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OBJECTIVE

Insulin resistance has deleterious effects on cardiometabolic disease. We usedMen-

delian randomization analyses to clarify the causal relationships of insulin resistance

(IR) on circulating blood-based metabolites to shed light on potential mediators of

the IR to cardiometabolic disease relationship.

RESEARCH DESIGN AND METHODS

We used 53 single nucleotide polymorphisms associated with IR from a recent

genome-wide association study (GWAS) to explore their effects on circulating lipids

and metabolites. We used published summary-level data from two GWASs of Euro-

pean individuals; data on the exposure (IR) were obtained from meta-GWASs of

188,577 individuals, and data on the outcomes (58 metabolic measures assessed

by nuclear magnetic resonance) were taken from a GWAS of 24,925 individuals.

RESULTS

One-SD genetically elevated IR (equivalent to 55% higher geometric mean of fasting

insulin, 0.89 mmol/L higher triglycerides, and 0.46 mmol/L lower HDL cholesterol)

was associated with higher concentrations of all branched-chain amino acids (BCAAs)d

isoleucine (0.56SD;95%CI0.43, 0.70), leucine (0.42SD;95%CI0.28, 0.55), andvaline (0.26

SD; 95% CI 0.12, 0.39)das well as with higher glycoprotein acetyls (an inflammation

marker) (0.47 SD; 95% CI 0.32, 0.62) (P < 0.0003 for each). Results were broadly consis-

tent when using multiple sensitivity analyses to account for potential genetic pleiotropy.

CONCLUSIONS

We provide robust evidence that IR causally affects each individual BCAA and in-

flammation. Taken togetherwith existing studies, this implies that BCAAmetabolism

lies on a causal pathway from adiposity and IR to type 2 diabetes.

The obesity pandemic is a public health crisis leading to a dramatic surge in the incidence

of type2diabetesmellitus (T2DM)and related diseases (e.g., cardiovascular diseases) (1).

Adiposity, particularly visceral adiposity (2), is associatedwith insulin resistance (IR) and

subsequent T2DM. Recent genetic studies using the Mendelian randomization (MR)

approach have shown adiposity traits (such as general adiposity, indexed by BMI, and

central adiposity, indexed by waist-to-hip ratio [WHR]) to show causal relationships

with blood pressure, lipids, coronary heart disease (CHD), stroke, and diabetes (3–6).

Furthermore, such studies havedemonstrated that adiposity traits causally influence IR

(3,4,6). IR is the clinical state of a reduced sensitivity to insulin, typically manifested as
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elevated levels of fasting insulin andoften

accompanied by higher levels of circulat-

ing triglycerides (TGs) and lower levels of

HDL cholesterol (HDL-C) (7).

Exploring the molecular mechanism by

which IR leads to T2DMmay help to iden-

tify biomarkers that could mediate the

relationship and provide novel opportuni-

ties for disease prevention. Recent stud-

ies have suggested that branched-chain

amino acids (BCAAs) might play a role in

the development of T2DM. Prospective ob-

servational studies show that higher levels

of circulating BCAAs are positively associated

with markers of IR (8) and risk of incident

T2DM (9,10). Recent genetic studies have

also implicated the metabolism of BCAAs

in the development of diabetes (11).

IR is a complex trait that can be assessed

by different metrics, including clamp/

insulin suppression test (gold standard),

insulin sensitivity test (based on oral glu-

cose tolerance test [OGTT]), HOMA-IR, and

fasting insulin. The GENESIS Consortium

has published a genome-wide association

study (GWAS)of insulinsensitivitymeasured

by clamp/insulin suppression test in a mod-

est number of subjects (N = 5,624) (12).

