPAST 

p.Arg499   
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The range of AAO in all 4 patients from 4 different families, two of which have previously been 

reported
45

 with the p.(Arg499His) mutation was 1-3 years (Mann-Whitney U test; p = 0.003). 

The age range at which these four patients started to show symptoms was 1-5. Patients with this 

mutation in our cohort were more likely to present with motor delay, speech delay, dysarthria, 

learning disability, progressive cognitive deficits, and upper extremity weakness (Supplementary 

Table3).  

Although statistically insignificant, cases who carried another mutation affecting the 

same amino acid residue, p.(Arg499Cys), also showed symptoms at a younger age (the range of 

AAO was 1-5 in three patients and 11-15 in one patient, p = 0.111). When combined together, 

the two mutations occurred in Arg499 locus were associated with a younger AAO (Mann-

Whitney U test; p = 0.004). In silico analysis of Arg499 is discussed above, along with Arg498. 

Furthermore, as Arg499 stabilizes the γ phosphate, mutations p.(Arg499Cys) or p.(Arg499His) 

would also impede ATP binding and catalysis. 

 

Possible biallelic inheritance in SPG4 

The SPAST p.(Ser44Leu) variant has been previously suggested to play modifier role in SPG4.
1, 

46, 47
 This variant was detected in one out of the 36 families that had undergone WES. From the 

three affected siblings, two had undergone WES, and both were heterozygous for the novel 

pathogenic mutation p.(Ser597ThrfsTer3), as well as for the p.(Ser44Leu) variant. The three 

siblings had complex HSP with disease onset in early childhood (clinical presentation of these 

patients is detailed in Supplementary Table 4). One unaffected parent only carried the 

p.(Ser44Leu) polymorphism, and the other unaffected parent was heterozygous for the 
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pathogenic p.(Ser597ThrfsTer3) mutation and wild-type for p.(Ser44Leu) (Supplementary Figure 

2). The last physical examination of the parent with the pathogenic mutation at the age between 

56 to 60 revealed completely normal findings, including normal reflexes, gait, and motor exam, 

suggesting that the p.(Ser44Leu) variant may be a modifier of the disease, or that extreme 

anticipation with undetected clinical effects in the mother exist in this family. 

Another patient with consanguineous parents, carried a homozygous mutation, SPAST 

p.(Tyr51Ter). The patient had started to show symptoms at an age range of 1-5 years and 

suffered from core HSP symptoms, motor and speech delay, swallowing difficulty, dysarthria, 

upper extremity weakness, pes cavus, and skeletal abnormalities. Her brain and total spine MRI 

were normal and her SPRS score was 40 when examined at an age between 16 and 20 years. The 

patient’s parents were both asymptomatic heterozygous carriers. 

 

Patients with novel or rarely reported clinical manifestations 

In our cohort, four patients (Supplementary Table 5) presented with deafness, one of whom had a 

de novo SPAST p.(Arg499His) mutation, and the remaining three had familial SPG4. We also 

report a patient with ocular movement abnormality, in whom extraocular movements showed 

slightly hypometric saccades but pursuit was smooth, and a mild horizontal gaze evoked rotatory 

nystagmus. The disease-causing mutation in this patient was p.(Gln434Ter). 

One of the signs less reported to date in SPG4 is upper extremity intention tremor, seen in 

two of the patients in the current study. The causative mutations in these two patients were 

p.(Arg503Trp) and p.(Leu371Pro). Their respective range of AAO was 46-50 and 26-30, and 

both presented with a severe form of the disease (respective SPRS scores: 34 and 39). The first 
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patient also had swallowing difficulty and peripheral neuropathy, and both had upper extremity 

ataxia.  

Another clinical feature seen in two of the patients in our cohort was seizures, which is quite rare 

in SPG4. One of the patients of who carried the mutation p.(Pro489Leu), had a range of  AAO of 

21-25 years, and suffered from generalized seizures starting at 41-45 years of age. The second 

patient harbored the splice-site mutation c.1321+1G>A, with AAO of between 1 and 5 years, had 

episodes of atypical seizures at 56-60. 

