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Abstract

Unilateral introgression from diploids to tetraploids has been hypothesized to be an important evolutionary mecha-
nism in plants. However, few examples have been definitively identified, perhaps because data of sufficient depth and 
breadth were difficult to obtain before the advent of affordable high-density genotyping. Throughout Japan, tetraploid 
Miscanthus sacchariflorus and diploid Miscanthus sinensis are common, and occasionally hybridize. In this study, 667 
M. sinensis and 78 M. sacchariflorus genotypes from Japan were characterized using 20 704 SNPs and ten plastid micro-
satellites. Similarity of SNP genotypes between diploid and tetraploid M. sacchariflorus indicated that the tetraploids 
originated through autopolyploidy. Structure analysis indicated a gradient of introgression from diploid M. sinensis into 
tetraploid M.  sacchariflorus throughout Japan; most tetraploids had some M.  sinensis DNA. Among phenotypically 
M. sacchariflorus tetraploids, M. sinensis ancestry averaged 7% and ranged from 1–39%, with introgression greatest in 
southern Japan. Unexpectedly, rare (~1%) diploid M. sinensis individuals from northern Japan were found with 6–27% 
M. sacchariflorus ancestry. Population structure of M. sinensis in Japan included three groups, and was driven primarily 
by distance, and secondarily by geographic barriers such as mountains and straits. Miscanthus speciation is a complex 
and dynamic process. In contrast to limited introgression between diploid M. sacchariflorus and M. sinensis in northern 
China, selection for adaptation to a moderate maritime climate probably favoured cross-ploidy introgressants in south-
ern Japan. These results will help guide the selection of Miscanthus accessions for the breeding of biomass cultivars.
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Introduction

High-resolution analyses of population structure, which have 

been enabled by second-generation sequencing technologies, 

can provide new insights into the processes of speciation in 

plants and facilitate crop improvement by guiding marker-

trait association studies and identifying groups to test for 

heterotic combinations. Polyploidy is a primary driver of 
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evolution in flowering plants (Adams and Wendel, 2005; 

Barabaschi et  al., 2012), and it has long been recognized 

that polyploidization of amphidiploids can result in new, 

genetically isolated species in a single event (Winge, 1917; 

Stebbins, 1959). Additionally, introgression between plant 

species plays an important role in local adaptation and spe-

ciation (Rieseberg et al., 2003; Arnold, 2004; Arnold et al., 

2008). In contrast to the genetic isolation typically observed 

between populations of different ploidies, Stebbins (1971) 

noted that introgression across ploidy levels can also occur 

in plants. Moreover, Stebbins (1971) postulated that intro-

gression of genes between diploid and tetraploid populations 

would usually flow preferentially from diploids to tetraploids 

(via unreduced gametes and/or triploid bridges) and these 

gene movements could have large evolutionary consequences 

(Petit et al., 1999). To date, however, few examples of gene 

flow from diploids to tetraploids have been reported for wild 

plants (Kim et al., 2008; Wang et al., 2014), but prior techno-

logical limitations in the ability to detect small introgressions 

in a large sampling of genotypes and populations may have 

contributed to a lack of reports. The extent to which poly-

ploidy has contributed to speciation or, in contrast, limited 

differentiation of populations via gene exchange, can now be 

explored in detail with analyses of population structure using 

high marker densities.

Miscanthus is a genus of perennial grasses native to east 

Asia and Oceania, and includes polyploid and diploid spe-

cies that are able to hybridize. A close relative of sugarcane 

(Saccharum hybrids), Miscanthus is also useful in its own 

right as a lignocellulosic biomass crop, and as a popular orna-

mental in European and North American gardens. However, 

there has been little or no effort to domesticate Miscanthus 

in its native lands. M.  sacchariflorus (Maxim.) Hack. and 

M.  sinensis Andersson are among the most widely distrib-

uted and divergent species within Miscanthus sensu stricto 

and are the parent species of the biomass crop M.×giganteus 

(Hodkinson et al., 2002a,b; Clifton-Brown et al., 2008; Sacks 

et al., 2013). M. sinensis has a caespitose form, prefers aerobic 

soils especially on hilly sites that are infrequently disturbed 

by grazing or fire, and is typically diploid with a monoploid 

genome size of about 2.5–2.8 pg (Clifton-Brown et al., 2008; 

Rayburn et al., 2009; Sacks et al., 2013; Li et al., 2013; Jiang 

et al., 2013; Moon et al., 2013; Chae et al., 2014). In contrast, 

M. sacchariflorus has a spreading rhizomatous habit, prefers 

riparian environments, and can be diploid or tetraploid with 

a monoploid genome size of about 2.1–2.3 pg (Rayburn et al., 

2009; Li et al., 2013; Moon et al., 2013; Chae et al., 2014). 

Though the natural ranges of M. sinensis and M. sacchariflo-

rus overlap from ~29° N to 43° N, M. sinensis is distributed 

further south to at least ~18° N in Hainan, whereas M. sac-

chariflorus is distributed further north to ~50° N in eastern 

Russia (Sacks et al., 2013). Thus, M. sinensis and M. sacchar-

iflorus are well differentiated phylogenetically, morphologi-

cally, and ecologically.

Throughout Japan, diploid M.  sinensis and tetraploid 

M.  sacchariflorus are common, and although they typi-

cally occupy different niches, sympatric populations occur. 

Though both diploid and tetraploid M.  sacchariflorus have 

been found in mainland Asia (Yan et al., 2012; Li et al., 2013; 

Moon et  al., 2013), an extensive survey in Japan reported 

only tetraploids (Hirayoshi et al. 1957).

Hodkinson and Renvoize (2001) defined the nothospe-

cies M.×giganteus J.M. Greef and Deuter ex Hodkinson and 

Renvoize (syn. M. ogiformis Honda if  awns present; Honda, 

1939) as a hybrid between M. sacchariflorus and M. sinensis. 

In 1935, a single triploid M.×giganteus genotype was exported 

from Japan to Denmark (Greef et al., 1997; Głowacka et al., 

2014). This M.×giganteus genotype has become an important 

crop for the emerging lignocellulosic bioenergy industry in 

Europe and North America owing to its high yield, low input 

requirements, low risk of invasiveness, high rate of photosyn-

thesis at low temperatures, and broad adaptation (Barney and 

Ditomaso, 2008; Pyter et  al., 2009; Somerville et  al., 2010; 

Purdy et al., 2013). Subsequent to its initial introduction to 

Europe, a few additional triploid M.×giganteus genotypes 

have been found growing in situ in Japan (Adati and Shiotani, 

1962), and others have been obtained by germinating seed col-

lected from wild plants of M. sinensis (Hirayoshi et al., 1957) 

or M. sacchariflorus (Nishiwaki et al., 2011; Dwiyanti et al., 

2013) from locations where both species grew sympatrically.

