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Abstract

Background: Atlantic Bluefin Tuna (ABFT) shows complex demography and ecological variation in the Mediterranean Sea.
Genetic surveys have detected significant, although weak, signals of population structuring; catch series analyses and
tagging programs identified complex ABFT spatial dynamics and migration patterns. Here, we tested the hypothesis that
the genetic structure of the ABFT in the Mediterranean is correlated with mean surface temperature and salinity.

Methodology: We used six samples collected from Western and Central Mediterranean integrated with a new sample
collected from the recently identified easternmost reproductive area of Levantine Sea. To assess population structure in the
Mediterranean we used a multidisciplinary framework combining classical population genetics, spatial and Bayesian
clustering methods and a multivariate approach based on factor analysis.

Conclusions: FST analysis and Bayesian clustering methods detected several subpopulations in the Mediterranean, a result
also supported by multivariate analyses. In addition, we identified significant correlations of genetic diversity with mean
salinity and surface temperature values revealing that ABFT is genetically structured along two environmental gradients.
These results suggest that a preference for some spawning habitat conditions could contribute to shape ABFT genetic
structuring in the Mediterranean. However, further studies should be performed to assess to what extent ABFT spawning
behaviour in the Mediterranean Sea can be affected by environmental variation.
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Introduction

Assessing the correlation between landscape features with the

genetic variation of populations might lead to identifying

environmental factors that are involved in the adaptive divergence

of populations [1]. This issues is crucial in the marine realm for

reconciling management and conservation of fishery stocks [2].

The Mediterranean is a temperate sea with sharply different

oceanographic conditions in the western and eastern parts [3]. In

spite of such differences, the two parts extensively exchange water

masses between them and with the Atlantic. Surface (0–150 m

depth) Atlantic water masses with relatively low salinity (36.2

practical salinity unit, psu) enter the Mediterranean through

Gibraltar Strait [4] and move eastward along the North African

coast (i.e. the Algerian current) reaching the Levantine Sea.

Because evaporation is more intense in the Eastern Mediterranean

Sea, salinity increases eastwards with a maximum of 38.5 psu in

the Levantine Sea [5]. In the intermediate layer (150–600 m

depth), the high-salinity Levantine water masses (,39.1 psu) move

westwards and outflow in the Atlantic. This circulation pattern

generates anticyclonic gyres and steep gradients of temperature

and salinity over short distances (e.g. the Almeria-Oran oceano-

graphic front), which are almost permanent in the western basin

and more variable in the eastern Mediterranean. In this complex

and changing Mediterranean environment, the Atlantic Bluefin

tuna (ABFT, Thunnus thynnus) shows a spatial population structure,

which is stable over short and long time periods [6–9]. Despite its

highly migratory behaviour and high potential of dispersal at the

larval stages, the Mediterranean ABFT subpopulations display

partially independent demographic dynamics [8]. A long-term

correlation between ABFT abundance and surface temperature

was revealed by time series catch analyses suggesting a potential

strong influence of environmental factors on the ABFT migratory

behaviour [10]. Population genetics offers powerful tools to

identify connectivity and structure of marine populations, which

might escape direct observation. The multivariate analysis of

genetic data is particularly crucial when dealing with relatively

weak genetic differences, as commonly detected in high-dispersal

marine species.
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Multidisciplinary seascape genetics (sensu [2]) addressed

important issues in the spatial ecology of marine populations

combining genetic and oceanographic data under ecological

modelling [11]. The variation of seascape and environmental

features may be correlated with patterns of genetic diversity in

marine fish species [12], providing evidence for adaptive

mechanisms [13], indeed genetic differentiation in several marine

fish species [14,15] has already been shown to correlate with

seawater salinity and temperature.