However, the statistical power limits the

findings of this study. Other metrics that

can be more easily measured, such as

fasting insulin or HOMA-IR, are often

used in large-scale genetic and epidemio-

logical studies. In the GWAS of fasting in-

sulin conducted by Scott et al. (13) (up to

108,557 individuals), they also tested the

associations of insulin-associated single

nucleotide polymorphisms (SNPs) with

lipid traits. They found that majority of

the insulin-associated SNPs were associ-

ated with HDL-C and/or TGs, and this pat-

tern was not observed for those SNPs

associated with fasting glucose or 2-h glu-

cose. Subsequently, a genetic instrument

was built for IR that used the 19 SNPs as-

sociated with fasting insulin and restricted

the instrument to those SNPs that were

also associated with TGs and HDL-C (14).

This instrument was recently adopted by

Mahendran et al. (15), and the results sug-

gest that IRmight be causal for circulating

concentrations of BCAAs. More recently,

Lotta et al. (7) considerably expanded the

set of SNPs associated with three compo-

nents of IR (higher fasting insulin, higher

TGs, and lower HDL-C), identifying 53 such

SNPs, and found that the SNPs in aggregate

alsoassociatedwith risksofCHDandT2DM.

In this study, we aim to 1) assess the

causal effects of IR on BCAAs using these

53 SNPs recently identified from across

the genome that associated with higher

fasting insulin, higher TGs, and lowerHDL-C

(7); 2) use multiple instruments and mul-

tiple sensitivity analysis as a means to de-

tect and correct for potential genetic

pleiotropy in order to ensure reliable find-

ings; 3) expand the outcome measures

from BCAAs to a comprehensive panel

of amino acids (including alanine, glutamine,

tyrosine, and phenylalanine), lipoprotein sub-

classes, fatty acids, glycolysis-related mea-

sures, and one inflammatory marker, which

are established or emerging biomarkers for

T2DM and cardiovascular diseases; and

4) provide an overview of the potential

causal pathways and mediator roles that IR

places intheunderlyingassociationofadipos-

ity with T2DM by incorporating our findings

into multiple strands of genetic evidence.

RESEARCH DESIGN AND METHODS

We used published summary-level data

from two GWASs of European individu-

als (7,16). Data on the exposure (IR) were

obtained from meta-analysis of GWASs

(meta-GWASs) of up to 188,577 individu-

als (7), and data on the outcome (58 cir-

culating metabolic measures) were taken

from a GWAS of up to 24,925 individuals

(16). Characteristics of these GWASs are

reported inSupplementary Tables 1 and2.

Generation of Genetic Instruments

We used the 53 SNPs associated with an

IR phenotype from Lotta et al. (7). In brief,

Lotta et al. (7) conducted a meta-GWAS

to identify SNPs that associatedwith an IR

phenotype of 1) higher fasting insulin ad-

justed for BMI;2) higher TGs; and 3) lower

HDL-C at P , 0.005 for each trait. The

combined association with the triad of

phenotypes have been proposed as a

means to characterizing the genetic ar-

chitecture of IR (7). This meta-GWAS

identified 53 SNPs, of which a subset of

25 loci had been previously associated

with TGs or HDL-C at genome-wide signif-

icance,whereas the remaining 28 hadnot.

We used the 53 SNPs to generate a ge-

netic instrument for IR. To conduct the

MR analyses (17), we needed to obtain

the association of SNPs with the exposure

(IR) and also the associations with out-

comes (metabolic measures). Lotta et al.

(7) did not provide b or SE for the associ-

ations of individual SNPs with the IR phe-

notype. To generate our own SNP to

exposure estimate, we took the absolute

value of the standardizedb coefficient for

each of the 53 SNP associations with the

individual components of the composite

IR phenotype (i.e., fasting insulin adjusted

for BMI, TGs, and HDL-C) and meta-

analyzed the estimates together using a

fixed-effect inverse-variance weighted

(IVW) method (data sources provided in

Supplementary Table 3). We used this

meta-analyzed value as the SNP-exposure

estimate for the summary-level MR anal-

yses. Supplementary Fig. 1 shows the as-

sociations of the 53 individual SNPs for

our IR trait with the three individual com-

ponents. Most of the SNPs fell in a straight

line (with a slope equal to 1), suggesting a

similar contribution of the three traits to

the composite IR phenotype with the ex-

ception of rs1011685 (near LPL), which

had a much weaker effect on insulin ad-

justed for BMI. We therefore conducted

sensitivity analyses in which rs1011685

was excluded from the instrument.

