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Abstract

Context—Continuing advances in genotyping technologies and the inclusion of DNA collection in
observational studies have resulted in an increasing number of genetic association studies.

Objective—To evaluate the overall progress and contribution of candidate gene association studies
to current understanding of the genetic susceptibility to cancer.

Data Sources—We systematically examined the results of meta- and pooled analyses for genetic
polymorphisms and cancer risk published through March 2008.

Study Selection—We identified 161 meta- and pooled analyses, encompassing 18 cancer sites
and 99 genes. Analyses had to meet the following criteria: 1) at least 500 cases, 2) cancer risk as
outcome, 3) not focused on HLA genetic markers, and 4) published in English.

Data Extraction—Information on cancer site, gene name, variant, point estimate and 95%
confidence interval, allelic frequency, number of studies and cases, tests of study heterogeneity and
publication bias were extracted by one investigator and reviewed by other investigators.

Results—These 161 analyses evaluated 344 gene-variant/cancer associations and included on
average 7.3 studies and 3,551 cases (range: 508—19,729 cases) per investigated association. The
summary OR for 98 (28%) statistically significant associations (p-value <0.05) were further
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evaluated by estimating the false-positive report probability (FPRP) at a given prior probability and
statistical power. At a prior probability level of 0.001 and statistical power to detect an OR of 1.5,
thirteen gene-variant/cancer associations remained noteworthy (FPRP<0.2). Assuming a very low
prior probability of 0.000001, similar to a probability assumed for a randomly selected SNP in a
genome-wide association study, and statistical power to detect an OR of 1.5, four associations were
considered noteworthy as denoted by a FPRP value < 0.2: 1) GSTM1 null and bladder cancer (OR:
1.5,95% CI: 1.3-1.6, p-Value=1.9><10_14), 2) NAT2 slow acetylator and bladder cancer (OR: 1.46,
95% CI:1.26-1.68, p-Value=2.5x10_7), 3) MTHFR C677T and gastric cancer (OR: 1.52, 95% CI:
1.31-1.77, p-Value=4.9x10_8), and 4) GSTM 1 null and acute leukemia (OR: 1.20, 95% CI: 1.14—
1.25, p-Value=8.6x10_15). When the OR used to determine statistical power was lowered to 1.2, two
of the four noteworthy associations remained so: GSTM null with bladder cancer and acute
leukemia.

Conclusions—Phase II enzymes, which are key enzymes involved in the detoxification and
excretion of carcinogens (and particularly deletion of GSTM ), were among the most consistent and
highly significant associations.

Introduction

During the last few decades, extensive effort has been invested in identifying sources of genetic
susceptibility to cancer. Both the International Human Genome Sequencing Project and the
International HapMap Project have generated a very large amount of data on the location,
quantity, type, and frequency of genetic variants in the human genome.!=* Facilitated by
continuing technological advances that allow faster and cheaper genotyping results, a large
and increasing number of observational studies investigating the association between variants
in candidate genes and cancer risk have emerged.’

This growing number of studies prompted us to assess the overall contribution of these studies
to our current understanding of the genetic susceptibility to cancer. One of the main criticisms
of genetic epidemiology has been a lack of replication. There are several examples of studies
exploring a previously published statistically significant finding for a genetic variant and failing
to reproduce those findings, suggesting a large number of “false positive” reports.® 7 The size
of these genetic association studies is also an important methodologic concern, which has
prompted the utilization of meta- and pooled analyses to combine both statistically significant
and non-significant results from individual studies and weighting these results by their
precision (a function of sample size).8~10