Here, we test the hypothesis that dispersal and reproduction of

the ABFT populations in the Mediterranean correlate with the

physical environmental heterogeneity. We do that by comparing

measures of ABFT genetic structure at microsatellite loci with

surface temperature and salinity variation. For this purpose, we

numerically and geographically expanded the ABFT sampling [9]

by adding a sample collected from the easternmost spawning area

known in the Mediterranean [16]. We also improved the

analytical framework used in the previous analyses of ABFT

population structure in the Mediterranean [6–8] by using a

modified version of the software STRUCTURE [17], in which the

basic models are extended to incorporate information on the

sampling location, necessary to properly infer population structure

when genetic differences between subpopulations are small.

Indeed, several simulations and empirical studies showed that

STRUCTURE may not accurately infer the correct number of

genetic clusters in a sample when population structure is weak

[18,19]. The new method, developed by [17], groups individuals

from the same sampling location, improving the performance of

the analysis, but at the same time using this information only when

clusters are correlated with their sampling location and allowing

for the possibility that this information can be only partially, or

even not at all, informative [17].

We also used the spatial Bayesian clustering models implement-

ed in the software GENELAND [20,21] to comparatively test the

different behaviours of these two software packages in modelling

the ABFT genetic structure. These models explicitly account for

the spatial location of sampled observations and include a priori

spatial autocorrelation in the genetic data, assuming that

proximate observations tend to be more similar than distant ones.

This assumption is useful for exploring possible spatial patterns

that may arise when population differentiation occurs by limited

gene flow influenced by the occurrence of landscape barriers. The

model naturally incorporates the spatial locations of host samples

for its assumption of spatial autocorrelation. The analytical

approach was completed by multivariate methods that have

displayed great efficiency in extracting information from genetic

markers [22–24] because of their independence from genetic

model assumptions (i.e. the Hardy–Weinberg equilibrium) and

their performance to summarize the genetic variation into a few

synthetic variables [25].

Materials and Methods

Ethics Statement
Tissue samples of the Atlantic Bluefin tuna Thunnus thynnus used

in this study were collected from Mediterranean individuals caught

during scientific research programs under the permission of the

Italian Ministry of Agricultural and Forestry Policies (locations:

Figure 1. Map of surface salinity and temperature and sampling locations of T. thynnus in the Mediterranean. Temperature is described
in colour gradient (from 14.5uC to 23.5uC) while salinity through contour map (each isoline shows a change of 1 psu). Sampling data are described in
Text S1 and Tab S1(1 = SAR, 2 = ADR, 3 = LIG, 4 = ALG, 5 = ALB, 6 = STY, 7 = CYP).
doi:10.1371/journal.pone.0080105.g001

Table 1. Pairwise FSTs (below the diagonal) and associated P-
values (above the diagonal) among Thunnus thynnus samples.

ADR STY LIG SAR ALG ALB CYP

ADR 0.000 0.068 0.008 0.000 0.000 0.000

STY 0.016 0.000 0.001 0.126 0.001 0.595

LIG 0.006 0.021 0.048 0.001 0.000 0.000

SAR 0.013 0.017 0.011 0.001 0.000 0.000

ALG 0.018 0.004 0.019 0.025 0.001 0.329

ALB 0.018 0.012 0.022 0.025 0.015 0.003

CYP 0.017 20.001 0.020 0.023 0.001 0.011

Significance was obtained on 10,100 permutations. In bold is the value that
looses significance after the Bonferroni sequential correction (a= 0.0125).
doi:10.1371/journal.pone.0080105.t001

Environmental Genetic Structuring in Bluefin Tuna
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Sardinian Traps, SAR; Adriatic Sea, ADR; Ligurian Sea, LIG)

and by commercial long-liners and purse-seiners within the Total

Allowed Catch quotas assigned by the International Commission

for the Conservation of Atlantic Tunas (ICCAT) to National

Governments (locations: Algerian coasts, ALG; Alboran Sea, ALB;

Tyrrhenian Sea, STY; Cyprus coasts, CYP). No specific approval

of this vertebrate work is required since the Bluefin tuna

individuals sampled in this study were obtained from scientific

and commercial fishing activities.