Two-Sample MR Analysis

Weused data from Kettunen et al. (16) to

obtain SNP associations with metabolic

measures. Summarydata for 58measures

were used in this study, including 14 lipo-

protein subclasses, 3 lipoprotein size

measures, 9 total lipids, apolipoprotein

A-1, apolipoprotein B, 10 fatty acid–

relatedmeasures, 9 aminoacids, 1 inflam-

mation marker (glycoprotein acetyls

[GlycA]), and several other measures.

These metabolic measures were quanti-

fied by a high-throughput nuclear mag-

netic resonance (NMR) metabolomics

platform using primarily fasting serum

samples with an ;1:1 male-to-female

ratio and age span of 20–60 years

(Supplementary Table 2). We used a

conventional IVW MR analysis in which

the SNP to outcome estimate is regressed

on the SNP to exposure, with the y-axis

intercept forced through the origin. The

data used for the MR analyses are pre-

sented in Supplementary Tables 3 and 4.

Sensitivity Analyses

As the conventional IVWMRapproach can

be vulnerable to unbalanced horizontal

pleiotropy (18), we conducted MR-Egger,

weighted median, and weighted mode-

based MR analyses, which allow relaxa-

tion of some of the instrumental variable

assumptions. The characteristics of these

different MR methods are summarized in

Supplementary Table 5. Overall, use of

several MR methods that each make dif-

ferent assumptions on the amount and
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type of genetic confounding is a useful

strategy to assess the robustness of find-

ings to potential violations of the instru-

mental variable assumptions (19).

In addition to the 53-SNP instrument,

we 1) removed the rs1011685 (near

LPL), which, as described above, did not

show consistent associations across in-

dividual phenotypes of IR; 2) used the

28 SNPs reported in Lotta et al. (7) that

were not in loci previously associated

with TGs or HDL-C at genome-wide signif-

icance; and 3) used 12 SNPs associated

with fasting insulin (BMI adjusted) report-

ed by the MAGIC investigators (13). As

fasting insulin is another marker of IR,

consistent results of the primary analysis

and sensitivity analysis (item 3 on list

above) would provide further confidence

in concluding the causal role of IR on the

circulating metabolites. Further, sensitiv-

ity analysis (items 2 and 3 on list above)

are helpful in assessing the contribution

of primarily lipid-associated SNPs on the

causal effect estimates. In addition, to

quantifywhether the genetic instruments

for IR associated with BMI, we regressed

the associations of SNPs with IR against

the associations of SNPs with BMI using

summary-level data from the GIANT con-

sortium (20). A final step was to remove

SNPs from the 53-SNP instrument that

individually associated with BMI at P ,

0.001 using GIANT summary statistics

(20) in order to clarify whether this mate-

rially altered the MR effect estimates.

Genetic effect estimates are pre-

sented as SD differences in metabolite

concentrations per one-SD genetically

higher IR. To gain insight into the associa-

tion of the genetic instrument with its in-

dividual components, we quantified the

association of a one-SD higher genetically

elevated IR on fasting insulin from the

MAGIC consortium (13), and the blood

lipids HDL-C and TGs from the Global Lip-

ids Genetics Consortium (21). We used a

two-sided P , 0.001 (0.05/58; multiple

testing correction) to denote evidence

of an association.

All analyses were conducted in R.

