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Abstract: Despite classical environmental risk factors like tobacco, alcohol or viral infection, not
all individuals develop head and neck cancer. Therefore, identification of the genetic susceptibility
produced by single nucleotide polymorphisms (SNPs) is an important task. A total of 296 human
papillomavirus negative head and neck cancer (HNC) patients (126 laryngeal, 100 pharyngeal and
70 oral cavity) were included in the study, involving 29 candidate SNPs in genes within important
carcinogenic pathways (oncogenesis and tumour suppression, DNA repair, inflammation, oxidation
and apoptosis). Genotyping was performed using TaqMan probes or restriction fragment length
assays in peripheral blood DNA. In addition, 259 paired controls were also evaluated with the same
risk factors for each specific location. Nine SNPs in DNA repair (ERCC1 rs11615, ERCC2 rs13181),
inflammatory (IL2 rs2069762, IL6 rs1800795), oxidative (NFE2L2 rs13035806 and rs2706110) and
apoptotic genes (TP53 rs1042522, MDM2 rs2279744, BCL2 rs2279115) were differently associated with
HNSCC susceptibility by location. Some of these SNPs were not described before in this tumour type.
In conclusion, we describe several SNPs associated with HNC in a Spanish population.
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1. Introduction

Head and neck cancer (HNC) includes a set of diverse neoplasms located in the lips, oral cavity,
pharynx, larynx, salivary glands and thyroid glands, among others. Most HNC belong to the squamous
cell carcinomas group [1]. Approximately 600,000 new cases are diagnosed per year, being the sixth
cancer type on incidence worldwide. Treatment of early stages includes surgery and/or radiotherapy,
while locally advanced tumours are also treated with chemotherapy and biological therapies [2]. Only
40–50% of patients survive for five years [3] causing an annual death rate of 271,000 patients [4,5].

The oncogenic transformation of normal mucosa into a squamous cell carcinoma of the head and
neck is a multifactorial process, associated with a variety of risk factors. At least 75% of head and
neck squamous cell carcinomas (HNSCC) are attributable to the combination of cigarette smoking
and alcohol drinking, the most classic carcinogens [6,7]. Diverse epidemiological studies have also
revealed the existence of other environmental and genetic related factors. Similar to other tumours,
viral aetiology has shown an implication in HNSCC development, predominating Epstein–Barr virus
(EBV) infection in nasopharynx, and human papillomavirus (HPV), mainly subtype 16, in oral cavity
and oropharyngeal tumours [8]. The carcinogenesis process triggered by viral infection defines a
different entity to that caused by tobacco and alcohol [8], allowing HNSCC classification into two main
prognostic and therapeutic groups, in which HPV-negative tumours are associated with an aggressive
course and a worse prognosis than HPV positive ones [9,10].

Despite the defined role of environmental factors, there is also evidence of familial aggregation and
increased cancer risk amongst HNSCC relatives [11], suggesting the existence of genetic predisposition
factors [12]. However, not all individuals exposed to these carcinogens will develop the disease.
In this context, the identification of genetic variants in important signaling pathways could help
to define tumour susceptibility, as well as differences in treatment response and toxicity. HNSCC
carcinogenesis involves different pathways: carcinogen metabolism, DNA repair, cell cycle, immunity
and inflammation [13–15]. Single nucleotide polymorphism (SNP) is the most abundant form of
genetic variation, becoming an ideal genetic susceptibility marker [1].

In this study, we aimed to examine polymorphisms in genes involved in relevant oncogenic
pathways within a paired population of cases and controls in a large Spanish population.

2. Results

2.1. Characteristics of Groups

After the application of the propensity score method 126 larynx, 100 pharynx and 70 oral cavity
squamous cell carcinomas were totally paired with their specific control group. The analysis by
location did not show any statistically significant difference between sex, age, tobacco and alcohol
intake with respect to the control group (Table 1). Only age was statistically different (p < 0.05) between
laryngeal tumour and control group, so this variable was included in the logistic regression as an
adjustment variable.

2.2. Candidate Gene Association Study

Nine out of twenty-nine selected SNPs showed a statistically significant result in the distribution
between the patient and control groups.