To evaluate the overall progress of candidate gene association studies in identifying genetic
variants associated with cancer risk, we systematically examined the results of all published
meta- and pooled analyses on genetic polymorphisms and risk of cancer and report observed
point estimates, 95% confidence intervals and p-values. Just as three parameters are needed to
fully evaluate medical diagnostic tests (specificity, sensitivity, and predictive value of a
positive test), three analogous parameters are needed to evaluate fully statistical tests of an
association (e.g., between a genetic variant and cancer).!! The p-value, the probability of
obtaining a more extreme estimate than the one observed when the null hypothesis of no
association (OR=1.0) is true, is analogous to 1 minus specificity (the likelihood of a test
classifying a person as having the condition when they truly do not have the condition). Study
power, the likelihood of detecting an association when one exists, is analogous to sensitivity
(the likelihood of a test classifying someone as having the condition when they truly have it.)
However it is well established in medical diagnostics that specificity and sensitivity can be
high, but the predictive value of a positive test can still be low. This is because, if the condition
is rare, positive diagnostic tests will mostly be false positives. This is less appreciated but also
important in evaluating statistical tests of hypothesized associations: when the prior probability
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is small that an exposure-disease hypothesis is true, then a statistically significant finding has
a high chance of being a false positive. The false-positive report probability (FPRP) is defined
as “the probability of no association given a statistically significant finding”!2? and is analogous
to 1 minus the predictive value of a positive test. Thus, it is the FPRP rather than the p-value
that answers the question of how probable the hypothesis, as tested, actually is.

In this paper, we evaluate the results of candidate gene-cancer association studies by presenting
the p-value, power, and FPRP for all statistically significant associations as reported in meta-
or pooled analyses. The FPRP is calculated from the statistical power of the test, the observed
p-value, and a given prior probability for the association.!2 Because the prior probabilities are
not easily determined, we calculated the FPRP for two levels of prior probabilities that are
appropriate for a range of hypotheses, from low probabilities, appropriate for polymorphisms
with known functional consequences in important candidate genes to very low probabilities,
appropriate for randomly selected variants as used in a genome-wide association studies.

This review presents information on knowledge generated thus far by candidate gene
association studies conducted to identify cancer susceptibility genes, and can also be used to
direct future studies towards areas that remain unclear. Furthermore, results from this analysis
provide information on the allelic frequency and expected effect size (strictly speaking,
strength of association), which can be helpful for planning (genome-wide) association studies.

We identified all published meta- and pooled analyses that had evaluated the association
between genetic polymorphisms and cancer risk in observational studies (i.e. case-control and
nested case-control studies) through March 15, 2008. Meta- and pooled analyses are defined
as tools that integrate results from individual studies that, alone, may not have sufficient power
to detect a statistically significant association.8~10 In brief, the data (i.e. crude and adjusted
odds ratios) used for a meta-analysis are extracted from published results, whereas original
datasets acquired from a number of independent studies are used for a pooled analysis. We
performed a literature search of the PubMed database using the following search terms for our
literature searches: the keyword combinations of “cancer + meta + gene,” “cancer + pooled +
gene,” “cancer + consortium + gene,” and the keyword combinations of “gene + cancer” and
“genetic + cancer” restricted to publication type “meta-analysis.” We considered 794 articles
identified through our search methods, screened in detail 224 articles, for a final 161 articles
included (Figure 1). Studies included in our review had to meet all of the following criteria: 1)
included at least 500 cases combined from all summarized studies, 2) evaluated cancer risk as
the outcome (analyses of survival, neoplastic markers or precursors, such as polyps, were
excluded), 3) excluded HLA genetic markers, and 4) published in English. Furthermore, as
this review focuses on common variants, meta-and pooled analysis of low-frequency, high-
penetrance genes, such as APC and BRCA /2 were excluded. In addition, although statistically
significant associations were reported for HRASI polymorphisms and risks of breast and lung
cancer, these associations have been questioned because of flawed genotyping methods. Thus,
these are not reported with other statistically significant associations in Table 2. To avoid
duplication of results from more than one meta- or pooled analysis addressing the same
association, we selected the most recent one, which typically had the largest number of cases
(sometimes smaller, due to stricter inclusion criteria). Data extracted from each meta- or pooled
analysis included cancer site, gene name, genetic variant, point estimate (i.e. relative risk [RR]
or odds ratio [OR]) and 95% confidence interval (CI), allelic frequency (if provided), number
of studies, number of cases, test of study heterogeneity (e.g. Q test), and test of publication
bias (including Begg’s test, Egger’s test and funnel plots). Random-effect estimates from meta-
analyses were presented, unless only fixed-effect estimates were available.
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We calculated summary estimates to describe published reports identified through our search.
Differences in the number of studies and cases were evaluated by t-test. Associations were
considered statistically significant if the reported p-value was <0.05 or if the 95 % CI excluded
1.0. P-values were determined by first calculating a Z-score based on the reported OR and 95%
CI: Z-score= In(OR)/[(In(upper CI) — In(lower CI))/(2%1.96)], and then comparing it to a
normal distribution.