RESULTS

The associations of the 53 SNPs with each

of the metabolic measures are shown in

Fig. 1. As expected, all of the SNPs asso-

ciated with higher BMI-adjusted insulin

Figure 1—Heatmapof the 53 SNPs and their associationswith 58 circulating biomarkers. The units are reported as an SD difference inmetabolicmeasure per

IR-increasing allele. Lipoproteinmeasureswithout further specification refer to total lipid concentrations. IRwas definedas a triadof higher fasting insulin (BMI

adjusted), higher TGs, and lower HDL-C. Metabolic measures were quantified by the high-throughput NMR metabolomics platform using primarily fasting

serumsamples. Apo, apolipoprotein;DBinFA, the averagenumberof double bonds in fatty acids; DHA, docosahexaenoic acid; FALen, theaverage fatty acid chain

length; IDL, intermediate-density lipoprotein; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; w79S FA, n-7, n-9, and saturated fatty acids.
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and TGs and lower HDL-C. There were

also general trends of the SNPs to asso-

ciate with higher VLDL and lower HDL

traits.

Causal effect estimatesof IR, proxiedby

the 53-SNP instrument, on the individual

metabolic traits are illustrated in Fig. 2.

The association magnitudes (bs), SEs,

and corresponding P values are reported

in Supplementary Table 6. A one-SD

genetically higher IR was associated with

55% (95% CI 50, 60) higher fasting insulin

adjusted for BMI, 0.89 mmol/L (95% CI

0.85, 0.93) higher TGs, and 0.46 mmol/L

(95% CI 0.44, 0.48) lower HDL-C. In ad-

dition, there were clear associations of

the genetic instrument for IR with higher

concentrations of all VLDL subclasseswith

more moderate associations with inter-

mediate-density lipoprotein and LDL

subclasses. In contrast, the associations

were inverse for most HDL subclasses.

The genetic instrument was positively as-

sociated with VLDL and negatively with

HDL particle size. These findings corrobo-

rate the characteristics of the instrument

as devised by Lotta et al. (7). Similarly, we

identified positive associations of the ge-

netic instrument with circulating fatty

acids, including monounsaturated and

n-3 fatty acids. Interestingly, the genetic

instrument only weakly associated with

an increase in NMR-quantified glucose, a

finding in keeping with the observation by

Lotta et al. (7) using the MAGIC data. As

reported in the original study (7), the ge-

netic instruments were negatively associ-

ated with BMI (Supplementary Table 7).

We identified strong positive associa-

tions of genetically higher IR with the

BCAAs isoleucine, leucine, and valine.

These estimates correspond to a 0.56-SD

(95% CI 0.43, 0.70) higher isoleucine,

0.42-SD (0.28, 0.55) higher leucine, and

0.26-SD (0.12, 0.39) higher valine per

1-SD higher IR. Weaker associations were

noticed with the other amino acids. In ad-

dition, genetically higher IR was positively

associated with GlycA, an inflammation

marker (0.47 SD; 95% CI 0.32, 0.62).

Sensitivity Analyses

Most of the associations identified for the

53-SNP instrument were replicated with

the 28-SNP instrument (limited to those

SNPs that were not in loci of prior GWAS

hits for TGs or HDL-C) (Fig. 2) as well as

the 12-SNP instrument (identified in

a GWAS of fasting insulin adjusted

for BMI) (Supplementary Fig. 2). The as-

sociations were also consistent when

rs1011685 near LPL was removed from

the 53-SNP instrument (Fig. 2). Removal

of six SNPs associated with BMI (P ,

0.001) had no material effect on the MR

estimates (data not shown).

To investigate the robustness of these

MR estimates to potential confounding by

genetic pleiotropy, we also investigated

the association of the 53-SNP instru-

ment with the BCAAs and GlycAs us-

ing MR-Egger, weighted median, and

weightedmode-basedestimators.Discor-

dance of the point estimates was noticed

across the methods, predominantly be-

cause of the inclusion of the rs1011685

variant that hadminimal effects on insulin

adjusted forBMI (Supplementary Table 8).

Because MR approaches can be vulnera-

ble to the inclusion of such outliers, we

Figure 2—Forest plot of the causal effect estimates of IR on circulating metabolic measures.