Beginning with DNA repair genes, less common genotypes in ERCC1 rs11615 (p = 0.011, OR
= 0.288 (CI 95% = 0.110–0.751) in a recessive model) and ERCC2 rs13181 (p = 0.046, OR = 0.375
(0.143–0.982) in a codominant model) were associated with a lower risk of laryngeal cancer (Table 2
and Table S2).
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Table 1. Descriptive characteristics and risk factors of paired patients by location in the case-control study. Data after the propensity score method corroborate the
equality between the different locations with their specific controls, except for age in laryngeal tumours (introduced as an adjustment variable in the logistic regression).

Group
Comparison

LARYNX
N = 126

CONTROL
N = 126 p-Value PHARYNX

N = 100
CONTROL

N = 100 p-Value ORAL CAVITY
N = 70

CONTROL
N = 70 p-Value

Characteristics N % N % N % N % N % N %

Age (years) 63.02 ± 8.566 56.30 ± 12.803 0.000 59.96 ± 8.41 59.52 ± 10.044 0.742 60.92 ± 10.008 62.24 ± 8.88 0.412

Sex

Female 13 10.3 13 10.3
1.000

20 20.0 22 22.0
0.728

16 22.9 17 22.9
1.000

Male 113 89.7 113 89.7 80 80.0 78 78.0 54 77.1 54 77.1

Tobacco smoking

Never 7 5.5 7 5.5

0.944

7 7.0 8 8.0

0.943

7 10.0 7 10.0

1.000
<20 PPY 20 15.9 22 17.5 22 22.0 23 23.0 12 17.1 12 17.1

>20 PPY 99 78.6 97 77.0 71 71.0 69 69.0 51 72.9 51 72.9

Missing 0 0 0 0 0 0 0 0 0 0 0 0

Alcohol drinking

Never 53 42.1 51 40.5

0.904

26 26.0 27 27.0

0.985

23 32.9 23 32.9

1.000

<14
SDU/week 28 22.2 31 24.6 30 30.0 30 30.0 19 27.1 19 27.1

>14
SDU/week 45 35.7 44 34.9 44 44.0 43 43.0 28 40.0 28 40.0

Missing 0 0 0 0 0 0 0 0 0 0 0 0

p-values related to controls. Statistically significant results in bold. PPY: Tobacco packs per year. SDU: Standard unit of alcohol per week.



Cancers 2019, 11, 493 4 of 12

Table 2. Statistically significant SNPs in laryngeal cancer.

SNPs Genotype
Larynx Control

p-Value * OR (CI 95%)
N % N %

TP53
rs1042522

GG 61 48.4 62 49.2 Ref. 1.00

GC 54 42.9 37 29.4 0.165 1.505 (0.846–2.677)

CC 11 8.7 27 21.4 0.008 0.319 (0.136–0.745)

Recessive
GG+GC 115 91.3 99 78.6 Ref. 1.00

CC 11 8.7 27 21.4 0.002 0.268 (0.119–0.607)

Dominant
GG 61 48.4 62 49.2 Ref. 1.00

GC+CC 65 51.6 64 50.8 0.596 0.986 (0.587–1.654)

MDM2
rs2279744

TT 44 34.9 62 49.2 Ref. 1.00

TG 57 45.2 53 42.1 0.279 1.364 (0.778–2.392)

GG 25 19.8 11 8.7 0.015 2.826 (1.219–6.552)

Recessive
TT+TG 101 80.2 115 91.3 Ref. 1.00

GG 25 19.8 11 8.7 0.029 2.413 (1.094–5.323)

Dominant
TT 44 34.9 62 49.2 Ref. 1.00

TG+GG 82 65.1 64 50.8 0.075 1.616 (0.953–2.742)

ERCC1
rs11615

TT 53 42.1 45 35.7 Ref. 1.00

TC 67 53.2 58 46.0 0.872 0.956 (0.550–1.661)

CC 6 4.8 23 18.3 0.013 0.281 (0.103–0.768)

Recessive
TT+TC 120 95.2 103 81.7 Ref. 1.00

CC 6 4.8 23 18.3 0.011 0.288 (0.110–0.751)