 

De novo cases  

The parents of the three sporadic cases in our cohort did not carry the causative SPAST 

mutations. The first patient, with SPAST p.(Ser407Asn), had an AAO of 1-5 years. This case 

presented with lower extremity weakness and spasticity, upper and lower limb hyperreflexia, 

extensor plantar response, ankle clonus, and sensory abnormalities. She also showed signs of 

upper extremity weakness, motor and speech delay, dysarthria, learning disability, and 

swallowing difficulty. Their brain MRI was normal. The second patient had de novo SPAST 

p.(Arg499His). This patient started to show symptoms at age range of 1-5, and her symptoms 

included lower extremity weakness, spasticity and hyperreflexia, extensor plantar responses, and 

ankle clonus. Furthermore, they had motor and speech delay, dysarthria, and learning disability. 

They had a normal brain MRI, and their SPRS score was 37. The last de novo patient, also with a 

p.(Arg499His) mutation, also with an AAO range of 1-5 years, had an SPRS score of 28, and 

apart from core symptoms of HSP, had motor and speech delay, deafness, and dysarthria. The 

two latter patients have been previously reported.
45
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Cases with synonymous mutation and co-occurrence of multiple sclerosis and SPG4 

We report three patients from two unrelated families who carried the synonymous mutation 

SPAST p.(Lys414Lys), previously reported to be pathogenic.
48

 The first patient had an AAO of 

between 6-10 years, and presented with lower extremity spasticity, hyperreflexia, and extensor 

plantar responses. The second family had two affected individuals, parent and offspring. The 

parent started to have difficulty walking at the age of 61-65 which led to using a cane, had 

marked spasticity and brisk reflexes in the lower limbs along with ankle clonus, upgoing plantar 

responses, urge incontinency, and mild decrease of vibration sensation in the ankles and toes. 

The offspring noticed difficulty walking at 21-25 years of age, which progressed slowly. This 

case had upper and lower limb weakness, bilateral Babinski sign and ankle clonus, and positive 

Hoffman sign. At an age between 31 and 35, lumbar puncture carried out due to diplopia was 

positive for oligoclonal bands and suggested a diagnosis of clinically isolated syndrome (CIS), 

which is considered as the first clinical episode in multiple sclerosis (MS).
49

 They were treated 

with methylprednisone, and after one month, the diplopia resolved.  

 

Discussion 

In this large-scale analysis of SPG4 from CanHSP, we report novel SPAST mutations, the 

possibility of a founder mutations in the French-Canadian population, novel characteristics of 

mutations occurring in Arg499, and potential biallelic inheritance. We also report patients with 

rare or novel clinical manifestations, and co-occurrence of SPG4 and MS.  
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Using in silico analysis, we predict that the novel mutations reported in this study cause a 

loss-of-function of spastin, either by substantially shortening the protein, affecting its ATPase 

activity, or disturbing the formation of a ternary and quaternary structure necessary for catalysis. 

Spastin, a microtubule-cleaving enzyme involved in the cytoskeletal rearrangement,
50-52

 also has 

a role in intracellular trafficking, cytokinesis regulation and resealing of nuclear membrane.
53-55

 

In neurons, it is involved in the regeneration of axons and axonal transport.
51, 56-58

 Mutations in 

SPAST could result in a disruption of normal organelle trafficking and distribution, and thus 

micro-organelle accumulation in axons and swelling of axons
59-63

 which could result in HSP 

phenotype. We looked further into the three patients identified as sporadic and found out that all 

carried de novo mutations. Consistent with previous reports of more severe manifestations in 

patients with de novo mutations,
64

 all patients showed a severe form of the disease. However, it 

is important to note that the mutation in two of the de novo patients (Arg499His), which is also 

carried by 33% of de novo patients,
64

 is associated with a younger AAO, and infantile-onset 

ascending spastic paraplegia (IAHSP); regardless of the mode of inheritance.
65, 66

 Patients 

harboring this mutation in our cohort did not show all criteria to be diagnosed as IAHSP (spastic 

paraplegia progressing to tetraplegia, ocular gaze paralysis, pseudobulbar palsy
67

), however, they 

showed a higher probability of suffering from upper extremity weakness, dysarthria, speech and 

motor delay, learning disabilities and cognitive delay. It has been suggested that amino acid 499 

is located in one of the highly conserved regions of the SPAST gene,
18

 and mutations that occur 

in this region could have a significant effect on the hydrophobicity of the protein and its ability 

to sever microtubules.
45

 