ABFT Microsatellite Dataset
In this study we have reanalysed the genetic variation of six

ABFT Mediterranean population samples (N = 256) previously

genotyped at potentially neutral microsatellite loci by [8]. In

addition, we have added to this data set a population sample

collected from the Levantine Sea, off the coast of Cyprus (CYP,

N = 60; Fig. 1). The CYP sample is the easternmost ABFT

Mediterranean sample analysed so far for genetic variation and it

was collected from an ABFT spawning area identified in the

Eastern Mediterranean [16]. Therefore, the complete data set

includes seven ABFT population samples (N = 316, Fig. 1)

genotyped at seven microsatellite loci (Table S1, Text S1). Lab

protocols and experimental conditions used for microsatellite PCR

amplification and individual genotyping are reported in the SI and

Dataset S1.

Population Genetic Analyses
Allelic richness was estimated using FSTAT version 2.9.3.2

[26], expected (He) and observed (Ho) heterozygosity per locus

and per sample, and the corresponding exact test for Hardy–

Weinberg Equilibrium (HWE) were calculated by ARLEQUIN v.

3.5 [27] after 1,000,000 steps of Markov chains and 100,000

dememorization steps (Table S2). ARLEQUIN v. 3.5 was also

used to estimate pairwise FST [28] using 10,100 permutations to

obtain the null distribution of FST under the hypothesis of

panmixia. A global HWE test was performed by GENEPOP 4.0

[29] using 10,000 dememorization steps of Markov chains, 20

batches and 5,000 iterations per batch. Sequential Bonferroni

correction was applied for multiple test adjustment [30]

(a= 0.0125).

The software STRUCTURE [31,32] estimates Pr(X|K), the

probability of the data given K genetic clusters of individuals

(K = 1, 2…), by a Bayesian model-based algorithm under the

HWE assumption. STRUCTURE also estimates allele frequencies

in each cluster and the probability of membership of each

individual to each cluster, by means of a Markov Chain Monte

Carlo (MCMC) method assign genotypes to clusters minimizing

the linkage disequilibrium of the clusters. The modified version

STRUCTURE 2.3 developed by [17] was run allowing the use of

sampling location information. This method is different from the

‘Model with prior population information’ present in the original

STRUCTURE paper [31]. That model was designed to test for

the presence of migrants belonging to a different location and is

only useful for highly informative data, i.e. when there is strong

evidence of population structure and sampling locations corre-

spond almost exactly to the inferred clusters. An important class of

Bayesian clustering models improves STRUCTURE by including

information on individual geographic coordinates. We ran ten

independent analyses (each with a different value of K, 1–10) using

the admixture model with correlated allele frequencies [31,32].

Each run of analysis consisted in 1,000,000 MCMC with a burn-

in period of 500,000. The most likely number of clusters was

inferred using both the standard method (plotting ln Pr (X|K) vs K

and using the Bayes’ rule [31]) and the DK statistic [33] based on a

rate of change in the log probability of the data. The results were

averaged over multiple runs using the CLUMMP software [34]

and displayed using the DISTRUCT program [35].

The spatially explicit Bayesian clustering program GENE-

LAND 3.2.4 [20] (an extension of program R 2.12.0 [36]) was

used to further investigate genetic structure. GENELAND

considers individual multi-locus genotype data searching for the

best fit to HWE and linkage equilibrium. GENELAND also

incorporates spatial data directly under the assumption that

populations are spatially organized. This program implemented

different models to describe population genetic variation; we tested

the correlated allele frequency models, with or without spatial

information. The correlated allele frequency model accounts for

the situation where some allele frequencies reflect common

ancestry of different populations. The primary distinguishing

factor between the spatial model and the non-spatial model in

GENELAND is the assumption of spatial correlation of genotypes.