Dominant
TT 53 42.1 45 35.7 Ref. 1.00

TC+CC 73 57.9 81 64.3 0.354 0.778 (0.457–1.324)

ERCC2
rs13181

TT 72 57.1 52 41.3 Ref. 1.00

TG 46 36.5 58 46.0 0.247 0.720 (0.413–1.255)

GG 8 6.3 16 12.7 0.046 0.375 (0.143–0.982)

Recessive
TT+TG 118 93.7 110 87.3 Ref. 1.00

GG 8 6.3 16 12.7 0.079 0.433 (0.170–1.102)

Dominant
TT 72 57.1 52 41.3 Ref. 1.00

TG+GG 54 42.9 74 58.7 0.093 0.638 (0.377–1.078)

IL6 rs1800795

CC 43 34.1 62 50.8 Ref. 1.00

CG 64 50.8 46 37.7 0.003 2.471 (1.372–4.452)

GG 19 15.1 14 11.5 0.070 2.164 (0.938–4.991)

Recessive
CC+CG 107 84.9 108 88.5 Ref. 1.00

GG 19 15.1 14 11.5 0.444 1.351 (0.625–2.921)

Dominant
CC 43 34.1 62 50.8 Ref. 1.00

CG+GG 83 65.9 60 49.2 0.002 2.394 (1.376–4.163)

NRF2
rs1303586

GG 109 87.2 95 76.0 Ref. 1.00

GA 14 11.2 29 23.2 0.019 0.424 (0.207–0.869)

AA 2 1.6 1 0.8 0.520 2.235 (0.193–25.903)

Recessive
GG+GA 123 98.4 124 99.2 Ref. 1.00

AA 2 1.6 1 0.8 0.444 2.600 (0.225–30.064)

Dominant
GG 109 87.2 95 76.0 Ref. 1.00

GA+AA 16 12.8 30 24.0 0.035 0.478 (0.240–0.949)

NRF2
rs2706110

CC 92 73.6 72 57.1 Ref. 1.00

CT 24 19.2 47 37.3 0.005 0.425 (0.233–0.775)

TT 9 7.2 7 5.6 0.732 1.207 (0.411–3.541)

Recessive
CC+CT 116 92.8 119 94.4 Ref. 1.00

TT 9 7.2 7 5.6 0.403 1.574 (0.544–4.560)

Dominant
CC 92 73.6 72 57.1 Ref. 1.00

CT+TT 33 26.4 54 42.9 0.020 0.518 (0.299–0.900)

* p-values adjusted by age. Statistically significant results in bold.
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Secondly, pro-inflammatory IL6 rs1800795 polymorphism was related to a higher risk of laryngeal
cancer in a dominant model (p = 0.002, OR = 2.394 (1.376–4.163)) (Table 2 and Table S2), similar to
the association found in CG+GG variants with increased oral cavity susceptibility (p = 0.018, OR =
2.265 (1.148–4.467)). Moreover, another SNP in the inflammatory gene IL2 rs2069762 G variant was
associated with a lower risk of oral cavity cancer (GG p = 0.039, OR = 0.300 (0.096–0.940)) (Table 3
and Table S3).

Table 3. Statistically significant SNPs in oral cavity carcinoma.

SNPs Genotype
Oral Cavity Control

p-Value OR (CI 95%)
N % N %

IL2 rs2069762

TT 43 61.4 31 44.3 / 1.00

TG 22 31.4 27 38.6 0.152 0.587 (0.284–1.217)

GG 5 7.1 12 17.1 0.039 0.300 (0.096–0.940)

Recessive
TT+TG 65 92.9 58 82.9 / 1.00

GG 5 7.1 12 17.1 0.078 0.372 (0.124–1.119)

Dominant
TT 43 61.4 31 44.3 / 1.00

TG+GG 27 38.6 39 55.7 0.043 0.499 (0.254–0.979)

IL6 rs1800795

CC 25 35.7 39 55.7 / 1.00

CG 33 47.1 23 32.9 0.031 2.238 (1.077–4.653)