The mutation in our homozygous patient has been reported previously in a heterozygous 

patient;
68

 however, the presence of an additional mutation or CNVs could not have been 
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determined in that study, as only SPAST had been sequenced. Our patient with the homozygous 

mutation SPAST p.(Tyr51Ter) showed a severe form of the disease. Previously, there have been 

two reports of homozygous variants in SPAST. One, with the nonsense mutation p.(Ser545Ter), 

which also reports a complex and severe form of the disease,
69

 and another, with the mutation 

p.(Leu534Pro), who showed a pure spastic paraparesis at the age of 39.
70

 The patient from our 

cohort and the previously reported patient with p.(Ser545Ter) presented with a more severe form 

of the disease, probably because they carried nonsense mutations, while the latter patient had a 

missense mutation. Furthermore, in the latter study, the parents of the proband were 

asymptomatic carriers of the mutation.  

The mode of inheritance observed in the patient with homozygous mutation and the 

family carrying the potential modifier mutation SPAST p.(Ser44Leu), may be explained by 

incomplete penetrance and/or anticipation
71-73

 rather than biallelic inheritance, which could be 

considered in prenatal diagnosis and genetic counselling. The synonymous mutation SPAST 

p.(Lys414Lys) we report in three patients has been previously reported to underlie the disease, 

and minigene assay suggested that this variant leads to an aberrant splicing effect.
48

 Although we 

did not find other synonymous SPAST mutations in additional HSP patients, it is important to not 

exclude synonymous variants when analyzing HSP specifically and other diseases in general.  

The AAO distribution in our cohort followed the same trend as previously reported,
1, 68

 

however, our results did not replicate previous findings which suggested that the underlying 

mutation and the patient sex can modify the disease, and that patients with later onset of the 

disease can have faster progression.
1, 24

 In our data, we did not find an association between 

mutation type, sex, or late onset, with the disease course. Table 3 compares the frequency of 

symptoms not attributable to pure form of the disease in our cohort with previous studies. As 
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shown, we report deafness in SPG4 for the first time. The co-occurrence of SPG4 and MS has 

been reported before; 
74, 75

 however, the results of studies assessing an association between HSP-

related mutations and MS are controversial
76, 77

  and further studies are required to verify such a 

relation.  

Our study has several limitations. For instance, in spite of being one of the largest HSP 

cohorts, the number of SPG4 patients was limited, especially for a genotype-phenotype 

correlation study. Furthermore, the families interested in participating in this study were 

probably those who had remained undiagnosed after the primary SPAST testing; therefore, the 

proportion of SPG4 patients in this study may be underestimated. In addition, clinical signs and 

symptoms for some of the patients were missing. 

In conclusion, we report one of the largest SPG4 cohorts, with 41 different mutations 

including 6 novel mutations. We suggest that modes of inheritance other than autosomal 

dominant could be involved in SPG4. Our study sheds light on some rarely reported or 

unreported aspects of the disease and helps improve genetic counseling and clinical trials 

conducted on SPG4. Towards this goal, larger efforts and international collaborations are 

required. 
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Tables 

 

Table 1. Frequency of signs and symptoms among different categories of gender, mutation type and protein domain. 

Clinical 

presentation 

Frequency Gender Type of mutation Protein domain (missense mutations) 

Male 

(n=72, 

45.9%) 

Female 

(n=85, 

54.1%) 

P 

value 

LoF 

(n=21/41) 

Missense 

(n=20/41) 

P 

value 

MITa AAA_ATPaseb AAA_lid_3c Vps4_Cd Other 

domains 

P 

value 

Mean Age at 

onset ±SD 

- 25.9± 

19.6 

19± 20 .040 24± 20 27.4± 

20.2 

.465 38 22.9±19.2 32.5±21.7 29.3±23.3 30.5±19.1 .626 

Mean SPRS 

score ±SD 

- 23.1± 

12.5 

22± 

14.7 

.853 22± 8.7  22.8± 

15.6 

.696 28 20.1±14.3 6.0±2.8 3 34.6±6.6 .066 

Lower 

extremity 

weakness 

53/102 

(52%) 

25/44 

(56.8%) 

28/58 

(48.3%) 