For each statistically significant association reported, we estimated the FPRP using methods
described by Wacholder et al.!2 The FPRP value is determined by the p-value, the given prior
probability for the association, and the statistical power of the test. Assigning a prior probability
should be determined before obtaining results from a study and should be independent of any
data used in the analysis. Prior probabilities are subjective and are influenced by both previous
epidemiologic findings and experimental evidence about known functions of a genetic variant.
Therefore, we chose to calculate FPRP values for two levels of prior probabilities: at a low
prior that would be similar to what would be expected for a candidate gene (0.001) and at a
very low prior that would be similar to what would be expected for a random SNP (0.000001),
thus allowing the reader to evaluate the association using their own judgment about the
supporting evidence for a given loci. Wacholder et al.!2 suggests estimating statistical power
based on the ability to detect an OR of 1.5 (or its reciprocal 0.67=1/1.5 for ORs less than 1.0),
with an alpha level equal to the observed p-value.!2 But given the recent attention to much
smaller ORs this estimate may be too conservative, thus we have chosen to present results for
both an OR of 1.5 and 1.2 (or its reciprocal 0.83=1/1.2). To evaluate whether an association is
“noteworthy”, we used a FPRP cut-off value of 0.2, as suggested by the authors!? for summary
analyses. Hence, FPRP values less than 0.2 indicate an association that remained robust for a
given prior probability and will be referred to as noteworthy in the present paper. Statistical
power and FPRP were computed by the Excel spreadsheet provided by Wacholder et al.!2

We identified 161 published meta- and pooled analyses, encompassing 18 cancer sites and 99
different genes. These 161 meta- and pooled analyses addressed 344 gene-variant/cancer
associations with an average of 7.3 studies and 3,551 cases per investigated association (range:
508-19,729 cases). As expected, most analyses were conducted for common cancers, such as
breast (n=119), prostate (n=42), and lung (n=34) cancer; there are very few evaluations of
genetic associations in rare cancers, such as cervical and esophageal (Table 1). Across all cancer
sites, variants in genes involved in DNA repair (e.g. XRCCI and XPD; n=81) and genes
encoding metabolizing enzymes (e.g. cytochrome P450 (CYP) variants, n=58; or glutathione
S-transferases (GSTs), n=31) were most often evaluated. Meta- and pooled analyses that found
a statistically significant association evaluated a higher number of studies but included a lower
number of cases than those that found a non-significant association (p=0.02 and p=0.05,
respectively; Table 1). A complete table that lists all data extracted from each of the 344
associations identified in our search is included in the Appendix (Table A1).

Among the 344 gene-variant/cancer associations evaluated, the summary OR for 98 (28%)
associations (excluding those involving HRAST) were statistically significant (p-values
between 0.05 to 8.6x10™13; Figure 2a, 2b and Table 2). Thirty of these 98 associations were
inverse for the variant, with a mean OR of 0.73 (median: 0.75; range: 0.32-0.92). The other
68 analyses reported ORs above 1.0, with a mean of 1.47 (median: 1.34; range 1.07-3.13).
Statistically significant associations were found among 16 cancer sites, predominantly among
studies investigating breast, glioma and lung cancer.