GG 12 17.1 8 11.4 0.104 2.340 (0.839–6.528)

Recessive
CC+CG 58 82.9 62 88.6 / 1.00

GG 12 17.1 8 11.4 0.337 1.603 (0.612–4.203)

Dominant
CC 25 35.7 39 55.7 / 1.00

CG+GG 45 64.3 31 44.3 0.018 2.265 (1.148–4.467)

BCL2 rs2279115

CC 13 18.6 27 38.6 / 1.00

CA 43 61.4 30 42.9 0.008 2.977 (1.325–6.688)

AA 14 20.0 13 18.6 0.116 2.237 (0.820–6.103)

Recessive
CC+CA 56 80.0 57 81.4 / 1.00

AA 14 20.0 13 18.6 0.830 1.096 (0.473–2.540)

Dominant
CC 13 18.6 27 38.6 / 1.00

CA+AA 57 81.4 43 61.4 0.010 2.753 (1.273–5.952)

Statistically significant results in bold.

In relation to apoptotic genes, three SNPs in apoptotic genes were associated with different
susceptibility in all HNSCC locations. The TP53 rs1042522 mutant allele in the recessive model was
associated with a decreased risk of developing laryngeal cancer (p = 0.002, OR = 0.286 (0.119–0.607))
(see Table 2 and Table S2); and pharyngeal cancer (p = 0.001, OR = 0.124 (0.035–0.476)) (see Table 4
and Table S4). Further, variant allele in MDM2 rs2279744 was associated with higher risk of laryngeal
cancer (p = 0.029 OR = 2.413 (1.094–5.323)) in a recessive model (Table 2 and Table S2). Meanwhile
CA+AA genotypes in BCL2 rs2279115 were related with a higher risk of developing oral carcinoma
(p = 0.010, OR = 2.753 (1.273–5.952)) in a dominant model (Table 3 and Table S3).

Finally, an association between antioxidative SNPs and laryngeal and pharyngeal cancer was
found. Variant genotypes rs1303586 GA+AA and rs2706110 CT+TT, both in the NRF2 gene, were
associated with a lower risk of laryngeal carcinoma (p = 0.035, OR = 0.478 (0.240–0.949) and p = 0.518,
OR = 0.518 (0.299–0.900), respectively) (Table 2 and Table S2). On the other hand, in pharyngeal
cancer, only NRF2 rs2706110 less common allele genotypes CC+CT were related with a lower risk of
developing pharyngeal carcinoma (p = 0.043, OR = 0.552 (0.311–0.982)) (Table 4 and Table S4).
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Table 4. Statistically significant SNPs in pharyngeal cancer.

SNPs Genotype
Pharynx Control

p-Value OR (CI 95%)
N % N %

TP53 rs1042522

GG 53 53.0 47 47.0 Ref. 1.00

GC 44 44.0 33 33.0 0.583 1.182 (0.650–2.151)

CC 3 3.0 20 20.0 0.002 0.133 (0.037–0.476)

Recessive
GG+GC 97 97.0 80 80.0 Ref. 1.00

CC 3 3.0 20 20.0 0.001 0.124 (0.035–0.431)

Dominant
GG 53 53.0 47 47.0 Ref. 1.00

GC+CC 47 47.0 53 53.0 0.396 0.786 (0.451–1.370)

NRF2 rs2706110

CC 68 68.0 54 54.0 Ref. 1.00

CT 25 25.0 41 41.0 0.020 0.484 (0.262–0.893)

TT 7 7.0 5 5.0 0.863 1.112 (0.334–3.698)

Recessive
CC+CT 93 93.0 95 95.0 Ref. 1.00

TT 7 7.0 5 5.0 0.553 1.430 (0.438–4.667)

Dominant
CC 68 68.0 54 54.0 Ref. 1.00

CT+TT 32 32.0 46 46.0 0.043 0.552 (0.311–0.982)

Statistically significant results in bold.

3. Discussion

Not all individuals exposed to the same classical carcinogens (tobacco and alcohol) develop
HNSCC. Although several susceptibility studies have identified SNPs in carcinogenesis-related
pathways, their results are controversial due to an inadequate control group. In this multicentre
case-control study, we examined the association between some polymorphisms and HNSCC
susceptibility in a Spanish cohort with a control group totally paired by their risk factors, avoiding
confounder variables.