.392 10 /24 

(41.6%) 

35 /50 

(70%) 

.019 - 24/32 

(75%) 

3/10 

(30%) 

1/1 

(100%) 

7/7 

(100%) 

.010 

Lower 

extremity 

spasticity 

92/109 

(84.4%) 

44/48 

(91.7%) 

48/61 

(78.7%) 

.064 25 /28 

(89.3%) 

45/49 

(91.8%) 

.708 - 32/32 

(100%) 

7/10 

(70%) 

- 6/7 

(85.7%) 

.008 

Lower 

extremity 

hyperreflexia 

102/111 

(91.9%) 

46/49 

(93.9%) 

56/62 

(90.3%) 

.496 25 /25 

(100%) 

51/53 

(96.2%) 

.325 - 32/33 

(97%) 

13/13 

(100%) 

- 6/7 

(85.7%) 

.261 

Extensor 

plantar 

response 

82/105 

(78.1%) 

38/44 

(86.4%) 

44/61 

(72.1%) 

.082 19 /24 

(79.2%) 

46/50 

(92%) 

.114 - 30/31 

(96.8%) 

10/12 

(83.3%) 

- 6/7 

(85.7%) 

.278 

Abnormal 

bladder 

function 

52/100 

(52%) 

25/43 

(58.1%) 

27/57 

(47.4%) 

.286 15 /22 

(68.2%) 

28/51 

(54.9%) 

.290 - 15/32 

(46.9%) 

6/11 

(54.5%) 

1/1 

(100%) 

6/7 

(85.7%) 

.227 

Ankle clonus 59/97 

(60.8%) 

25/40 

(62.5%) 

34/57 

(59.6%) 

.777 14 /22 

(63.6%) 

34/47 

(72.3%) 

.464 - 19/28 

(67.9%) 

11/12 

(91.7%) 

- 4/7 

(57.1%) 

.189 

Motor delay 9/50 

(18%) 

3/24 

(12.5%) 

6/26 

(23.1%) 

.331 0 /10 

(0%) 

7/34 

(20.6%) 

.118 - 6/22 

(27.3%) 

0/6 

(0%) 

0/1 

(0%) 

1/5 

(20%) 

.490 

Speech delay 

or 

abnormality 

8/47 

(17%) 

3/24 

(12.5%) 

5/23  

(21.7%) 

.400 0 /11 

(0%) 

8/31 

(25.8%) 

.061 - 6/20 

(30%) 

1/6 

(16.7%) 

0/1 

(0%) 

1/4 

(25%) 

.851 

Learning 

disability 

10/51 

(19.6%) 

3/25 (12 

%) 

7/26 

(26.9%) 

.180 0 /11 

(0%) 

8/34 

(23.5%) 

.076 - 7/22 

(31.8%) 

0/6 0/1 

(0%) 

1/5 

(20%) 

.387 

Progressive 

cognitive 

deficiency 

6/73 

(8.2%) 

5/36 

(13.9%) 

1/37 

(2.7%) 

.082 1 /19 

(5.3%) 

3/42 

(7.1%) 

.784 - 3/28 

(10.7%) 

0/6 

(0%) 

0/1 

(0%) 

0/7 

(0%) 

.656 

Retinopathy 

or optic 

1/71 

(1.4%) 

0/34 

(0%) 

1/38 

(2.6%) 

.348 - - - - - - - - - 
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atrophy 

Ocular 

movement 

abnormalities 

1/72 

(1.4%) 

0/33 

(0%) 

1/38 

(2.6%) 

.341 1 /19 

(5.3%) 

0/41 

(0%) 

.139 - 

 

- - - - - 

Deafness 4/71 

(5.6%) 

3/34 

(8.8%) 

1/37 

(2.7%) 

.264 0 /19 

(0%) 

4/41 

(9.8%) 

.159 - 2/27 

(7.4%) 

0/6 

(0%) 

1/1 

(100%) 

1/7 

(14.3%) 

.017 

Swallowing 

difficulty 

4/72 

(5.6%) 

1/34 

(2.9 %) 

3/38 

(7.9%) 

.360 0 /20 

(0%) 

4/40 

(10%) 

.143 - 3/27 

(11.1%) 

0/6 

(0%) 