Any genetic boundaries found are assumed to separate K random

mating subpopulations, thus subdividing the space in a way

resembling the Voronoi-Poisson tessellation [20,37]. Ten MCMC

iterations were performed, with K varying from 1 to 10, using

10,000,000 MCMC, a thinning interval of 100 generations, a

maximum rate of Poisson process fixed to 316, and spatial

coordinates uncertainty of 50 km. The allele frequencies prior was

Figure 2. STRUCTURE analysis. A) Plot of the Log posterior probability vs K (blue line) and Evanno’s method (black line). B) Bar plot of the
posterior probability of the coefficient of membership. Each vertical line represents an individual and colours represent the inferred ancestry from K
ancestral populations. Results for K = 2–4 are shown.
doi:10.1371/journal.pone.0080105.g002

Environmental Genetic Structuring in Bluefin Tuna
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modelled assuming a Dirichlet distribution [38]. The assignment

of individuals to subpopulations and the parameter inference were

performed in a separate run as suggested by [20]. For this run, K

was set to the inferred number of subpopulations and all other

parameters were similar to those runs with variable K. The

posterior probability of subpopulation membership was computed

for each pixel of the spatial domain (2006400 pixels), using a

burn-in of 500 iterations.

Environmental Data
Seawater salinity (S, psu) and surface temperature (t, uC) data

from the sampled sites were obtained from SeaDataNet Clima-

tologies Pan-European Infrastructure for Ocean and Marine Data

Management (http://gher-diva.phys.ulg.ac.be/web-vis/), a Pan-

European infrastructure for managing, indexing and providing

access to ocean and marine data sets and data products, acquired

via research cruises and other observational activities, in situ and

remote sensing. Temperature data were averaged over the period

Figure 3. GENELAND results for K=3 using the spatial model with correlated allele frequencies. A) Map of estimated posterior
probability of population membership (by posterior mode); B-D) plots representing the assignment of pixels to the southern (B), northern (C) and
central cluster (D). The highest membership values are in light yellow and the contour lines indicate the spatial position of genetic discontinuities
between populations.
doi:10.1371/journal.pone.0080105.g003

Environmental Genetic Structuring in Bluefin Tuna
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1985–2007, while S data were averaged over the period 1900–

2009.

Multivariate Analysis
Two different ordination methods, the Correspondence Anal-

ysis (CA; [25,39]) and the Canonical/constrained Correspondence

analysis (CCA; [40]), were used to further investigate the spatial

pattern of genetic variability among tuna samples. CA analysis was

performed using the R package ADE4 1.4 [41] and ADEGENET

2.7 [42]. The CA is an ‘ordination in reduced space’ method, and

it can be used to analyse tables of allele counts (Text S1). This

method optimizes the x2 distances among observations and

therefore it can give a stronger weight to a population possessing

a rare allele. As a consequence, to minimize analysis artefacts,

alleles present in single copy in only one population were removed

[25].

The relationship of genetic diversity with environmental factors

was analysed using Canonical/constrained Correspondence anal-

ysis (CCA; see Text S1 for the method description). The

contribution of each variable was assessed through correlations

between environmental variables (mean-S and mean-t) and the

CCA axes. This function is based on [40] algorithm and

implemented in the VEGAN package [43]. In the ordination plot

of CCA analysis, the constraining variables are represented by

arrows directed towards the maximum change of the variable

across the diagram and their lengths are proportional to the rate of

change in this direction.

Multilocus genotype data were finally analysed under a model

of isolation by distance (IBD). A matrix of geographical distances

was obtained considering the shortest sea-paths between each pair

of sampling sites using Google Earth version 6.0.2 OOB; genetic

distances between populations were expressed by the ratio FST/

(12FST) [44]. Two additional matrices were calculated describing

salinity and temperature differences between sites. The correlation

between distance matrices was tested by Mantel tests [45] using

the VEGAN package for R [43], and 10,000 permutations.

Moreover two different types of partial Mantel test [46] allowed us

to estimate partial correlation coefficients, namely between genetic

and geographic distances, holding the environmental effects

constant, and between genetic and environmental distances,

holding the effects of geography constant.

Results

Bayesian Clustering Analysis
Genetic diversity in the CYP population was not significantly

different from that estimated in the other Mediterranean ABFT

samples (Table S2, Table S3). All pairwise FST values were

significantly greater than 0 except four (comparisons ADR-LIG,

ALG-STY, CYP-STY and CYP-ALG), suggesting that different

Mediterranean areas roughly correspond to distinct ABFT

subpopulations. The LIG-SAR FST became insignificant after

the sequential Bonferroni correction (Table 1).