Estimates are derived from IVWMR analyses. The three instruments are 53 SNPs identified from Lotta

et al. (7) (black diamonds), 52 SNPs removing an outlier variant rs1011685 (near LPL) (red circles),

and 28 SNPs in loci not previously associatedwith HDL-C and TGs at genome-wide significance (blue

circles). Open and closed symbols indicate P$ 0.001 and P, 0.001, respectively. Units are given as

SD difference inmetabolic measures per one-SD genetically higher IR. Apo, apolipoprotein; DBinFA,

the average number of double bonds in fatty acid; DHA, docosahexaenoic acid; FALen, the average

fatty acid chain length; IDL, intermediate-density lipoprotein; MUFA, monounsaturated fatty acid;

PUFA, polyunsaturated fatty acid; w79S FA, n-7, n-9, and saturated fatty acids.
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repeated the sensitivity analyses exclud-

ing rs1011685, which led to estimates

across all MR methods that were compa-

rable to the IVW approach (Fig. 3 and

Supplementary Table 8).

The intercepts of MR Egger were of

generally small magnitude (absolute

values#0.01, far smaller than the corre-

sponding b coefficients) with little or no

evidence that they departed from zero,

providing little evidence for the presence

of genetic pleiotropy (Supplementary

Table 9). Because the MR-Egger estimate

of the causal effect (obtained from the

slope of the regression line) can be under-

estimated when the assumption of no

measurement error of the exposure is vi-

olated, the heterogeneity index (I2) was

used to detect the extent of this potential

violation (22). Results remained consis-

tent when simulation extrapolation–

adjusted MR-Egger was used to correct

potential errors of the SNP to exposure

estimates (Supplementary Table 8).

Pathways

Fig. 4 and Supplementary Table 10 illus-

trate the current evidence base for vari-

ous pathways leading from adiposity to

T2DM. Prior MR studies have shown

that general adiposity (measured by

BMI) and central adiposity (measured by

WHR adjusted for BMI) causally influence

fasting insulin, HDL-C, and TGs (4). BMI

has been previously shown to influence

BCAAs (23), and in this study, we show

that both BMI and WHR (adjusted for

Figure 3—Funnel plots for the three BCAAs and GlycAs showing the causal effect estimates. IVW refers to the conventional IVWmethod (using 53 SNPs;

pink vertical lines), Egger to theMR-Egger (using 52 SNPs; green vertical lines),WME to theweightedmedian estimator (using 52 SNPs; blue vertical lines),

andWMBE to theweightedmode-based estimator (using 52 SNPs; purple vertical lines). For the results shown forMR-Egger,WME, andWMBE, the outlier

SNP rs1011685 near LPLwas removed. The 95% CIs for eachmethod are shown as the corresponding colored horizontal lines. Each individual black circle

shows the causal effect estimate using the individual SNP as the instrument.
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BMI) affect these traits (Supplementary

Figs. 3 and 4). Both BMI andWHR causally

affect diabetes (4). Our study shows that

IR affects BCAAs, and, together with a

prior study providing genetic support of

BCAAsmetabolism in T2DM (11), the var-

ious sources of data support a causal

pathway that is from adiposity to IR to

BCAAs to diabetes.

CONCLUSIONS

Our study provides genetic evidence in

support of higher levels of IR leading to

an elevation in circulating BCAAs. Within

the context of other studies, our findings

support the hypothesis that the metabo-

lism of BCAAs may be a mediator that is

downstream of adiposity and IR on the

causal pathway to T2DM. If true, then

this not only has important etiological rel-

evance, but also could point toward po-

tential novel opportunities for disease

treatment and prevention.

Thesefindings for IRandBCAAsarecon-

sistentwith a recent paper byMahendran

et al. (15) in which 10 IR-associated

SNPs were used to quantify the associa-

tion with a composite measure of BCAAs

in a one-sample MR setting of ;1,300

individuals. However, the selection of

SNPs into the 10-SNP instrument may in-

duce bias, as the instrumentwas enriched

for GWAS hits of fasting insulin that were

also associated with TGs and HDL-C (18).