In order to evaluate the robustness of these findings, we calculated FPRP values at two levels
of prior probabilities (Table 2). Among the 98 associations, 85 gene-variant/cancer associations
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had FPRP values higher than 0.2 across the pre-specified prior probabilities (0.001 and
0.000001); these results are not considered noteworthy. For example, although the summary
OR from the pooled analysis for XRCCI Arg399GIn indicated a statistically significant positive
association with risk of breast cancer (OR, 1.6; 95% CI, 1.1-2.3), FPRP values were higher
than 0.2, at any of the two prior probabilities; hence, the finding is not considered noteworthy.

At a prior probability level of 0.001 and statistical power to detect an OR of 1.5, 13 gene-
variant/cancer associations remained noteworthy (FPRP <0.2) for: 1) MDM?2 SNP309 and lung
cancer (OR, 1.27; p-value=0.0002)13; 2) XPD Lys751Gln and lung cancer (OR, 1.30; p-
value=0.0002)!4; 3) RNASEL Asp541Glu and prostate cancer (OR, 1.27; p-value=0.0001)!3;
4) GSTTI null and colorectal cancer (OR, 1.37; p-value=8.1x1075)16; 5) XRCC1 Arg399GIn
and lung cancer (OR, 1.34; p-value=5.2x1075)17; 6) TGFBI LeulOPro and breast cancer (OR,
1.16; p—value=6.9x1075)18; 7) CASP8 Asp302His and breast cancer (OR, 0.89; p-
Value=5.7x1076)18; 8) NAT?2 slow acetylator and bladder cancer (OR, 1.46; p-
value=2.5x1077)19;9) MTHFR C677T and gastric cancer (OR, 1.52; p-value=4.9x10~8)20; 10)
CHEK? *1100delC and breast cancer (OR, 2.4; p-Value=2.5x1079)21; 11) GSTT1I null and
acute leukemia (OR, 1.19; p-value=3.5x 1078)22; 12) GSTM 1 null and bladder cancer (OR, 1.5;
p—Value=1.9x10714)23; and 13) GSTM1 null and acute leukemia (OR, 1.20; p-
value=8.6x10715).22 At a very low prior probability of 0.000001, four of these thirteen gene-
variant/cancer associations remained noteworthy: MTHFR C677T, NAT2 slow acetylator, and
GSTM1 null (Table 2). This number further reduced to two (GSTMI null with bladder cancer
and GSTM null with leukemia) when we calculated statistical power based on a lower OR of
1.2. Consistent with the FPRP, associations noteworthy at a very low prior probability were
highly statistically significant (p-values between 1077 to 10713),

Discussion

Overall, close to one-third of all gene-variant/cancer associations from published meta- and
pooled analyses were reported to be statistically significant. Thirteen of these associations were
noteworthy at a prior probability of 0.001 and statistical power to detect an OR of 1.5, of which
four remained noteworthy at even a lower prior probability similar to one appropriate for a
randomly selected SNP in a genome-wide association study (1/1,000,000=0.000001) with p-
values between 1077 to 10712, These associations are thus less likely to be false positives and
have a high likelihood of being true associations with cancer risk. Specifically, we observed
that, among the noteworthy associations, genes encoding for phase II metabolizing enzymes
made up the majority of noteworthy associations.