The Bayesian analysis carried out using STRUCTURE 2.3 and

the sampling location information as prior revealed the highest DK

value for K = 3 (Evanno’s method [33], based on a rate of change

in the log probability of the data), while the standard method to

detect population clusters and the Bayes’ rule method [31]

detected the highest probability for K = 1 (Fig. 2, a). The bar plots

Figure 4. Correspondence Analysis plot of ABFT samples
performed on population allele counts. The eigenvalues barplots
are drawn in the bottom right corner and black bars correspond to the
two axes used in the biplot (on the left CA axis 1 vs 2, on the right CA
axis 1 vs 3). Grey bars represent the axes considered in the analysis but
not used to draw the graph.
doi:10.1371/journal.pone.0080105.g004

Table 2. Results of the Mantel and partial-Mantel tests.

association Mantel R P-value

D,DG 20.2221 ,0.001

D,DS 20.2299 ,0.001

D,Dt 0.2312 NS

Partial R P-value

D,DG [DS] 0.0796 NS

D,DG [DT] 0.3029 NS

D,DS [DG] 20.2301 ,0.001

D,Dt [DG] 20.3817 ,0.001

Matrix correlations describe the association between genetic and geographical/
environmental distances. Partial Mantel correlations test for the variance in
genetic distances among sites explained by geographical distance controlling
for environmental factors (in square brackets) and by environmental distances
(independent of geographical distance, in square brackets) respectively.
D = genetic distance (FST/(12FST)); DG = geographical distance; DS =mean-S
distance; Dt =mean-t distance).
doi:10.1371/journal.pone.0080105.t002

Figure 5. Canonical/constrained Correspondence Analysis
ordination plot of ABFT samples. The environmental variables are
represented by arrows: Mean-S= salinity; Mean-t = temperature.
doi:10.1371/journal.pone.0080105.g005
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for K = 2–4 revealed that K = 2 could be the most plausible results,

while in those for K = 3–4 most individuals showed an apparent

pattern of admixture of 2 or 3 gene pools representing a clear

signal of cluster overestimation. With K = 2, almost all the

individuals belonging to the ALG, STY, CYP and ALB samples

showed a proportion of the membership coefficients higher than

0.7 that allowed to assign these individuals to the same cluster.

Conversely individuals in the SAR sample showed lower

membership coefficient (0.68) and it could be grouped with

ALG, STY, CYP and ALB individuals only with low statistical

confidence. Similarly it was not possible to assign members of the

ADR sample to one cluster with confidence, although most

individuals showed values of the membership coefficients equal or

higher than 0.60 for the second cluster detected by STRUC-

TURE. By contrast, the individuals of the LIG sample showed

relatively low membership coefficients (0.48–0.52) and it was not

possible to confidently assign them to either cluster.

The spatially implicit model (with correlated allele frequencies)

implemented in GENELAND did not reach convergence and this

poor MCMC mixing could be due to departures from model

assumptions (see GENELAND manual). On the contrary the

spatially explicit model with correlated allele frequencies reached

the convergence of MCMC and the most likely value of K

identified was for K = 3. Individual assignments performed in

GENELAND with K fixed to 3 identified distinct subpopulations

splitting the southernmost samples (ALB, ALG, and CYP) and

STY from the central (SAR) and northernmost samples (ADR,

LIG) (Fig. 3). These findings mirrored STRUCTURE results

corroborating the genetic subdivision of the southern samples and

STY.

Multivariate Analysis
The Correspondence Analysis (CA) displayed a spatial pattern

of differentiation largely consistent with those detected by the

Bayesian clustering analysis. The CA separated the Central

Northern Mediterranean ADR and LIG samples form the other

samples, identified the group SAR-ALB and revealed the genetic

similarity between STY and CYP (Fig. 4, Table S4).

A significant correlation between genetic distances and both

geographical and mean-S distances, was revealed by the Mantel

test (Table 2). On the contrary, insignificant correlations were

obtained with mean-t distances. Nevertheless significant Mantel

tests showed a negative correlation with both geographical and

salinity distances (Table 2) and this result is not easy to explain.