In this study, amore robust approachwas

taken to instrument derivation by select-

ing .50 SNPs across the genome, which

have recently been identified using a

hypothesis-free approach to show direc-

tionally consistent associations with a

triad of phenotypes that mark IR; this

53-SNP instrument was used to infer the

causality of IR using a two-sampleMR de-

sign with little overlap between datasets

and with data on ;180,000 individuals

for the SNP to exposure (IR) estimates

and data on ;25,000 individuals for the

SNP to outcome (metabolic markers) es-

timates. The consistent results that we

report derived from multiple genetic in-

struments and multiple MR sensitivity

analyses provide robust evidence that IR

impacts on BCAAs in a cause-and-effect

manner. Particularly, as IR can be mea-

sured by various metrics (e.g., a triad of

the phenotypes as defined in this study

and also by fasting insulin alone), the con-

sistent results of the 53-SNP instrument (a

genetic proxy for the IR triad) and 12-SNP

instrument (a genetic proxy for fasting in-

sulin alone) across the metabolic profile

strengthen the evidence base for a causal

role of IR and potentially validates the bi-

ologicalmeaning of IR as definedby a com-

plex phenotype characterized by higher

insulin, higher TGs, and lower HDL-C.

Interventional studies provide orthog-

onal support for our findings that obesity

and IR causally affect circulating BCAAs.

Multiple longitudinal studies have shown

that BCAA levels were reduced after var-

ious insulin-sensitizing interventions, in-

cluding weight-loss surgery through

gastric bypass, pioglitazone therapy, or

physical exercise (24–26). Also, a reduc-

tion in BCAA concentrations was ob-

served following the secretion of insulin

during OGTT, with individuals with IR

showing less BCAA suppression (i.e.,

higher BCAA concentrations) following

OGTT (27). Prospective studies have iden-

tified circulating BCAAs to be predictive

of incident T2DM, and a recent genetic

study found that the metabolism of

BCAAs is likely causally linked to T2DM

(11). Triangulating these sources of evi-

dence provides support for the hypothe-

sis that circulating BCAAs may mediate

the relation from adiposity and IR to

T2DM. In contrast, observational studies

have reported that higher dietary intake

of BCAAs is associated with an improved

cardiometabolic risk profile, including a

lower risk of T2DM (28,29). However, di-

etary BCAAs, both measured in absolute

terms or as a percentage of total protein,

are only weakly correlated with circulat-

ing concentrations of BCAAs (28,29).

There is also evidence that the expression

of enzymes involved in BCAA catabolism

(e.g., branched-chain a-ketoacid dehy-

drogenase [BCKD]) is reduced in obese

Figure 4—Strands of evidence from multiple genetic studies supporting a causal pathway from adiposity, through IR and BCAAs, to diabetes. Sources of

evidence: 1, Holmes et al. (3) andDale et al. (4); 2, Dale et al. (4) and Emdin et al. (6); 3,Würtz et al. (23) and current study (Supplementary Fig. 3);4, current

study (Supplementary Fig. 4); 5, Holmes et al. (3), Dale et al. (4), and Lyall et al. (5); 6, Emdin et al. (6) and Dale et al. (4); 7, current study (Fig. 2) and

Mahendran et al. (15); and 8, Lotta et al. (11). For details of these studies and the MR estimates provided, see Supplementary Table 10. *Refers to

adjustment with BMI.
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individuals and those with diabetes

(11,30). BCKD is responsible for the rate-

limiting step of BCAA catabolism, and

BCKD can be activated by its regulatory

phosphatase encoded by PPM1K. Individ-

uals with T2DM have reduced upregula-

tion of PPM1K in skeletal muscle during

OGTT (11). Consistent with this, after

weight-loss surgery, BCKD concentrations

are increased, leading to a commensu-

rate reduction in BCAAs (24,30). Thus,

elevated circulating BCAA levels ob-

served in obese individuals and those

with diabetes could arise from impaired

BCAA catabolism (11). Putting these

strands of evidence together, it is plausi-

ble that pharmacotherapies to improve

or restore the function of BCAA catabo-

lism may represent a means to prevent

T2DM. However, further studies are re-

quired to understand the exact role of

BCAAmetabolism in the etiology of T2DM.