Continuing advances in genotyping technologies have led to the feasibility of testing a large
number of genetic variants; with this has come the potential for the publication of a large
number of false positives due to the widely used strategy of declaring significance based on a
p-value <0.05. A key feature of the Bayesian approach using the FPRP is that it is based, not
only on the observed p-value, but also on both the power and prior probability of the hypothesis,
allowing the user to incorporate prior knowledge, including functional information, of the
specifically tested variants. Although the FPRP calculation allows an evaluation at different
scenarios of prior probability, statistical power, and noteworthiness criterion, the choice for
these parameters should be determined a priori using empirical evidence from past studies.
Accordingly, it may be reasonable to claim that SNPs of relevant candidate genes with known
or predicted function (based on experimental studies or in silico tests) are more likely to be
associated with cancer risk and hence justify higher prior probabilities. However, choice of a
single prior probability will be subject to debate; hence, here, we provide readers with the
opportunity to use their own judgment about the body of evidence for a given candidate gene
or variant. In this paper, we chose a more agnostic approach to evaluating associations by
applying two levels of prior probability (0.001 and 0.000001) and statistical power (OR of 1.5,
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recommended by Wacholder et al. and similar to the average reported OR in our review; as
well as OR of 1.2, close to the median reported OR in our review) to all statistically significant
associations. As suggested by Thomas and Clayton 24, the prior probability for studies
evaluating candidate genes will usually exceed 1000:1 (or 0.001). Thus, at a prior probability
of 0.001, thirteen associations were noteworthy and may plausibly be true associations. The
likelihood of being a true association, however, is even greater for the four associations that
remain noteworthy at a very low prior probability (0.000001).

GSTM1 and GSTT1I belong to a family of phase II enzymes, the glutathione S-transferases, that
are involved in the metabolism and biotransformation of toxic xenobiotics and endobiotics.
25 Deletion of GSTTI was associated with an increased risk of colorectal cancer!® and acute
leukemia?? and the GSTM deletion was statistically significantly associated with risk of
bladder cancer?3 and acute leukemia?2; and the latter two were found to be among the most
noteworthy findings across all meta- and pooled analyses. Individual studies conducted
subsequent to the meta analyses continue to support findings for GSTT126-3! and GSTM 132~
37 except for one study that reported a statistically significant inverse association between
GSTTI null and colorectal cancer3® and a few small studies on GSTTI and leukemia providing
inconsistent results.3%: 37- 39: 40 The prevalence of GSTT! null ranges from 20% in Caucasians
to 60% among Asians,*! and approximately 50% of humans (ranging from 22% in Africa to
62% in Europe) are GSTM1 null.*> GSTTI and GSTM1 are involved in the elimination of
carcinogens in the body, such as products of oxidative stress and polycyclic aromatic
hydrocarbons from tobacco smoke.*? Deletion of the GSTTI and GSTMI gene results in the
variant called GSTT1/GSTM1 null and a complete loss of enzymatic activity.** An individual
with the null variants is thus expected to have an impaired ability to detoxify carcinogens and
an increased risk of cancer, potentially affecting multiple cancer sites. This and the fact that
GSTTI and GSTM 1 result in noteworthy associations with risk of various cancers lends support
to the theory that these two variants, in particular GSTM/ are functional and truly impact cancer
risk.

Another finding that was among the most noteworthy was the association between NAT2 slow
acetylator phenotype and bladder cancer.!® This meta-analysis was published recently, thus no
additional studies were identified subsequent to the meta-analysis. NAT2 is one of two N-acetyl
transferase isoforms expressed in humans, which are involved in the detoxification of
heterocyclic or aromatic amines and their metabolites.*> NAT?2 is highly polymorphic and
several non-synonymous polymorphisms result in poor expression, an unstable protein, or
decreased catalytic activity, all of which result in the slow acetylator phenotype.*® The
prevalence of NAT2 slow acetylators in European whites is about 56% and approximately 11%
among Asians.23 The change in the rate of acetylation is expected to alter the effect of
carcinogens on cancer risk, but the effect of this change may differ by cancer site. The NAT2
slow-acetylator phenotype is associated with an increased risk of bladder cancer (due to
decreased detoxification of carcinogens from tobacco smoke), but has been associated with
decreased risk of colorectal cancer (due to reduced activation of carcinogens).45_47 Taken
together, the strong evidence supporting a functional effect of the NAT2 slow acetylator and
the highly statistically significant association with bladder cancer supports the hypothesis that
this variant is likely to modify cancer risk.