Therefore we further explored these correlations through partial

Mantel test and Canonical/constrained Correspondence Analysis

(CCA) analysis. We observed only an insignificant correlation

between geographical and genetic distances (with environmental

distances kept constant), while the same test carried out controlling

for geographical distance produced significant results with both

mean-S and mean-t distances (Table 2). Therefore, the environ-

mental parameters appear to be reflected in the genetic population

structure significantly more than geography.

The CCA analysis was carried out using mean-S and mean-t

data as constraining factors and correlations at both axes were

significant at the ANOVA 95%-significance test (CCA1 = 0.04,

CCA2 = 0.05, Tables S4, S5). The CCA biplots clearly indicated

the presence of a strong relationship of the mean-S with CYP and

of the mean-t with both STY and CYP samples, showing a

correlation of CYP sample with the highest values of salinity and

temperature (Fig. 5).

The CCA analysis contributed to highlight that ABFT seems

genetically structured along two environmental gradients: a

longitudinal, West-to-East gradient associated to the variation of

temperature and a latitudinal, North-to-South gradient associated

to the variation of salinity. Moreover this analysis confirmed the

clustering results obtained using GENELAND, separating the

northern (ADR, LIG), from the central-southern samples (ALG,

ALB, STY, CYP) and differentiating the SAR sample from all the

others (Fig. 5).

Discussion

In this study we detected the presence of at least two ABFT

genetically differentiated subpopulations in the Mediterranean and

we showed that this genetic structure appears to be correlated with

both seawater salinity and surface temperature variation. Previous

work [6–8] has consistently shown signals of genetic structuring in

the Mediterranean ABFT populations through the detection of

significant FSTs. Nevertheless the level of genetic divergence

detected by [8] (FSTs’ range 0.011–0.021) was higher than in

previous surveys [6,7] and it was also supported by evidence of

significant genetic differentiation between historical population

samples (FST = 0.02) showing that such structuring of the

Mediterranean ABFT is probably stable through time. These

results, along with the evidence for a recent colonization of the

Mediterranean (,20 Kya, [47]), suggested that factors other than

genetic drift could produce these levels of genetic differentiation.

An important improvement of this study with respect to

previous work focussing on the ABFT population genetic structure

[6–8], is the inclusion for the first time of a sample from the

eastern part of the Mediterranean (CYP, Levantine Sea), thus

extending the analysis beyond the Adriatic [8] and Ionian [6,7]

Seas. The Bayesian analysis carried out using the new version of

STRUCTURE program ([17]; Fig. 2b) provided an unforeseen

picture clustering the CYP sample with the southern samples from

the Western and Central Mediterranean (ALB, ALG and STY)

that instead were separated from the northernmost samples of the

same areas (ADR and LIG). This latitudinal, south-to-north sub-

structuring (also observed in several other marine organisms

[15,48–52]) suggested a more complex pattern of genetic

differentiation of ABFT in the Mediterranean than the previously

detected longitudinal, west-to-east separation [6,7,9,53]. However

the results from STRUCTURE analysis showed that population

differences are indeed minor, and did not allow us to unequiv-

ocally choose between the existence of one or three genetic clusters

using classical methods for the estimation of K. Nevertheless, a

deeper inspection of barplots for K = 1–4 and of membership

coefficients of each sample permitted to identify K = 2 as a reliable

solution reconciling FSTs and Bayesian results. The GENELAND

method identified the spatial explicit model with correlated allele

frequencies as the most reliable after MCMC convergence

analysis, for this reason it was considered to be the most suitable

to describe the genetic structure of Mediterranean ABFT.

Considering this model to describe the genetic diversity of

samples, GENELAND detected for K = 3 the highest posterior

probability and further inspection of the results allowed us to rule

out the presence of ‘ghost’ clusters (Fig. 3). These three clusters,

separating the northern samples from the southern, remind

somewhat the pattern identified by STRUCTURE for K = 2,

although GENELAND was able to refine this result clearly

separating the SAR sample from the northern and southern

samples (Fig. 3). Multivariate analysis corroborated these findings

but did not rely on assumption about the underlying population

model.