In mainland Asia, where diploid M. sacchariflorus is com-

mon, it naturally crosses with M. sinensis to produce homop-

loid hybrids that have previously been named M. purpurascens 

or M.  sinensis var. purpurascens (Jiang et  al., 2013; Chae 

et al., 2014; Głowacka et al., 2014). These diploid interspecific 

hybrids backcross infrequently with M.  sinensis but do not 

form a hybrid swarm (Jiang et al., 2013; Clark et al., 2014). 

However, the extent of genetic exchange between M. sinen-

sis and M.  sacchariflorus in Japan, where M.  sacchariflorus 

is thought to be exclusively tetraploid, is unknown beyond 

the occasional production of sterile triploid M.×giganteus 

hybrids (Hirayoshi et al., 1957; Adati and Shiotani, 1962).

In addition to the discovery of new M.×giganteus geno-

types in nature, human-directed crosses between diploid 

M.  sinensis and tetraploid M.  sacchariflorus can be made 

intentionally, utilizing germplasm with desired traits and 

exploiting the genetic diversity of these obligate-outcrossing 

species to maximize heterosis. Previous efforts to breed new 

triploid genotypes of M.×giganteus by Hirayoshi et al. (1960), 

and the release of ‘Nagara’ in 2006 by M. Deuter of Tinplant 

(Klein Wanzleben, Germany) indicate that this approach is 

viable. Recently, more than 30 new triploid M.×giganteus 

genotypes have been bred at the University of Illinois and 

field evaluations of these have begun. Crucial to the success 

of breeding new biomass cultivars of M.×giganteus will be an 

in-depth understanding of genetic diversity and population 

structure for M. sinensis and M. sacchariflorus to guide the 

selection of parental genotypes for combining ability, adapta-

tion, and novel alleles.

In a previous study, a broad survey of M. sinensis genetic 

diversity with accessions primarily from China, Korea and 

Japan was conducted, and six groups were identified, includ-

ing one each in northern Japan (northern Honshu and 

Hokkaido) and southern Japan (Clark et  al., 2014). It was 

also found that nearly all of the ornamental cultivars of 

M.  sinensis grown in the USA were derived from southern 



Cross-ploidy introgression between Japanese Miscanthus species | 4215

Japan. However, there has not yet been a population genetic 

study with sufficient resolution to observe how the genetic 

structure of M. sinensis in Japan was affected by geographic 

features such as straits and mountain ranges. A limitation of 

the previous study (Clark et al., 2014) was that only 131 wild-

collected M. sinensis genotypes from Japan were able to be 

evaluated, with only 34 of those from central and southern 

Japan, and no Japanese M. sacchariflorus. Thus, the current 

study was conducted to provide an in-depth understand-

ing of M. sinensis population structure in Japan as it relates 

to geography, and to establish a baseline understanding of 

M.  sacchariflorus diversity in Japan, whereas the previous 

study was a broad East Asia-wide assessment of relation-

ships among M.  sinensis populations. Very little is known 

about the genetic structure of M.  sacchariflorus, including 

the relationship between its diploid and tetraploid forms, and 

the amount of introgression with M. sinensis, if  any. Indeed, 

there is longstanding disagreement about whether tetraploid 

M.  sacchariflorus is allo-, segmental-, or auto-polyploid 

(Adati, 1958, 1959; Adati and Shiotani, 1962; Takahashi and 

Shibata, 2002; Chae et al., 2014). Thus, the objectives of this 

study were to (i) detect spatial genetic structure of Japanese 

M. sinensis and M. sacchariflorus, (ii) more precisely identify 

the genetic origins within Japan of ornamental and US natu-

ralized M. sinensis, and (iii) assess the degree of hybridization 

and introgression between M. sinensis and M. sacchariflorus 

in Japan, and determine the ploidy of any hybrids.

Materials and methods

Plant materials and genotyping

In total, 1513 genotypes of Miscanthus were studied. Focus was 
especially placed on 667 M.  sinensis genotypes from 202 acces-
sions, and 78 M. sacchariflorus genotypes from 53 accessions, col-
lected from the wild in Japan and studied for the first time here (i.e. 
the Japan dense-sampling set; Table 1, Supplementary dataset S1). 
Germplasm from the Japan dense-sampling set was collected as seed 
and/or clonal propagules in 1996 and from 2007–2011. Each seed 
accession was a bulk collection from between one and 50 mother 
plants, whereas each clonal accession came from a single individual. 
In addition to the 255 accessions (745 individuals) from the Japan 
dense-sampling set, we also studied 622 M. sinensis and four M. 
floridulus (Labill.) Warb. ex K. Schum. & Lauterb. accessions (one 
genotype per accession) primarily from China, Korea, and Japan, 11 
M. sacchariflorus from China and Korea, and eight M. sinensis × M. 
sacchariflorus F1 hybrids from China that we evaluated previously 

(i.e. the region-wide set; Supplementary dataset S1; Clark et al., 
2014), in order to understand relationships among accessions from 
Japan in a regional context. The Japanese Miscanthus accessions 
were also compared to 79 diploid M. sinensis or M. sinensis×M. sac-
chariflorus ornamental cultivars available in the USA, 42 naturalized 
M. sinensis genotypes from 13 accessions collected in the USA, one 
diploid M. sacchariflorus ornamental cultivar, and the triploid bio-
mass cultivar M.×giganteus ‘Illinois’ (Supplementary dataset S1).

Restriction site-associated DNA sequencing (RAD-seq) and 
plastid genotyping were performed using methods described previ-
ously (Clark et al., 2014). For RAD-seq genotyping, a PstI–MspI 
digestion was used to sequence tags adjacent to PstI sites, and 95 
barcoded samples were multiplexed into each of ten libraries. Each 
library was run in one lane on a HiSeq 2000 (Illumina, San Diego, 
California, USA) for 100 bp single-end reads at the University of 
Illinois Roy J. Carver Biotechnology Center DNA Sequencing Unit. 
All sequencing data has been deposited in the NCBI Sequence Read 
Archive, BioProject ID PRJNA261699. All samples were also geno-
typed with ten plastid microsatellite markers (de Cesare et al., 2010; 
Jiang et al., 2012) scored by electrophoresis on an ABI 3730 (Applied 
Biosystems, now part of Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) followed by allele calling in STRand (Toonen 
and Hughes, 2001).