The recently published association between MTHFR C677T and gastric cancer was also among
the most noteworthy associations.20 MTHFR, 5,10-methyletetetrahydrofolate reductase, plays
a key role in the one-carbon metabolism pathway. Specifically, MTHFR converts 5,10-
methylenetetrahydrofolate to 5-methyltetrahydrofolate which then allows for the metabolism
of homocysteine and the provision of methyl groups. Enzyme activity among individuals
homozygous for MTHFR C677T is much reduced, approximately 30% of expected enzyme
activity, compared with those who are homozygous for the common variant. 48: 49
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Consequently, the reduced ability of MTHFR has been associated with alteration in methylation
patterns and potentially aberrant DNA synthesis, repair, and chromosomal instability.” Due
to its role in a key pathway, the MTHFR C677T variant may have a true impact on cancer risk.

Among associations noteworthy at prior probabilities of 0.001 were three genes associated
with DNA repair (CHEK2, XPD, and XRCC1). Pathways involving these genes are responsible
for repairing DNA damage and errors that may occur during DNA replication. There have been
no studies published subsequent to the meta-analysis on CHEK?2 *1100delC and breast cancer.
21 Studies conducted subsequent to the meta-analysis on XPD Lys751GIn and lung cancer>!:
52 have drawn the same conclusions as our review. The statistically significant finding for
XRCC1 was present among Asians only, and one of the three subsequent studies conducted
among Asians 373 found a statistically significant association between XRCC1 Arg399GIn
and lung cancer. Overall, it is biologically plausible that genes associated with DNA repair
have an impact on the risk of cancer and our review lends support towards the likelihood of
these associations.

RNASEL Asp541Glu, MDM?2 SNP309, TGFBI LeulOPro and CASPS Asp302His are
additional variants identified through our review as being noteworthy; they belong to key
pathways plausibly influencing cancer susceptibility. RNASEL plays an important role in the
inflammatory response pathway and was first identified as a candidate gene for prostate cancer
risk due to its location within the hereditary prostate cancer 1 (HPC1) region. % 57 As the meta-
analysis has been published recently, only three subsequently published studies were identified
but with conflicting results for prostate cancer.”®=0 MDM?2 encodes for the human homolog
of mouse double minute 2, a nuclear phospholipoprotein that binds and inhibits p53, a tumor
suppressor.! A further study published after the meta-analysis lend support when analysis was
restricted to never smokers.®2 TGFBI, which encodes transforming growth factor beta 1, has
been implicated as both a tumor suppressor and a tumor promoter.®3: ©* An additional study
published subsequent did not find an association.®3 CASPS encodes for Caspase 8 which plays
a central role in the initiation and activation of a cascade of caspases leading to apoptosis.®
The decreased risk with CASP8 Asp302His for breast cancer observed in the pooled analysis
is further supported by findings from a recent association study.®’

Very recently, results from the first genome-wide association studies of cancer have become
available, in which hundreds of thousands of variants were genotyped across the entire genome.
These studies detected several highly statistically significant variants in the human
chromosome 8q24 region that were associated with prostate, colorectal, and breast cancer
susceptibility; however, there are no known characterized genes within this region.68=75
Variants located within SMAD774, a gene involved with cell signaling, and DAB2IP®, a
putative tumor suppressor gene, have also been associated with colorectal and prostate cancer,
respectively. Three follow-up genome wide-scans in prostate cancer have confirmed the
previously identified loci and identified several additional loci that may be associated with
prostate cancer risk.”’~7% The loci which were identified in at least two of the studies were as
follows: 8q24, HNFIB (17q12), MSMB (10q11), NUDT10/11 (Xp11.22), and 17q24. Six
highly statistically significant variants associated with breast cancer susceptibility have also
been identified through genome-wide studies, of which three are located within genes
associated with control of cell growth or cell signaling (TNRC9, MAP3K1 and LSPI).7>» 80
81 Two variants were located in the 8q24 and 2q35 regions, and the sixth within FGFR2, a
tumor suppressor gene overexpressed in breast cancer. The substantial evidence supporting
these variants, including sizeable power and replication in large samples, indicates that these
associations are likely to be true and yet none of the statistically significant variants had been
previously identified because most did not reside in “interesting” candidate regions. Genome-
wide association studies of cancer have also demonstrated that the effect size of statistically
significant genetic variants is overall quite modest (point estimates between 1.1-1.5 for an
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additive mode of inheritance), which is consistent with the weak associations found in most
meta- and pooled analyses.