0/1 

(0%) 

1/6 

(16.7%) 

.774 

Dysarthria 12/73 

(16.4%) 

5/35 

(14.3%) 

7/38 

(18.4%) 

.634 3 /20 

(15%) 

8/41 

(19.5%) 

.667 - 6/27 

(22.2%) 

1/6 

(16.7%) 

0/1 

(0%) 

1/7 

(14.3%) 

.914 

Upper 

extremity 

weakness 

5/72 

(6.9%) 

2/34 

(5.9 %) 

3/38 

(7.7%) 

.737 0 /19 

(0%) 

4/41 

(9.8%) 

.159 - 3/27 

(11.1%) 

0/6 

(0%) 

0/1 

(0%) 

 

1/7 

(14.3%) 

.807 

Upper 

extremity 

hyperreflexia 

31/77 

(40.3%) 

15/36 

(41.7%) 

16/41 

(39%) 

.814 11 /21 

(52.4%) 

15/44 

(34.1%) 

.159 - 8/27 

(29.6%) 

3/9 

(33.3%) 

1/1 

(100%) 

3/7 

(42.9%) 

.491 

Sensory 

abnormalities 

33/73 

(45.2%) 

15/35 

(42.9%) 

18/38 

(47.4%) 

.699 10 /21 

(47.6%) 

19/40 

(47.5%) 

.993 - 12/26 

(46.2%) 

3/6 

(50%) 

1/1 

(100%) 

3/7 

(42.9%) 

.753 

Peripheral 

neuropathy 

10/70 

(14.3%) 

4/35 

(11.4%) 

6/35 

(17.1%) 

.495 2 /20 

(10%) 

7/39 

(17.9%) 

.421 - 5/24 

(20.8%) 

1/8 

(12.5%) 

0/1 

(0%) 

1/6 

(16.7%) 

.914 

Pes cavus 16/73 

(21.9%) 

9/35 

(25.7%) 

7/38 

(18.4%) 

.452 6 /19 

(31.6%) 

5/41 

(12.2%) 

.071 - 4/27 

(14.8%) 

0/6 

(0%) 

0/1 

(0%) 

1/7 

(14.3%) 

.759 

Upper 

extremity 

ataxia 

4/72 

(5.6%) 

1/35 

(2.8%) 

3/37 

(8.1%) 

.331 0 /19 

(0%) 

4/42 

(9.5%) 

.162 - 2/27 

(7.4%) 

1/7 

(14.3%) 

0/1 

(0%) 

1/7 

(14.3%) 

.893 

Upper 

extremity 

Intent tremor 

2/72 

(2.8%) 

0/35 

(0%) 

2/37 

(5.4%) 

.227 0 /19 

(0%) 

2/42 

(4.8%) 

.490 - 1/27 

(3.7%) 

0/7 

(0%) 

0/1 

(0%) 

1/7 

(14.3%) 

.331 

Seizures 2/71 

(2.8%) 

0/34 

(0%) 

2/37 

(5.4%) 

.334 0 /19 

(0%) 

1/41 

(2.4%) 

.492 - 1/27 

(3.7%) 

0/6 

(0%) 

0/1 

(0%) 

0/7 

(0%) 

.912 

Skeletal 

abnormality 

4/69 

(5.8%) 

2/33  

(6.1%) 

2/36 

(5.5%) 

.929 0 /19 

(0%) 

3/40 

(7.5%) 

.220 - 2/27 

(7.4%) 

0/6 

(0%) 

- 1/7 

(14.3%) 

.621 

Amyotrophy 

or lower 

motor neuron 

features 

6/71 

(8.5%) 

5/35 

(14.3%) 

1/36 

(2.8%) 

.081 1/12 

(8.3%) 

3/19 

(15.8%) 

.542 - 3/33 

(9.1%) 

0/6 

(0%) 

- 1/8 

(12.5%) 

.823 

Abnormal 

brain MRI 

6/48 

(12.5%) 

4/28 

(14.3%) 

2/20 

(10%) 

.658 3 /13 

(23.1%) 

3/32 

(9.4%) 

.220 - 2/20 

(10%) 

0/5 

(0%) 

- 1/7 

(14.3%) 

.696 

Abnormal 

spine MRI 

8/53 

(15.1%) 