In contrast to the strong effects of IR on

the BCAAs, we noticed a generallyweaker

effect of IR on alanine, glutamine, and

aromatic amino acids (phenylalanine

and tyrosine). Each of these biomarkers

has been associated with the risk of IR,

hyperglycemia, T2DM, and cardiovascular

diseases (8,10,31). Although imprecise es-

timates were observed for these mea-

sures in the MR analyses reported in

this study, the consistent results from dif-

ferent instruments on these traits merit

further investigation in larger datasets to

clarify whether these represent causal

relationships.

The association that we identify of IR

with GlycA is novel. GlycA is a marker of

both acute-phase and chronic inflamma-

tion and has been linked to neutrophil

activity (32). GlycA reflects circulating lev-

els of various inflammatory glycoproteins

(primarily a-1-acid glycoprotein and hap-

toglobin) and is also associated with a

wide range of inflammatory cytokines

(32). Prospective observational studies

have identified positive associations

of GlycA with cardiovascular disease,

T2DM, and premature mortality (33,34).

A role for inflammation in the develop-

ment of T2DM has been proposed for

many years on account of the observa-

tional associations among higher concen-

trations of biomarkers of inflammation,

such as C-reactive protein, interleukin-1,

interleukin-6, and the risk of T2DM

(35,36). Although recent MR studies

have so far failed to provide evidence in

support of this hypothesis (36), it remains

plausible that such causal pathways (from

inflammation to T2DM) exist and that

larger studies and/or investigations of

other inflammatory markers and path-

ways may identify a causal role of inflam-

mation in T2DM. Therefore, GlycA could

represent a biomarker either involved in

or correlated to an inflammation pathway

involved in the etiology of T2DM. A causal

role of inflammation in vascular disease is

gaining traction given recent findings

from genetic studies in humans of the

interleukin-6 receptor and CHD (37) and

more recently in phase III clinical tri-

als of anti-inflammatory drugs for the

treatment of CHD (CANTOS trial of

canakinumab, a monoclonal antibody to

interleukin-1b) (38). Of note, a previous

study has suggested that BMI has a causal

impact on circulating concentrations of

GlycA (23) (as we also report in Supple-

mentary Fig. 3 for BMI and Fig. 4 for

WHR), and this study provides clarifica-

tion on the potential causal pathway,

showing that IR is also causal for GlycA.

However, elucidating the causal role of

GlycA in cardiometabolic disease remains

challengingusinganMRapproachbecause

at present, the identified genetic variants

associatedwithGlycAare limited innumber

(16), thus hindering our ability to answer

this important question. Larger GWAS of

GlycA may facilitate this endeavor.

Strengths of this study include 1) a

comprehensive genetic instrument for

an IR phenotype using findings from a re-

cent GWAS (7); 2) characterizing and val-

idating the genetic instrument for IR

with a repertoire of biomarkers of TG

and HDL-C metabolism; 3) use of multiple

sensitivity analyses (both in thederivation

of the genetic instruments and their

application to state-of-the-art MR meth-

odologies) that provided robust and

consistent evidence; 4) quantifying the

causal effects of IR on each of the three

BCAAs individually; 5) adding important

new information on the effect of IR on

an inflammation marker; and 6) a data

summation that provides evidence of a

causal pathway from adiposity through

IR and BCAA to T2DM.