Genetic data analysis

The UNEAK pipeline in TASSEL 3.0.162 (Lu et al., 2013) was used 
to call single nucleotide polymorphism (SNP) genotypes from RAD-
seq data using a minimum call rate of 0.5 and a minimum minor 
allele frequency of 0.01. In addition to the 745 individuals from the 
Japan dense-sampling set, 645 individuals from the region-wide set, 
42 US naturalized genotypes, and 81 cultivars (Clark et al., 2014) 
were included in the SNP-calling pipeline, yielding 20 704 SNPs 
after removing SNPs that appeared heterozygous in one or more 
doubled haploid lines. Though polyploidy represents a challenge 
for SNP-calling, the UNEAK pipeline was designed to distinguish 
paralogues in polyploids and the use of doubled haploid M. sinensis 
lines further enabled this differentiation (Clark et al., 2014).

SNPs were analysed with the software Structure 2.3.4 (Falush 
et  al., 2003) to identify new genetic groups, assign individuals to 
previously identified groups (Clark et al., 2014), and detect admix-
ture and hybridization between species (see also Supplementary 
Materials and methods). Structure Harvester (Earl and VonHoldt, 
2011) was used to determine the best number of clusters (K). 
To determine the origins of ornamental and naturalized acces-
sions of M.  sinensis available in the US, the USEPOPINFO and 
PFROMPOPFLAGONLY options were used. To determine the 
power of Structure to detect hybridization, analyses were conducted 
on groups of simulated hybrid individuals using individuals from 
the dataset as parents, and on a simulated population of individu-
als from the common ancestor of M. sinensis and M. sacchariflorus. 
Principal components analysis performed with adegenet (Jombart 

Table 1. Origins of Miscanthus accessions genotyped in the present study

Island Species Seed only Clonal only Clonal + seed

Hokkaido M. sinensis 91

M. sacchariflorus 2 3

Honshu M. sinensis 88 3

M. sacchariflorus 3 32

Shikoku M. sinensis 5

Kyushu M. sinensis 14 1

M. sacchariflorus 1 6

Total M. sinensis 198 4 6

M. sacchariflorus 6 41 6

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
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and Ahmed, 2011) was also used to compare and validate the results 
from Structure.

The R package mmod (Winter, 2012) was used to calculate the dif-
ferentiation statistic Jost’s D (Jost, 2008) using the 20 704 RAD-seq 
SNPs between pairs of groups as identified by discriminant analy-
sis of principal components (DAPC; Jombart et  al., 2010). Jost’s 
D was calculated individually for each locus, then averaged across 
loci. Nei’s D (expected heterozygosity) was calculated for the same 
groups using allele frequencies calculated by the glMean function in 
adegenet (Jombart and Ahmed, 2011). To control for differences in 
group size, for each genetic group, 500 jack-knifed subgroups con-
taining 100 individuals each were used to calculate Nei’s D, and the 
mean and standard error were calculated across jack-knifed repli-
cates. FST was calculated in the R package pegas (Paradis, 2010) to 
determine the differentiation of each Japanese M. sinensis genetic 
group from Japanese M. sinensis as a whole.

Spatial principal components analysis (sPCA), implemented in 
the R package adegenet (Jombart et  al., 2008) was used to iden-
tify spatial patterns in genetic variation of M.  sinensis across the 
major islands of Japan using RAD-seq SNPs. The R package ade4 
(Chessel et al., 2004) was used to plot the results.

A haplotype network was generated from all ten chloroplast 
microsatellite markers, as in Clark et  al. (2014). Any individuals 
with missing data were removed from the haplotype network analy-
sis, leaving 731 M. sinensis and M. sacchariflorus individuals from 
252 accessions from the Japan dense-sampling set.

Flow cytometry

Flow cytometry was performed using a protocol modified from 
Rayburn et al. (2009). Flow cytometry was used to determine the 
nuclear DNA content of all M.  sacchariflorus and M.×giganteus 
individuals for which live plants were available (72 out of 78 from 
the Japan dense-sampling set, plus two from Korea and nine from 
China from the region-wide set), as well as a sample of 32 M. sinen-
sis individuals from the Japan dense-sampling set.

Results

Major groupings, admixture, and hybridization of 
Miscanthus based on SNP data

Structure analysis of  the Japan dense-sampling set identi-

fied K=4 (three M. sinensis and one M. sacchariflorus) as 

the most reproducible estimate (Supplementary Fig. S1). 

Thus, the high density sampling in this study enabled iden-

tification of  three M.  sinensis groups in Japan (northern, 

central, and southern, hereafter called N, Central, and 

S Japan when referring to genetic clusters as opposed to 

geographic regions; Fig. 1A, C), where previous low den-

sity sampling had identified only two groups (northern 

and southern). A  combined analysis of  the Japan dense-

sampling set with the region-wide set at K=8 identified the 

seven genetic groups from the previous study (six M. sinen-

sis and one M. sacchariflorus; Clark et al., 2014) plus the 

one additional M. sinensis group identified in the analysis 

of  the Japan dense-sampling set (Fig.  1A, C). The first 

principal component of  the SNP data was strongly corre-

lated with M. sacchariflorus ancestry identified by Structure 

(r2=0.99; Supplementary Fig. S2A), and Structure runs on 

simulated hybrids indicated that even highly backcrossed 

(BC5) individuals could be distinguished from the parent 

species (Supplementary Fig. S2B, Table S1).

Based on admixture estimates, M.  sinensis genotypes 

in Japan were strongly isolated from each of the other five 

groups identified (Fig.  1A, Supplementary Dataset S1). 

Isolation of M. sinensis from M. sacchariflorus in Japan was 

especially strong. Only 9 of the 667 phenotypically M. sin-

ensis genotypes evaluated had <99% M.  sinensis ances-

try. Unexpectedly, however, four diploid individuals from 

Hokkaido and one from Ibaraki (central Honshu) had hybrid 

ancestry >5% from M. sacchariflorus (27%, 18%, 14%, 6%, 

and 9% respectively), and were part of seed accessions that 

were otherwise non-hybrid (EBI-2009-02c, Koike-05a, EBI-

2008-46c, EBI-2008-37e, JA55-2c; Supplementary dataset 

S1). For EBI-2009-02c, intermediate morphological charac-

teristics were observed between M. sacchariflorus and M. sin-

ensis, including axillary branching, which is characteristic of 

M.  sacchariflorus, and trichomes on the abaxial surface of 

leaves, which is characteristic of M. sinensis (Fig. 2). Among 

the Japanese genotypes with ≥99% M. sinensis ancestry, only 

39 out of 795 had less than 95% Japanese ancestry. Most of 

the non-Japanese admixture observed for M.  sinensis from 

Japan was with the southeast (SE) China M. sinensis group 

(Fig. 1A, Supplementary Dataset S1).