4/30 

(13.3%) 

4/23 

(17.4%) 

.683 2 /15 

(13.3%) 

6/32 

(18.8%) 

.645 - 4/17 

(23.5%) 

1/9 

(11.1%) 

- 1/6 

(16.7%) 

.735 

Bonferroni corrected p value: 0.0017. 
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SD, standard deviation; SPRS, Spastic Paraplegia Rating Scale; MRI, magnetic resonance imaging; n, number; LoF, loss of function, 

MIT, microtubule interacting and trafficking; AAA, ATPase associated with various cellular activities; ATP, adenosine triphosphate. 

a 
InterPro (IPR) number: IPR036181; 

b
 IPR003593; 

c 
IPR041569; 

d 
IPR015415 
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Table 2. Mutations identified in the current study and their characteristics.  

 

Nucleotide 

Change Amino acid Change 

Number 

of 

Families  

Number 

of 

Patients 

AF 

in gnomAD 

Pathogenicity 

(VarSome) 

c.127G>T p.(Glu43Ter) 1 1 NR  Pathogenic 

c.153C>G p.(Tyr51Ter) 1 1 NR  Pathogenic 

c.231G>A p.(Trp77Ter) 1 1 NR  Pathogenic 

c.562delG 

p.(Ala188Profs 

Ter8) 1 1 NR  Pathogenic 

c.687delT 

p.(Ser229Argfs 

Ter11) 1 1 NR  Pathogenic 

c.869A>G p.(Lys290Arg) 1 1 NR  

Likely 

Pathogenic 

c.1098delG 

p.(Glu366Aspfs 

Ter28) 1 1 NR  Pathogenic 

c.1111C>T p.(Leu371Phe) 2 2 NR  Pathogenic 

c.1112T>C p.(Leu371Pro) 1 1 NR  Pathogenic 

c.1139T>C p.(Leu380Pro) 1 1 NR  

Likely 

Pathogenic 

c.1144_1145 

insGTC 

p.(Gly382_Pro383 

insArg) 1 2 NR  - 

c.1158T>G p.(Asn386Lys) 1 1 NR  Pathogenic 

c.1196C>T p.(Ser399Leu) 3 8 NR  Pathogenic 

c.1209C>A p.(Phe403Leu) 2 5 NR  

Likely 

Pathogenic 

c.1212_1216del 

p.(Asn405Lysfs 

Ter36) 1 1 NR  - 

c.1220G>A p.(Ser407Asn) 1 1 NR  Pathogenic 

c.1242A>G p.(Lys414Lys) 2 3 NR  

Uncertain 

significance 

c.1276C>G p.(Leu426Val) 1 1 NR  Pathogenic 

c.1300C>T p.(Gln434Ter) 1 1 NR  Pathogenic 

c.1321+1G>A  1 2 NR  Pathogenic 

c.1356_1357 

insGGG 

p.(Gly452dup) 

 1 1 NR  - 

c.1378C>T p.(Arg460Cys) 1 1 NR  Pathogenic 

c.1385A>G p.(Lys462Arg) 1 1 NR  Pathogenic 

c.1466C>T p.(Pro489Leu) 1 4 NR  

Likely 

Pathogenic 

c.1492_1493 

del 

p.(Arg498Alafs 

Ter30) 1 1 NR  Pathogenic 

c.1493+2T>A  1 1 NR  Pathogenic 
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c.1495C>T p.(Arg499Cys) 2 4 NR  Pathogenic 

c.1496G>A p.(Arg499His) 4 4 NR  Pathogenic 

c.1507C>T p.(Arg503Trp) 3 4 4.82E-06 Pathogenic 

c.1537-2A>G  1 7 NR  Pathogenic 

c.1610T>G p.(Leu537Arg) 1 1 NR  Pathogenic 

c.1676G>A p.(Gly559Asp) 8 15 NR  Pathogenic 

c.1684C>T p.(Arg562Ter) 1 2 NR  Pathogenic 

c.1685G>A p.(Arg562Gln) 1 1 NR  Pathogenic 

c.1729-1G>C  2 2 NR  Pathogenic 

c.1741C>T p.(Arg581Ter) 2 2 4.81E-06 Pathogenic 

c.1790delG 

p.(Ser597Thrfs 

Ter3) 1 3 NR  Pathogenic 

c.1844C>T p.(Thr615Ile) 1 1 NR  

Likely 

Pathogenic 

del exon 1  3 3 NR  Pathogenic 

del exons 

 5-7  1 2 NR  Pathogenic 

del exons 16-17  1 1 NR  Pathogenic 

 