Limitations include 1) analyses were

conducted at the summary level, and

we could not investigate associations by

subgroups (e.g., of age or sex), meaning

that it is not possible to test whether

these associations are modified by age;

2) our analyses were conducted using Eu-

ropean datasets that may hamper their

translational relevance to non-Europeans;

however, risk factors for disease tend

to show similar relationships across geo-

graphical regions (39), and emerging

studies are providing evidence that shows

the genetic architecture for common dis-

eases is likely similar across ethnic groups

(40); 3) a meta-GWAS of three traits was

used to proxy IR, which may not include

other traits related to IR and may have

limited clinical relevance, although in

the original paper by Lotta et al. (7), asso-

ciations were identified for diabetes and

heart disease; and 4) meta-GWAS may

select SNPs on the basis of pleiotropy

(i.e., by their very selection, they asso-

ciate with higher fasting insulin, higher

TGs, and lower HDL-C), and thus, SNPs

may tag heterogeneous pathways, some

of which may result in unbalanced hori-

zontal pleiotropy (18). Against this are the

consistent associations across the differ-

ent genetic instruments, their stability to

variousMR sensitivity analyses (with each

MR approach having its own assumptions

on the amount and type of genetic plei-

otropy) (Supplementary Table 5), and

the general consistency with a prior study

that used a weaker instrument in a much

smaller dataset (15). Finally, the instru-

ments were derived from a meta-GWAS

that included fasting insulin adjusted for

BMI; conditioning on a trait in discovery

GWAS can induce collider bias, as evi-

denced by the negative association of

the instruments with BMI. However, this

negative association with BMI would be

expected to diminish the association of

the genetic instruments with BCAA that

we report (and also diminish the associa-

tionwith T2DMandCHD reported by Lotta

et al. [7] rather than augment it) and

therefore is unlikely to result in major bias

in theMR estimates we report. Further, re-

moval of six SNPs thatwere associatedwith

BMI (at P , 0.001 using GIANT summary

statistics) had no material impact on the

causal estimates derived from MR.

In conclusion, our findings provide

new information in support of a causal

role of IR on BCAAs and inflammation.

Taken together with recent findings from

complimentary studies, these data suggest

BCAAmetabolismmay lie ona causal path-

way from adiposity and IR to T2DM.
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marker profiling by nuclear magnetic resonance

spectroscopy for the prediction of all-cause mor-

tality: an observational study of 17,345 persons.

PLoS Med 2014;11:e1001606

35. Wang X, Bao W, Liu J, et al. Inflammatory

markers and risk of type 2 diabetes: a systematic

review andmeta-analysis. Diabetes Care 2013;36:

166–175

36. Swerdlow DI. Mendelian randomization and

type 2 diabetes. Cardiovasc Drugs Ther 2016;30:

51–57

37. SwerdlowDI, HolmesMV, Kuchenbaecker KB,

et al.; Interleukin-6 Receptor Mendelian Ran-

domisation Analysis (IL6R MR) Consortium.

The interleukin-6 receptor as a target for preven-

tion of coronary heart disease: a mendelian ran-

domisation analysis. Lancet 2012;379:1214–1224

38. Ridker PM, Everett BM, Thuren T, et al.;

CANTOS Trial Group. Antiinflammatory therapy

with canakinumab for atherosclerotic disease. N

Engl J Med 2017;377:1119–1131

39. Yusuf S, Hawken S, Ounpuu S, et al.;

INTERHEART Study Investigators. Effect of poten-

tially modifiable risk factors associated with myo-

cardial infarction in 52 countries (the INTERHEART

study): case-control study. Lancet 2004;364:

937–952

40. GanW,Walters RG, HolmesMV, et al.; China

Kadoorie Biobank CollaborativeGroup. Evaluation

of type 2 diabetes genetic risk variants in Chinese

adults: findings from 93,000 individuals from the

China Kadoorie Biobank. Diabetologia 2016;59:

1446–1457

1786 Causal Role of Insulin Resistance on BCAAs Diabetes Care Volume 40, December 2017

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://d

ia
b
e
te

s
jo

u
rn

a
ls

.o
rg

/c
a
re

/a
rtic

le
-p

d
f/4

0
/1

2
/1

7
7
9
/5

2
6
3
9
4
/d

c
1
7
1
6
4
2
.p

d
f b

y
 g

u
e
s
t o

n
 2

6
 A

u
g

u
s
t 2

0
2
2

https://doi.org/10.1093/ije/dyx102