Of the three Japanese M. sinensis genetic groups (as identi-

fied by DAPC), the N Japan group was the least diverse and 

the Central Japan group was the most diverse, both in terms 

of plastid haplotypes and nuclear SNPs (Table  2). Among 

the three Japanese M. sinensis groups, S Japan was the most 

differentiated from the others based on FST, and Central 

Japan was the least differentiated (Table  2). Pairwise Jost’s 

D between DAPC groups revealed that the S Japan group 

was more closely related to the SE China group than to the 

N Japan group (Table 3). Of the three M. sinensis groups in 

Japan, S Japan was the most closely related to each main-

land Asia group, and N Japan was the most distantly related 

(Table 3).

Ornamental M.  sinensis and M.  sinensis×M.  sacchariflo-

rus accessions from the USA had, on average, 39% ances-

try to the S Japan genetic group, 32% to the Central Japan 

group, 11% to the N Japan group, 6% to the Korea/N China 

group, and 7% to the M.  sacchariflorus group (Fig.  1B). 

Naturalized M. sinensis accessions collected in the USA had 

more uniform Q values among individuals than ornamental 

cultivars, and most of their ancestry was from S and Central 

Japan. Although M.  sacchariflorus ancestry was negligi-

ble (0.7%) within the naturalized USA accessions, they did 

have 2.6% ancestry from the Korea/N China group, whereas 

native Japanese M. sinensis only had 0.2% ancestry from the 

Korea/N China group.

For all M.  sacchariflorus studied, including those from 

Japan, China and Korea, a single group was identified via 

Structure analysis (Fig 1A). Nine individuals from S Japan 

with M.  sacchariflorus phenotypes (six of which were col-

lected as clones and three as seeds) had hybrid ancestry (Q 

values) >20% from M. sinensis, three of which were triploid 

and five tetraploid (ploidy was undetermined for one indi-

vidual owing to loss of the plant; Fig.  1A, D, E, Table  4); 

thus, these individuals were probably F1 and BC1 interspecific 

hybrids (i.e. M.×giganteus). Only 11 of the 69 phenotypically 

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
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M. sacchariflorus Japanese genotypes that were confirmed to 

be tetraploid had ≥98% of their nuclear alleles from M. sac-

chariflorus, with the remaining accessions having M.  sinen-

sis ancestry (predominantly Japanese) ranging from 2–39%, 

with a mean of 7% and median of 5% (Fig. 1A and E). Thus, 

recurrent backcrossing of hybrid individuals probably pro-

duced the observed gradient of M. sinensis introgression into 

M. sacchariflorus (Fig. 1E). For phenotypically M. sacchari-

florus individuals with <20% M.  sinensis ancestry, latitude 

was negatively correlated with M. sinensis ancestry (Fig. 1E), 

indicating that introgression was more frequent in south-

ern Japan than northern Japan. In contrast to the frequent 

introgression of M. sinensis genes into tetraploid M. sacchari-

florus in Japan, seven diploid and three tetraploid M. sacchar-

iflorus from China each had ≥98% M. sacchariflorus ancestry. 

However, two M. sacchariflorus from Korea had only 92–94% 

M. sacchariflorus ancestry, with most of the remainder from 

the Korea/N China M. sinensis group.

Spatial analysis of M. sinensis SNP data

If  M.  sinensis individuals were sorted by Q value, the val-

ues changed abruptly in several regions of  the bar plot, 

suggesting barriers to gene flow (Fig. 1A). Spatial principal 

Fig. 1. Structure and DAPC results using 20 704 nuclear SNPs. Msi=Miscanthus sinensis, Msa=M. sacchariflorus, Mxg=M.×giganteus. (A) Bar plot 

of Q values (proportion ancestry estimated in Structure) for 745 individuals from the Japan dense-sampling set and 645 individuals from the previously 

published region-wide set (Clark et al., 2014). Each of five runs included 253 individuals from the Japan-dense set (one per accession) plus all 645 

individuals from the region-wide set; mean Q values are shown for individuals that were present in more than one run. Each of the eight groups is 

represented by a different colour. The narrower bottom bar indicates DAPC group assignments. (B) Mean Q values for 81 ornamental individuals and 

42 naturalized individuals from the USA, when the parameters USEPOPINFO and PFROMPOPFLAGONLY were used in Structure to assign ancestry 

from native populations. (C) Map of Q values for Msi individuals in Japan, including 667 from the Japan-dense set and 128 from the region-wide set. 

Five individuals with Msa ancestry 6–27%, including four diploids and one of undetermined ploidy, are indicated with arrows. (D) Map of Q values for 78 

Msa–Mxg complex individuals from Japan, all from the Japan dense-sampling set. Four individuals with Msi ancestry 39–42% are indicated with arrows, 

and the ploidy determined by flow cytometry is indicated; all other individuals shown were tetraploid except for six of undetermined ploidy. The red 

ellipse indicates the sampling area for all four Msa–Mxg individuals with an Msi plastid haplotype (other individuals within the ellipse have an Msa plastid 

haplotype). (E) Latitude vs Q values for 89 native-collected Msa–Mxg complex individuals, Mxg ‘Illinois’ (assuming origin in Yokohama, Japan; indicated 

with an arrow), 28 random Msi individuals that were subjected to flow cytometry, and five Msi individuals with Msa ancestry >5%. Colour and shape of 

symbols in (E) are used redundantly to indicate plastid haplotype and collection location, and fill is used to indicate ploidy, with filled points outlined in 

black to make them more easily visible.



4218 | Clark et al.

components analysis of  nuclear SNP data indicated the 

geographical locations and relative strengths of  these bar-

riers to gene flow for M. sinensis in Japan (Fig. 3). The first 

three eigenvectors with positive spatial autocorrelation were 

chosen for analysis, based on a screeplot of  genetic vari-

ance vs spatial autocorrelation (Supplementary Fig. S3). 

The first eigenvector, which had by far the highest variance 

(Fig.  3A; 12.7% of genetic variation between sites), repre-

sented a genetic gradient north to south in Japan, as well as 

differentiation of  the region to the southwest of  the Noto 

Peninsula. The second eigenvector, representing 2.7% of the 

genetic variation between sites, revealed central Honshu as 

the most divergent region, and a steep genetic cline near the 

Japanese Alps (Fig. 3B). The third eigenvector, representing 

1.4% of genetic variation between sites, showed a gradient 

from east to west (Fig. 3C). None of  these three eigenvectors 

revealed genetic structure within Hokkaido despite the large 

sample size in that region.