We attempted to review all published meta- and pooled analyses covering the topic of genetic
variants and cancer risk through several iterations of search criterion; however, it is possible
that we have missed some studies. Many of the noteworthy variants identified were deletions
(which may not be well captured by genome-wide association studies) and non-synonymous
SNPs, but this may be due to the fact that these types of mutations tend to be the most commonly
studied. Our focus was strictly on results from candidate-gene association studies and did not
take into account results from linkage studies to identify high-penetrance genes. A further
potential limitation of this review is that associations were confined to those summarized in a
meta- or pooled analysis. We are aware of individual studies with potentially much larger
sample sizes and hence more power to find a statistically significant association than some
meta- and pooled analyses; some of these studies have been conducted subsequent to the meta-
or pooled analyses and some prior. To address this issue in part, we reviewed studies conducted
subsequent to the latest meta- or pooled analysis for associations considered noteworthy at a
low prior probability to determine whether evidence continued to support the previously
observed associations. Another limitation of our review is that our results are susceptible to
reduced quality and breadth of the meta- or pooled analysis as a result of publication bias.
However, most analyses included here tested for publication bias and heterogeneity, as noted
in the accompanying tables. As the power to assess gene-gene and gene-environment
interactions is even lower than that to assess main effects and most meta- and pooled analyses
focused on main effects, we only reported on main effects of genetic variants. Therefore, we
may have missed important subgroup effects, as it is possible that certain genetic variants may
only be relevant when “the system is under stress,” e.g. smoking, concurrent illness, or
malnutrition. Most analyses evaluated single candidate polymorphisms; however, because
genotyping has become increasingly affordable in recent years, this now allows investigators
to test for genetic variants across entire candidate genes and pathways and most recently across
the entire genome. Although results from single SNPs are easy to compare, this approach is
certainly less comprehensive and does not rule out that other SNPs in the same gene may be
related to cancer risk. As the number of articles on genetic variants published in the past decade
has increased considerably and continues to grow, we accept that this review will not long
remain current but does provide a snapshot of progress in the field.

In summary, we observed 98 statistically significant gene-variant/cancer associations, of which
thirteen were considered noteworthyat a prior probability of 0.001. At at very low prior
probability (0.000001), four remained noteworthy of which all were highly statistically
significant (p-values between 1077 to 10715). A majority of the most noteworthy associations
identified are not SNPs but deletions, four involve GST variants. Results from meta-and pooled
analyses were helpful in synthesizing published results and may guide future genetic studies
toward areas that require further clarification and away from those that do not.
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794 Citations identified
and screened

17 Excluded
> 17  Not English language

Y

777 Abstracts retrieved
for evaluation

553 Excluded
115 Not Human study
13 Analyzed HLA markers
129 Related to survival/prognosis
> 137 Evaluated gene expression or
microarray data
159 Not a meta/pooled analysis,
genetic polymorphism, or cancer