Analysis of laryngeal squamous cell carcinoma showed an association with lower susceptibility
risk in ERCC1 rs11615 and ERCC2 rs13181 SNPs. Indeed, these genotypes have also been associated
with a better response and longer survival in patients treated with platinum [16] due to an increase in
DNA damage and induction of cell death, providing a potential explanation of our results.

Inflammation has been considered an important factor in the pathogenesis of human cancer [17–19],
with a special interest in the context of oral cancer [20,21]. The rs1800795 -174C variant in the promoter of
the IL6 gene is related to a lower level of serum proteins, while -174G corresponds to a higher expression,
increasing the inflammatory response [22]. Our study shows an association between the G allele and a
higher risk of developing laryngeal and oral tumours, probably related to the carcinogenesis induced
by inflammation. Moreover, cytokine IL-2 plays a role in the proliferation of activated T-lymphocytes
and in the activation of phagocytes. The G allele in the -330G>T (rs2069762) SNP increases the IL2 gene
expression, whereas the T allele is associated with a decreased IL2 expression skewing the Th1/Th2
immune balance towards Th2 [23]. In our study, the IL2 rs2069762 GG genotype was associated with
lower oral cavity risk, in contrast to previous reported associations [23] in another tumour types with
different risk factors and ethnic background. This result could be explained by the main role of IL-2
in the elimination of self-reactive cells [24], decreasing the antitumour response produced by the
immune system.

Mdm2 attenuates the tumour suppressor protein p53 through proteasomal degradation via
ubiquitinylation, while p53 induces MDM2 transcription in response to genotoxic stress [25]. SNP
rs2279744 -410T>G, located in the P2 promoter, increases MDM2 expression by improving the binding
affinity with the Sp1 transcription factor, attenuating the TP53 suppressor pathway [26]. Our data is in
line with previous reports [27], demonstrating a higher risk of laryngeal cancer in those patients with
the GG genotype.
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The polymorphism c.215C>G (Pro72Arg) in the exon 4 of TP53 is found in an essential domain in
the apoptotic response and carcinogenesis inhibition. The arginine allele is a more powerful apoptotic
inductor than the proline one [28,29]. Some studies have associated the Pro72Arg polymorphism with
an increased risk of developing gastric, oesophageal and bladder cancer [30,31], but little data has been
reported regarding HNSCC [32,33]. Our results show a lower susceptibility of developing pharyngeal
and laryngeal cancer for the variant alleles. While this could be due to its association with longer
survival or modifications at cell cycle and the maintenance of DNA integrity [28,34], we have also
shown this protective association in stroke [35] and other ischemic processes (Cruz-González et al.,
data not published), possibly being a case selection bias.

In addition, we found a statistically significant association between the anti-apoptotic gene BCL2
SNP and oral cavity cancer susceptibility. BCL2-938C>A (rs2279115) polymorphism is found in P2 gene
promoter, acting as a negative regulator element, decreasing P1 promoter activity [36]. The presence
of C allele highly reduces the activity of P1 and Bcl-2 protein expression, increasing apoptosis. Our
results showed similar results to those reported in breast cancer and acute myeloid leukaemia [37]
where the presence of the A allele (CA+AA) increased tumour susceptibility due to an anti-apoptotic
effect [38].

Finally, NFE2L2 gene codes for a transcription factor protein (Nrf2) that induce many antioxidative
genes under oxidative stress. SNPs in this gene have been associated with cancer risk [39]. In our
series, NFE2L2 rs2706110 and rs1303586 less common genotypes were linked with lower risk of
developing laryngeal cancer, while in pharyngeal cancer, only rs1303586 was associated. Functional
analyses of these SNPs have not yet been described but our hypothesis is that these changes could
increase antioxidative gene induction under stress produced at high levels in HNSCC by tobacco and
alcohol consumption.