Fig. 2. Photographs of EBI-2009-02c, an M. sinensis×M. sacchariflorus individual grown from seed collected in Hokkaido, Japan. Ancestry of EBI-

2009-02c according to Structure was ~73% M. sinensis from N Japan and ~27% M. sacchariflorus (Fig. 1A, C, E). Its plastid haplotype was commonly 

found among M. sinensis in Hokkaido (haplotype C, Fig. 4). (A) Close-up showing axillary branching and long internodes, which are characteristic of 

M. sacchariflorus. (B) Broader view, with more branching visible. (C–E) Abaxial leaf surface of three plants, showing presence or absence of trichomes. 

Scale is identical in C–E. (C) Non-hybrid M. sinensis displaying trichomes (arrow), which is typical for this species. (D) EBI-2009-02c, with trichomes 

(arrow). (E) Diploid non-hybrid M. sacchariflorus, with a glabrous phenotype that is typical of this species.

Table 2. Diversity statistics for Japanese groups of M. sinensis (Msi) and the M. sacchariflorus–M.×giganteus complex (Msa–Mxg)

For Msi, the Gini-Simpson index and Nei’s D were estimated using 500 jack-knifed groups containing 100 individuals from each Msi group, and 

standard errors are calculated across jack-knifed replicates. For Msa–Mxg, the Gini-Simpson index was estimated without jack-knifing owing to 

small sample size, and Nei’s D was not calculated because of expected bias from the SNP-mining method (most individuals used for SNP mining 

in UNEAK were Msi). FST indicates differentiation of each Japanese Msi group from the other two, and the standard error is given across loci.

Group Number of  
individuals

Number of plastid 
haplotypes

Gini-Simpson index, 
plastid haplotypes

Nei’s D, nuclear  
SNPs

FST, nuclear  
SNPs

N Japan Msi 446 16 0.4533 ± 0.0022 0.13055 ± 0.00003 0.0421 ± 0.0004

C Japan Msi 226 19 0.7747 ± 0.0011 0.13460 ± 0.00002 0.0238 ± 0.0003

S Japan Msi 122 17 0.7606 ± 0.0002 0.13217 ± 0.00001 0.0455 ± 0.0005

All Japan Msi 794 38 0.7911 ± 0.0006 0.14247 ± 0.00001

Japan Msa–Mxg 78 19 0.8340 ± 0.0375

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru511/-/DC1
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Plastid microsatellites

Across the Japan dense-sampling set of  745 individuals 

(255 accessions), 57 unique plastid haplotypes were iden-

tified. From these, a haplotype network was calculated 

(Fig. 4), which included a sub-network of  haplotypes spe-

cific to M.  sacchariflorus and two major sub-networks of 

haplotypes common in M.  sinensis. The topology of  the 

haplotype network (Fig. 4) was slightly different from the 

previously published network (Clark et al., 2014) owing to 

homoplasy of  microsatellite alleles, absence of  haplotypes 

present only in mainland Asia, and/or differences in hap-

lotype frequency. Strong geographic structure was seen 

among the major M.  sinensis haplotypes (Fig.  4), includ-

ing haplotypes A and B which are common among orna-

mental cultivars available in the USA and Europe (Clark 

et  al., 2014). Of  the 78 phenotypically M.  sacchariflorus 

individuals (53 accessions) genotyped, four did not have 

a plastid haplotype that was part of  the M. sacchariflorus 

sub-network, but instead had haplotype B, an M.  sinen-

sis haplotype common in Shikoku and southern Honshu 

where those four accessions were collected (Figs. 1D, E and 

4) and not found anywhere else in Asia (Clark et al., 2014). 

These four interspecific hybrid individuals with M. sinensis 

plastids were collected along the west coast of  Chūgoku 

(Fig.  1D) and 58–88 % of  their nuclear DNA was from 

M.  sacchariflorus with the remainder from M.  sinensis; 

one individual was triploid and the others were tetraploid. 

Though M.  sinensis plastids were found introgressed into 

M. sacchariflorus, M. sacchariflorus plastids were not found 

introgressed into M. sinensis.

DNA content

All tested individuals that had >60% M. sacchariflorus ances-

try were tetraploid, with the exception of seven diploids from 

China (Fig. 1E). As expected, all tested M. sinensis individu-

als were diploid (Fig. 1E). Of the five interspecific hybrids that 

phenotypically resembled M.  sinensis and had M.  sinensis 

plastids, but had 6–27% M. sacchariflorus ancestry based on 

nuclear SNPs, four were determined to be diploid (Fig. 1E), 

and the fifth individual died before it could be tested.

Discussion

Introgression of M. sinensis DNA into tetraploid 
M. sacchariflorus

Though previous studies have also identified triploid hybrids 

between tetraploid M. sacchariflorus and diploid M. sinensis 

from wild populations in Japan (Hirayoshi et al., 1957, 1960; 

Adati and Shiotani, 1962; Hodkinson et al., 2002c; Nishiwaki 

et  al., 2011; Dwiyanti et  al., 2013) and even one interspe-

cific tetraploid hybrid (Dwiyanti et al., 2013), this is the first 

study to establish that introgression of M. sinensis DNA into 

tetraploid M.  sacchariflorus is common in Japan, resulting 

in a tetraploid population that has a continuous gradient 

of M.  sinensis nuclear genetic ancestry ranging up to 39%. 

Only 16% of the phenotypically M. sacchariflorus tetraploids 

from Japan had ≥98% M. sacchariflorus ancestry, whereas all 

nine of the M. sacchariflorus from China that were studied 

(seven diploids and two tetraploids) exceeded this threshold. 

Similar to the unintrogressed M. sacchariflorus from China, 

Table 3. Pairwise Jost’s D of Japanese M. sinensis groups

Mean and standard error were calculated across 20 704 SNP loci. Colour names correspond to colours in Fig. 1.

C Japan S Japan Korea, N  
China (red)

SE China  
(purple)

Yangtze-Qinling 
(dark green)

Sichuan  
(orange)

Msa (cyan)

N Japan (blue) 0.0169 ± 0.0003 0.0313 ± 0.0006 0.0571 ± 0.0009 0.0492 ± 0.0008 0.0597 ± 0.0009 0.0743 ± 0.0011 0.1224 ± 0.0017

C Japan (light green) 0.0127 ± 0.0003 0.0403 ± 0.0007 0.0326 ± 0.0006 0.0435 ± 0.0008 0.0592 ± 0.0010 0.1080 ± 0.0016

S Japan (yellow) 0.0337 ± 0.0006 0.0294 ± 0.0006 0.0395 ± 0.0007 0.0567 ± 0.0010 0.1058 ± 0.0016

Table 4. F1 and BC1 M.×giganteus collected from the wild in Japan 

M.×giganteus ‘Illinois’ is included for comparison. Msa=M. sacchariflorus. Proportion Msa ancestry=Q value estimated by Structure.