AAO, age at onset; UNK, unknown; NR, not reported; AF, allele frequency. 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2021. ; https://doi.org/10.1101/2021.07.20.21259482doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.20.21259482
http://creativecommons.org/licenses/by/4.0/


 30

Table 3. Frequency of symptoms not attributable to the pure form of hereditary spastic 

paraplegia in the present study compared to previous studies.  

 

 

Sign/ Symptom Frequency in the 

current study 

Previous studies  

Learning disabilities 19.6% 4.2% intellectual 

impairment 
1
  

1.5% Intellectual 

disability 
68

 

Speech delay or 

abnormality 

17% 4/62 (6.5%) 
68

 

Dysarthria 16.4% 3% 
68

  

Cognitive deficiency 

 

8.2% Most frequent 

additional 

manifestation 
78-82

 

Upper extremity 

intention tremor 

2.8% Mild arm tremor in 

10%  of patients 
68

 

Seizure  2.8% Case reports 
69, 75, 83, 84

 

 

Ocular movement 

abnormality  

1.4% Case reports 
85

 

Swallowing difficulty 5.6% 3% 
68

 

Upper limb weak ness 6.9% Case reports 
80

 

Upper limb ataxia 5.6% Case reports 
80

 

Peripheral neuropathy  14.3% Case reports 
86

 

 

Deafness 5.6% - 
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Figures 

 

 

Figure 1. Structural analysis of human SPG4. A: Structure of SPG4 (PDB: 6PEN) forming a 

homohexameric assembly. The substrate peptide is shown as violet spheres. B: The interface 

between subunit A (green) and B (cyan) forms an active site. C: Loop382-389 is part of the 

nucleotide binding pocket. D: β-strand402-406 stabilizes helix387-399 and the C-terminal residues of 

this structure. E: Arg498 and Arg499 interact with ADP, BrF3, Asp470 and Ala495’s main chain, 

stabilizing the nucleotide and the active site. Polar interactions are shown as yellow dotted lines. 

F: D. melanogaster Spastin structure (PDB: 6P07) was solved with an ATP molecule in the 

active site. Arg640 and Arg641, homologous to Arg498 and Arg499 in human Spastin, are 

coordinating ATP in the active site.  
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Figure 2. Schematic figure of the location of SPG4 mutations in the current study. The

schematic on top represents the spastin protein. Functional domains are demonstrated in different

colors, including MIT (violet), AAA-ATPase (red), AAA-lid-3 (cyan), and Ps4-C (yellow).

Mutations resulting in loss of function and missense mutations are indicated with red and grey

circles respectively. The number of circles in a column demonstrate the number of families that

carried each mutation. The bottom schematic represents the cDNA of SPG4. Exons (indicated

with Ex) are represented by dark blue and introns by light blue.  
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Supplementary Tables and Figures 

Supplementary Table 1. Genes that are known or suspected to be involved in HSP or other 

similar disorders. 

Supplementary Table 2. Copy number variations (CNVs) in the current study.  

Supplementary Table 3. Signs and symptoms seen more frequently in patients harboring the 

p.(Arg499His) mutation.  

Supplementary Table 4. Clinical manifestations of the family with probable biallelic 

inheritance. Patients 1 and 2 had undergone whole exome sequencing and were compound 

heterozygous carriers of the novel pathogenic mutation p.(Ser597ThrfsTer3), and the 

p.(Ser44Leu) variant. Sample from patient 3 was not available.  

Supplementary Table 5. Characteristics of SPG4 patients with deafness.  

 

Supplementary Figure 1. Distribution of age at onset in the cohort. The onset of SPG4 

mostly occurs in the first five years of life, and between 35-44 years of age.  

Supplementary Figure 2. Sanger sequencing results of family with modifier mutation. Mother 

and father carry the p.(Ser597ThrfsTer3) and p.(Ser44Leu) mutations respectively. Siblings are 

heterozygote for both mutations. 
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