4. Material and Methods

4.1. Study Population

TTCC-2010-05 was an observational multicentre study conducted in 19 Spanish centres, all of
them belonging to the Spanish Head and Neck Cancer Treatment Group (TTCC) coordinated by the
Medical Oncology Department of the University Hospital of Salamanca, between January 2012 and
December 2014. Epidemiological and clinicopathological details have been previously described [40].

Cases inclusion criterion was: histologically confirmed HPV-negative HNSCC patients from
larynx, oro/hypopharynx and oral cavity carcinomas. They were recruited in Oncology, Radiotherapy
and Otorhinolaryngology departments. Controls were follow-up individuals with minor issues and
without a tumour history and paired by age, sex, smoking and alcoholic habit with HNSCC cases. They
were captured in Pneumology, Radiotherapy, Otorhinolaryngology and Internal Medicine departments.
Only the Spanish population were permitted, avoiding ethnicity bias.

Considering HNSCC incidence in Spain, 10% of possible losses and duration of the study, initial
calculations of recruitment were of 440 individuals in patient and control group. Finally, a total of
459 patients and 259 controls were included.

In this study, the variables were polymorphisms in oncogenes, tumour suppressor genes,
genes implicated in DNA reparation, inflammation, carcinogen metabolism and apoptosis, together
with some risk factors collected in the socio-demographic (6 questions) and the data informed by
patients (19 questions) questionnaires. The information of both questionnaires was collected via
auto-application, being supervised by the members of the research team. Clinicopathologic data,
response and specific toxicity to treatment were collected by oncologists in the case report form
questionnaire (CRF).

The study was approved by the University Hospital of Salamanca and the local ethics committees
in accordance with the 1964 Helsinki declaration and its later amendments. All participants were
previously informed and signed the provided informed consent. All data were treated with the
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security measures established in compliance with the Protection of Personal Data Organic Law 15/1999,
December 13, and safe-keeping by the University Hospital of Salamanca in its specific hospital server.
This study was supported by the Ministry of Economy and Competitiveness under the identification
code PI11/0059.

4.2. Selection of Polymorphism

Candidate SNPs selection was done according to at least two of the following criteria: >5%
allele frequency in Caucasian/European population, previously defined association with HNSCC
susceptibility and earlier related different response or toxicity to chemotherapy or radiotherapy. At the
initial stages of the project design, a huge search was performed in available databases using keywords
such as SNPs, susceptibility, HNSCC, response and toxicity, selecting only those with statistically
significant results in other populations [14,15,32,41–43]. SNPs with some published evidence of
functionality were preferably selected Table 5.

Table 5. SNPs selected in the study. Candidate SNPs were selected in oncogenes and tumour suppressor
genes, DNA repair (either BER, NER and DSB), inflammatory, apoptotic and carcinogen metabolism
genes, as described in Material and Methods.

FUNCTION GENE RS ID Change

Oncogenes and
tumour suppressor

genes

TP53 1042522 C_2403545_10 Pro72Arg

MDM2 2279744 PCR-RFLP -410T>G

KRAS-LC6 61764370 PCR-custom probe 3’-UTR

EGFR 2227983 C_16170352_20 Lys521Arg

Base excision repair
(BER)

XRCC1
25487 C_622564_10 Gln399Arg

1799782 C_11463404_10 Arg194Trp

APEX 1130409 C_8921503_10 Asp148Glu

Nucleotide excision
repair (NER)

ERCC2(XPD) 13181 C_3145033_10 Lys751Gln

ERCC1 11615 C_2532959_10 Asn118Asn

XPC 2228000 C_16018061_10 Ala499Val

Double-strand break
repair genes (DSB)

XRCC3
861539 C_8901525_10 Thr241Met

1799794 C_2983904_10 -316A>G

KU70 2267437 C_15872242_20 -731C>G

Inflammatory genes

IL1B 16944 C_1839943_10 -511T>C

IL2 2069762 C_15859930_10 -330T>G

IL6 1800795 C_1839697_20 -174C>G

IL10 1800872 C_1747363_10 -592C>A

TNFA 361525 C_2215707_10 -238A>C

Apoptotic genes

NOD2
2066844 C_11717468_20 Arg702Trp

2066845 C_11717466_20 Arg908Gly

BAX 4645878 C_27848291_10 -248G>A

BCL2 2279115 C_3044428_30 -938C>A

Carcinogen
metabolism/

antioxidative genes

CYP3A5 776746 C_26201809_30 6986A>G

GSTP1 1695 C_3237198_20 Ile105Val

GSTT1 N/A PCR Null/present

GSTM1 N/A PCR Null/present

NFE2L2
(NRF2)