Accession Type Prefecture Proportion  
Msa ancestry

Ploidy Plastid  
haplotype group

JM11-006 Clone Yamaguchi 0.796 4× B

JA52a Seed Fukuoka 0.784 NA (dead plant) Msa

Gifu-2010-020d Seed Gifu 0.744 4× Msa

JM11-002 Clone Fukuoka 0.709 4× Msa

Gifu-2010-014a Seed Gifu 0.705 4× Msa

JM11-013 Clone Shimane 0.611 4× B

JM11-031 Clone Tottori 0.598 3× Msa

JM11-010 Clone Yamaguchi 0.579 3× B

Gifu-2010–025 Clone Gifu 0.578 3× Msa

‘Illinois’ Clone Kanagawa 0.575 3× Msa
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≥99% of M. sinensis from Japan had ≥99% M. sinensis ances-

try (Fig. 1A, E). Moreover, the amount of introgression of 

M. sinensis DNA into M. sacchariflorus was negatively cor-

related with latitude (Fig. 1E), and is highest where flowering 

times of M. sinensis and M. sacchariflorus have the greatest 

overlap and where alleles for adaptation to a warm climate 

would be expected to have the greatest benefit to M. sacchari-

florus. Thus, the tetraploid Miscanthus in Japan, which had 

been considered to be allo- or autopolyploid M. sacchariflo-

rus, are in fact predominantly a hybrid swarm derived from 

autotetraploid M. sacchariflorus and diploid M. sinensis. In 

contrast to the tetraploid hybrid swarm that we identified 

Fig. 3. Spatial principal components analysis (sPCA) of M. sinensis in Japan using 5359 SNPs across 782 individuals from 205 collection sites. (A–C) 

Interpolation of scores of lag vectors of the first three eigenvectors produced by sPCA. Scores are represented the darkness of greyscale pixels. The 

percentage of genetic variation between sites explained by each of the three eigenvectors is indicated. (This figure is available in colour at JXB online.)

Fig. 4. Haplotype network of Miscanthus based upon ten plastid microsatellite markers, and maps of sampling locations of the most common 

haplotypes. Circle area in the network is proportional to the number of unique accessions with each haplotype, and pie slice area is proportional to 

the number of individuals in each DAPC group as determined by nuclear SNPs (Fig. 1A, lower bar, with corresponding colours). Msa indicates the 

sub-network belonging to M. sacchariflorus. The rest of the network is found in M. sinensis. The eight most common haplotypes in M. sinensis are 

indicated with letters. Haplotypes A, B, C, H, I, and J correspond to identically named haplotypes from Clark et al. (2014). Probable geographic origins of 

ornamental M. sinensis cultivars (bottom, centre) were determined by the presence of haplotypes A, B, and I and the absence of other haplotypes.
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in Japan, Jiang et  al. (2013) reported that hybrids between 

diploid M.  sacchariflorus and diploid M. sinensis in China 

had approximately equal genetic contributions from both 

parents, and they did not find evidence of introgression from 

one species into the other. Another notable contrast between 

the tetraploid interspecific hybrids in Japan and diploid inter-

specific hybrids in China is that the tetraploids in Japan are 

phenotypically most similar to the M. sacchariflorus parent, 

including the development of long rhizomes, whereas the 

interspecific diploids in China are phenotypically most simi-

lar to the M. sinensis parent, including caespitose habit. Such 

differences in the growth characteristics of the hybrids would 

be expected to have substantial effects on their adaptation 

and competitiveness.

This study is also the first to report M. sinensis plastids 

introgressed into wild-collected tetraploid M.  sacchari-

florus from Japan, with about 4% of  the phenotypically 

M.  sacchariflorus tetraploids having M.  sinensis plastids 

in nuclear genetic backgrounds that ranged from 61–88% 

M. sacchariflorus. Consistent with the findings of  M. sin-

ensis plastids introgressed into wild M.  sacchariflorus 

tetraploids from Japan, Hirayoshi et al. (1960) produced a 

triploid and a tetraploid progeny from a purposeful cross 

between diploid M. sinensis var. condensatus as the female 

parent and tetraploid M. sacchariflorus as the male parent. 

In China, wild-collected hybrids between diploid M. sac-

chariflorus and diploid M. sinensis were also found to have 

plastids from either parent (Jiang et al., 2013; Clark et al., 

2014).

Cytogenetic evidence has resulted in conflicting reports as 

to whether tetraploid M.  sacchariflorus is allopolyploid or 

autopolyploid, although the most modern studies suggest 

autopolyploidy (Adati and Shiotani, 1962; Takahashi and 

Shibata, 2002). The present study also does not support the 

allopolyploid hypothesis. If  the M.  sacchariflorus in Japan 

were allotetraploid, derived from diploid M.  sacchariflorus 

and diploid M.  sinensis, it would be expected that at least 

half  their ancestry would be from M. sinensis, but this was 

not observed, as M.  sinensis ancestry was typically <20% 

and never greater than 39% (Fig 1E). Moreover, it was found 

that the tetraploid M. sacchariflorus from Japan co-clustered 

with the diploid and tetraploid M. sacchariflorus from China 

and Korea. Thus, tetraploid M. sacchariflorus in Japan prob-

ably originated via autopolyploidization of diploid M. sac-

chariflorus, but subsequent and ongoing crosses with diploid 

M.  sinensis have resulted in a predominantly interspecific 

hybrid population of tetraploids in Japan. Given that both 

diploid and tetraploid hybrids between M.  sacchariflorus 

and M. sinensis are typically fertile and have normal meioses 

(Hirayoshi et al., 1960; Jiang et al., 2013; Clark et al., 2014), 

their genomes may not be sufficiently differentiated to result 

in allopolyploid speciation of hybrids. Whereas polyploidi-

zation of amphidiploids is typically considered a speciation 

event, polyploidization of M.  sacchariflorus has facilitated 

considerable introgression of genes from diploid M. sinensis 

in Japan (i.e. brought the nascent differentiating genomes of 

M. sacchariflorus and M. sinensis back together). Thus, for 

M. sacchariflorus and M. sinensis, speciation seems to be an 

ongoing, lengthy, and dynamic process, rather than a single 

discrete event.