In the last ten years the improved methods of satellite tagging

provided insights into tuna movements [54], confirming the

transatlantic migration of this pelagic fish and highlighting only

Environmental Genetic Structuring in Bluefin Tuna
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limited individual movements in this part of the Mediterranean

Sea [55]. The integration of tagging [53–55] and genetic data

[6,7,10] suggests the presence of some tuna sub-populations

displaying different migratory behaviour. The intriguing hypoth-

esis that at least three different ABFT sub-populations exist in the

Mediterranean was formulated by [10]. Our results contributed to

support this scenario by indicating that ABFT could be in fact a

metapopulation characterized by complex sub-population dynam-

ics and by partial reproductive isolation. The present work adds an

important detail to the picture, namely the finding that genetic

structuring correlates with environmental variables, providing

further evidence that environmental conditions affect ABFT

reproductive behaviour. The Mantel test revealed indeed a

significant correlation of ABFT allele frequencies with salinity in

the Mediterranean. We also showed that genetic distances

correlate with both salinity and surface temperature when the

effect of geographic distances is partialled out, whereas the

correlation of genetic and geographical distances appears to be a

statistical artefact, due to the correlation between geography and

environmental variables. The correlation between genetic and

environmental variation is a further piece of evidence about the

influence of environmental factors on ABFT population dynamics.

Indeed Massimo Sella at the beginning of the 20th century [56,57]

already proposed that salinity and temperature influence both

water regime and tuna movements. More recently, several

experimental and modelling studies suggested a direct involvement

of environmental factors on ABFT spatial dynamics and migration

pattern. ABFT spawning behaviour [58,59], called ‘‘repeat

homing’’, is a process of spatial learning of water-mass conditions

optimal for spawning (e.g. SST .20.5uC with a preference form

21.5 to 26.5uC in the Western Mediterranean; [60]). Because

ABFT larval occurrences were associated with the confluence of

inflowing Atlantic waters and saltier resident surface waters [61–

63], it has been argued that ABFT spawners preferentially target

as spawning grounds mesoscale hydrographical structures whose

chemical-physical and productivity conditions favour egg buoy-

ancy and hatching as well as larval retention and survival [60,64–

66]. In the Western and Central Mediterranean, the constancy of

large-scale surface currents spatially portioned hydrographical

structures that are more stable than in the Eastern Mediterranean

[67]. Moreover, the spatio-temporal variability at the regional

scale and the mesoscale circulation [67,68] form patches of high-

density larvae with very limited extension (from 10 to 13 nautical

miles; [60,65,66]) favouring ABFT genetic structuring. As in other

several fish, the variation of complex environmental and

oceanographic conditions (among which SST and salinity might

represent two functional and operative proxies of such variation)

and of life history traits, as spawners’ habitat preferences and larval

phase features, can likely influence population connectivity in the

Mediterranean ABFT [69]. Our findings suggested that spawning

ground choice could affect ABFT genetic differentiation in the

Mediterranean. The significant relationship detected between

salinity, temperature and population divergence, represents only a

starting point, because many other environmental factors could be

involved and interact with each other producing this pattern of

genetic differentiation. In particular, we revealed two genetic

gradients significantly linked to the variation of chemical-physical

conditions: a west-east gradient linked to salinity and a north-south

gradient linked to surface temperature values, with strongest

relationship of the CYP sample with areas of high salinity and

temperature.

This survey showed clearly that, to refine the subtle but

significant signal of genetic structure detected in highly migratory

fish, it is essential to combine several biostatistical tools based on

different assumptions [17,21,70–73]. Nevertheless methodological

differences can be fundamental in the identification of the signal of

genetic differentiation. The integration of landscape ecology with

population genetics can enable the detection of environmental

factors that may promote or constrain the divergence detected,

providing also a refinement of the genetic structure identified

through methods of analysis completely independent from any

kind of genetic model or assumptions [25].
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