13035806 C_11745134_10 3’-UTR

2706110 C_11745133_10 3’-UTR

KEAP1 1048290 C_9323035_10 Leu471Leu
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4.3. DNA Isolation and Genotyping

DNA was extracted from peripheral blood leukocytes using the phenol-chloroform method.
Genotyping was performed using the TaqMan® Allelic Discrimination Assay [44] (Applied Biosystems,
Foster, CA, USA) in those SNPs where the probes were available. A concentration of 40 ng/µL of
DNA samples were added to 6.25 µL of Taqman® Universal PCR Master Mix and it was combined
with specific forward and reverse primers, and allele-specific VIC (allele 1) and FAM (allele 2) labelled
probes. The assay was performed in a 96 well plate and the detection was measured in the Step One
Plus Real-Time PCR System Thermal Cycling Block (Applied Biosystems, Foster, CA, USA). Negative
and positive controls were always added. A total of 5% of random samples were re-genotyped to
ensure the reproducibility.

In those candidate SNPs in which TaqMan®probes were not available, genotyping was analysed
using polymerase chain reaction—restriction fragment length polymorphism (PCR-RFLP). Specific
oligonucleotides were designed to amplify the polymorphic sequences and digestion was made via
the specific restriction enzymes. The PCR products were run on 3% Syber-safe stained agarose gel
and visualized under UV light. GSTT1 and GSTM1 null/present SNPs were analysed using PCR with
β-actin as an endogenous control. Finally, for KRAS-LC6 rs61764370, a custom probe was specifically
designed. Sequences and type of assays are shown in Table S1.

4.4. Statistical Analysis

The statistical analysis to associate the relation between the different clinical and molecular
variables was analysed using cross tabs and the χ2 test of Pearson. The odds ratios (OR) and 95%
confidence intervals were calculated using logistic regression analysis. The quantitative variable
distribution was analysed using the ANOVA test in those examples where the sample followed a
parametric distribution (p > 0.05 in Levene’s test), while in those with a non-parametric distribution,
a Mann–Whitney U test was applied. Hardy–Weinberg equilibrium (HWE) was tested in a control
population using a χ2 test. Statistically significant differences were considered to exist when the
two-sided p-value was <0.05. Only TP53 rs1042522 and APEX rs1130409 were in disequilibrium
(pHWE < 0.05).

Because of the lower inclusion of matched controls, the statistical analysis was realised when
matching the group via the propensity score method (PS). This allowed us to equate groups in a
cohort study through a logistic regression introducing the confounders as predictive variables [45–47].
Groups were matched according to: packs per year consumed (PPY): no smokers, <20PPY and
>20PPY, standard unit of alcohol per week (SDU/week): <14SDU/week and >14SDU/week,
and sex. Quantitative age was not included in the PS and it was introduced in the logistic
regression as adjustment variable only in laryngeal cancer where the age between both groups was
statistically significant.

These analyses were performed with the statistical software SPSS v.21.0 (IBM-SPSS Inc., Chicago,
IL, USA).

5. Conclusions

This study shows the association between several polymorphisms in genes involved in DNA
repair, inflammation, antioxidative and apoptotic pathways with susceptibility to developing
HPV-negative HNSCC. The characteristics of the control group positively indicates that these results are
caused by the genetic background, avoiding confounder variables. Likewise, the differences found in
this association study according to the location corroborate the heterogeneity in these tumours included
under the same term of head and neck squamous cell carcinoma. It is important to mention that this
study could provide evidence to define the consideration of different genetic entities within HNSCC
and the necessity of using a matched control population by their risk factors in future case-control
studies. Larger studies should be performed and would be necessary to confirm these results.
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