Adaptive advantages of interspecific tetraploids to a warm-

ing climate provide a possible explanation for the absence of 

diploid M. sacchariflorus in Japan. Temperatures and flora in 

much of Japan around the last glacial maximum were similar 

to those of contemporary inland eastern Russia, where dip-

loid M. sacchariflorus is common but M. sinensis is absent or 

rare (Winkler and Wang, 1993; Adams and Faure, 1997; Ray 

and Adams, 2001). When the climate subsequently warmed 

and M. sinensis migrated from a refuge in southeast Asia to 

Japan ~14 000 years before present (Clark et al., 2014), the 

cold-adapted M. sacchariflorus in Japan may have benefited 

from the introgression of M.  sinensis genes that conferred 

adaptation to warmer environments. Moreover, introgres-

sion would have preferentially favoured fitness of a tetra-

ploid M. sacchariflorus–M.×giganteus complex over diploid 

M. sacchariflorus and diploid interspecific hybrids, owing to 

the tetraploid hybrids’ competitive rhizomatous habit com-

bined with heterosis and adaptation to a warming climate, 

thus possibly explaining why diploid M.  sacchariflorus is 

absent or exceedingly rare in Japan today. This hypothesis is 

consistent with the prediction of Stebbins (1971) that cross-

ploidy introgressions have played a large role in ecological 

adaptation. Japan’s maritime climate, lacking extreme tem-

peratures, may have driven the M. sacchariflorus conversion 

from diploid to tetraploid more completely than in main-

land Asia. Observations from a field trial located in southern 

Illinois at the Dixon Springs Experiment Station (37.4° N; 

USDA hardiness zone 6/7) indicate that some diploid M. sac-

chariflorus are unadapted to warm temperate environments 

(e.g. by flowering and going dormant many months before 

the end of the growing season), whereas all tested tetraploid 

M. sacchariflorus from Japan are well-adapted to such envi-

ronments. However, the range of putatively diploid M. sac-

chariflorus in China extends as far south as 28°N (Sacks et al., 

2013). As subsequent analyses of population structure allow 

the identification of the closest living diploid M. sacchariflo-

rus relatives of Japanese tetraploid M. sacchariflorus, it will be 

possible to more fully test this hypothesis by comparing the 

adaptation of these diploid M. sacchariflorus to that of their 

induced tetraploids, their diploid and tetraploid progeny from 

crosses with diploid M.  sinensis from southern Japan, and 

natural tetraploid M.×giganteus and M. sacchariflorus geno-

types. Additionally, if  the hypothesis is correct, we expect to 

see introgression from M. sinensis into M. sacchariflorus press 

northward as the climate warms.

The new understanding that most of the tetraploid phe-

notypically M. sacchariflorus in Japan are in fact backcross 

hybrids between M. sacchariflorus and M. sinensis with vari-

able degrees of introgression from M. sinensis also leads to 

an interesting question of nomenclature. Hodkinson and 

Renvoize (2001) defined the hybrid between M. sacchariflo-

rus and M.  sinensis as the nothospecies M.×giganteus. The 

International Code of Nomenclature for algae, fungi, and 

plants (McNeill et al., 2012) further indicates that a nothotaxa 

includes all filial and backcross individuals that are recogniza-

bly derived from the defined parental taxa. Molecular markers 
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have allowed pure M. sacchariflorus to be distinguished from 

F1 and backcross hybrids with M.  sinensis, though pheno-

typically even F1 triploid M.×giganteus can be difficult to 

distinguish from tetraploid M.  sacchariflorus. Thus, many 

of the tetraploid genotypes in Japan that look like M. sac-

chariflorus phenotypically may be most accurately referred to 

as M.×giganteus. Perhaps it would be most accurate to refer 

to this group in Japan as an M. sacchariflorus–M.×giganteus 

complex. Nomenclature details aside, researchers should be 

cognizant of the complex nature of the tetraploid Miscanthus 

populations in Japan.

For the development of biomass cultivars, the new trip-

loid F1 M.×giganteus accessions that were identified here and 

imported into the USA will be immediately useful in field tri-

als to compare their performance to the current agronomic 

standard, M.×giganteus ‘Illinois’. Though M. sacchariflorus 

is the maternal parent of ‘Illinois’ (Hodkinson et al., 2002c), 

the results here indicate that M.  sinensis can be the mater-

nal parent with similar probability. Crosses to create new 

M.×giganteus can therefore be performed in either direction, 

and maternal cytoplasmic effects on the performance of new 

hybrids should be investigated. Also, the degree of introgres-

sion from M. sinensis should now be taken into account when 

selecting a parent from the tetraploid M.  sacchariflorus–

M.×giganteus complex for crosses with diploid M.  sinensis 

and evaluating the performance of their progeny. As traits of 

interest are mapped on the M. sinensis and M. sacchariflorus 

genomes in the near future, it is possible that a greater genetic 

dosage from one parent species or the other will be desired for 

particular genes or genomic regions, in which case particular 

tetraploid M. sacchariflorus–M.×giganteus accessions may be 

selected as parents based on which regions of the M. sinensis 

genome they do or do not possess.

Introgression of M. sacchariflorus DNA into diploid 
M. sinensis

Although much less frequent than introgression of diploid 

M. sinensis into tetraploid M. sacchariflorus, introgression of 

M. sacchariflorus DNA into M. sinensis was also observed, 

particularly in Hokkaido (Figs. 1A, C, E and 2). The M. sin-

ensis individual with the greatest amount of M. sacchariflorus 

DNA, EBI-2009-02c, was collected in Rikubetsu, the coldest 

place in Japan, where Miscanthus is rare (T. Yamada, personal 

observation). Hybridization of M. sinensis and M. sacchari-

florus to produce diploid progeny that could backcross to dip-

loid M. sinensis is difficult to explain, given that no endemic 

diploid M. sacchariflorus are known to exist in Japan. Recent 

importation of diploid M. sacchariflorus from China is one 

possible explanation for the presence of interspecific diploid 

progeny. Another possibility is the production of highly rare 

monoploid gametes from tetraploid M. sacchariflorus or trip-

loid M.×giganteus. However, M.×giganteus from the south is 

unlikely to have contributed to the ancestry of these diploid 

M. sinensis× M. sacchariflorus hybrids, which were found in 

the north, because the diploid hybrids did not have any ances-

try from the S Japan M. sinensis group. Moreover, in northern 

Japan tetraploid M. sacchariflorus typically flower much later 

than M.  sinensis. Lastly, the possibility must be considered 

that endemic populations of diploid M. sacchariflorus either 

recently existed in northern Japan and have been lost, or exist 

currently but have remained undetected, and these diploid 

M. sacchariflorus crossed with M. sinensis.

Spatial genetic structure in M. sinensis

Spatial principal components analysis revealed several dis-

tinct genetic clines in M.  sinensis, which reflect different 

demographic processes and their relative importance in shap-

ing the population structure of M. sinensis in Japan. The larg-

est eigenvector by far indicated a cline from south to north 

(Fig. 3A), which could reflect progressive founder effects as 

M.  sinensis migrated from southeast China and colonized 

Japan (Clark et al., 2014). The largest eigenvector also cor-

responds to geographic distance from Korea and the Ryukyu 

islands, with which ongoing genetic exchange is probably tak-

ing place. The region to the southwest of the Noto Peninsula 

was also distinguished by the first eigenvector, perhaps 

because this maritime region is isolated by mountains and 

ocean from other nearby maritime regions. Consistent with 

the Structure analysis identifying a distinct central Japan 

M.  sinensis group (Fig.  1C), the second eigenvector distin-

guished central Honshu from northern and southern Japan 

(Fig.  3B). The Japanese Alps have been a barrier to gene 

flow, as indicated by a steep cline in this region for the second 

eigenvector (Fig. 3B) and by greater genetic differentiation for 

the S Japan group than the other Japanese M. sinensis groups 

to the north of these mountains (Table 2). The combination 

of the first and second eigenvectors gave a similar pattern to 

a genetic cline previously found across southern Japan and 

Korea in M. sinensis (Slavov et al., 2013) and is also similar to 

the pattern that was seen with Structure (Fig. 1A). The third 

eigenvector showed a cline east to west in central and southern 

Japan (Fig. 3C), suggesting that there may be gene flow along 

the coasts that bypasses the clines seen in the first two eigen-

vectors. Most of the genetic variation between sites (83.2%) 

remained unexplained by these three eigenvectors, indicating 

that obligate outcrossing and wind dispersal of seed and pol-

len, in combination with the relatively recent colonization of 

Japan by M.  sinensis (within the past ~14,000  years; Clark 

et al., 2014) resulted in an unstructured pattern of allele fre-

quencies at most loci.

The plastid results were consistent with those of previous 

studies (Shimono et al., 2013; Clark et al., 2014), which indi-

cated the presence of two major groups of plastid haplotypes 

in Japan that probably correspond to two or more coloniza-

tion events. Additionally, it was found that the eight most com-

mon haplotypes for M. sinensis in Japan (four from each of 

the two major groups) all had well-defined geographic ranges 

(Fig. 4), indicating strong barriers to seed flow. The Tsugaru 

Strait is one such barrier, given that the Hokkaido popula-

tion almost exclusively had haplotype C, despite haplotypes H 

and J being common nearby in northern Honshu. Kyushu is 

similarly isolated; the only major haplotypes found there are C 

and I, despite haplotype B being common nearby in southern 

Honshu and Shikoku. The Japanese Alps also seem to block 
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seed flow, given that haplotypes A, H, J, M, and N were only 

found north of the mountain range, whereas haplotypes B and 

I were only found south of it. Cytoplasmic markers can exhibit 

stronger population structure than nuclear markers owing to 

undergoing a higher rate of genetic drift as a result of having a 

smaller effective population size (McCauley, 1995).

Origins of ornamental cultivars and naturalized 
M. sinensis in the USA

In this study, geographic resolution was added to the previ-

ous finding that ornamental and naturalized M. sinensis in the 

USA originated from southern Japan (Clark et al., 2014). The 

Q values (Fig.  1B) and the geographic distribution of plas-

tid haplotypes (Fig. 4) for the ornamental cultivars indicated 

that there were multiple introductions to the USA but from 

two small areas (Fig. 4) of east-central Japan (eastern parts of 

Kantō and Chūbu) and south-western Japan (Chūgoku and 

western Kansai). The Q values among the naturalized popula-

tions in the USA were less varied than Q values among orna-

mental cultivars, indicating that these populations originated 

from a small subset of ornamental cultivars. These findings 

on the origins of the ornamental cultivars in the USA and 

Europe are consistent with historical documentation that 

the Yokohama Nursery Company played an important role 

in distributing Japanese plants, including Miscanthus, inter-

nationally during the late 1800s and early 1900s (Galloway, 

1907, see entry 10524; http://www.nal.usda.gov/exhibits/spec-

coll/exhibits/show/nursery-and-seed-trade-catalog/japanese-

nursery-and-seed-trad, last accessed 5 January 2015; http://

www.yokohamaueki.co.jp/ayumi/index.html, last accessed 

5 January 2015). The ornamental M.  sinensis×M.  sacchari-

florus ‘Purpurascens’ was a likely ancestor of many of the 

other ornamental cultivars, given that its M. sinensis ancestry 

is from the Korea/N China genetic group (red, Fig. 1A, B), 

and that ornamental cultivars with ancestry from the Korea/N 

China cluster tended to have a similar amount of ancestry 

from M. sacchariflorus (Fig. 1B). Among ornamentals and US 

naturalized accessions with negligible M. sacchariflorus ances-

try, a small but significant amount of Korea/N China ancestry 

was present in some genotypes, possibly indicating purifying 

selection to remove M. sacchariflorus genomic regions, given 

that this pattern of admixture was rare in the native range.

Conclusions

In Japan, speciation between tetraploid M. sacchariflorus and 

diploid M. sinensis is an ongoing and dynamic process, with 

gene exchange occurring in both directions but asymmetri-

cally in favour of diploid to tetraploid. Tetraploidy seems to 

have promoted introgression of genes from diploid M.  sin-

ensis into tetraploid M.  sacchariflorus in Japan to a greater 

extent than gene exchange between sympatric diploid M. sin-

ensis and diploid M.  sacchariflorus populations in China. 

These conclusions are consistent with the theory of Stebbins 

(1971) that unilateral introgressive hybridization across ploidy 

levels can play an important role in plant evolution. The 

M.×giganteus–M. sacchariflorus complex in Japan is expected 

to be an outstanding resource for developing new biomass 

cultivars.

To develop improved biomass cultivars of Miscanthus, it will 

be desirable to genetically map agronomic traits in M. sinensis 

and tetraploid M. sacchariflorus, and identify the best parents 

of each species for breeding new triploid M.×giganteus culti-

vars. Artificial backcrossed populations, derived from crosses 

between tetraploid M.×giganteus and tetraploid M. sacchari-

florus, will be useful for elucidating the role of M. sinensis genes 

introgressed into a tetraploid M. sacchariflorus genetic back-

ground. Experiments with such introgressants will provide 

insights into their possible selective advantage to wild popula-

tions of M. sacchariflorus, as well as their potential utility for 

breeding biomass cultivars. Additionally, an understanding 

of how the degree of M. sinensis introgression in tetraploid 

M.  sacchariflorus–M.×giganteus complex genotypes affects 

heterosis of triploid M.×giganteus hybrids would be useful for 

breeding bioenergy cultivars. The Miscanthus cultivars that 

are ultimately developed for the bioenergy industry are likely 

to be complex hybrids possessing traits from multiple species 

and geographic regions.
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Figure S1. Choice of K in Structure analysis.
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