Y

224 Full-Text articles
retrieved for evaluation

63 Excluded
51 Not a meta/pooled analysis,
genetic polymorphism, or cancer
6 Not a main effect analysis
6 Included < 500 cases

h 4

Y
161 Included articles

Figure 1.
Selection of Studies
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Odds
Gene \arant Ratio (5% Cl) Cases
Bladder
GSTM1  null — 1.50 (1.30, 1.60) 5072
GSTP1 lle105Wal —_—— 1.23 (1.04, 1.57) 1903
NATZ Slow acetylator —_— 1.46 (1,26, 1.68) 5747
NQO1 Pro187Ser ————— 1.20(1.00, 1.43) 1066
XPC Aladgaval —_— 1.32 (1.06, 1.63) 2785
XPD Asp312Asn —_—— 1.24 (1.07, 1.45) 789
XRCC3  Thr241Met e 1.17(1.00, 1.36) 3112
Ereast
ATP1B2  -8852T=C ——— 0.88 (0.77,0.99) 2802
CASPS Asp302His —— 0.89 (0,85, 0.94) 16423
CHEKZ  *1100delC —_— 2.40 (1.80, 3.20) 18329
COMT Met158Val —_— 1.14(1.03, 1.26) 6398
CYP17 34019687 — 1.17(1.03, 1.34) 5166
CYP17 34919682 ——t—— 1.16(1.01, 1.33) 5146
CYP18 TTTA1D 4 1.59(1.01,2.48) 3934
CYP1A1  A2455G + 0.72 (0.53,0.99) 2938
CYP1B1  Leud32Val —_————— 150 (1.10,210) 2176
GATA3  rsB70613 — 085 (0,75, 0.95) 2580
IGFBP3  -202C=A —— 0.92 (0.86, 0.99) 13101
NES1 857del5 + e 313 (1.40,7.00) 786
POR Gly5Gly 4 1.58(1.04,2.41) 1038
PR PROGINS - e 0.32 (0.16, 0.65) 1106
PTGS2  rs5275 —_— 0.80 (0.686,0.97) 2194
TGFB1 Leut0Pro —— 1.16 (1.08, 1.25) 12945
TGFBR1  '8A e 1.38 (1,14, 1.67) 1420
WDRTS Ex1-230C=G + 160 (1.04, 247) 2662
WDR7%  Phel50Phe ——— 1.15(1.00, 1.32) 2855
XRCCH Arg3gscin + 160 (1.10,2.30) 1567
Colorectal
CCND1  GB70A —_— 1.18(1.06,1.32) 4518
GSTTY null —_— 1.37 (1.17, 1.60) 1480
MTHFR  &77CIT —_—— 0.83 (0,75, 0.93) 12261
MTHFR At208C —p— 0.81 (0,69, 0.96) 4764
NATZ acetylator —— 1.08 (1.00, 1.16) 6741
NQO1 Pro1875er —_— 1.18(1.02, 1.35) 1837
XPC Lys839Gin —_—— 1.32 (1.11, 1.56) 1060
Esophageal
ALDH2 s - + 0.36 (0.16, 0.80) 705
CYP1AT  lledB2Val + 252 (162 3.91) 754
XPD Lys751GIn —_— 1.38(1.15,1.68) 1053
Gastric
COH1 -1680C=A —_— 0.81(087.0.99) 1174
GSTT1 null —_—— 1.27 (1.03, 1.56) 835
ILIRN VNTR —_— 1.30 (1.0, 1.54) 2203
MTHFR Ce77T —_—— 152 (1.31,1.77) 2727
P53 Arg72Pro —_— 0.84 (0,72, 0.99) 1285
TNF-A -308G=A —_— 149 (1.11,1.99) 3860
Glioma
ATR 211920625 —_— 1.40(1.11,1.77) 1010
CHAF1A  rs243355 —_—— 1.33 (110, 1.60) 1010
CHAF1A  rs243341 —_— 1.25(1.04, 1.50) 1010
CHAF1A  rs105038 —_— 1.25(1.04, 1.50) 1010
CHAF1A 132992 & 1.47 (1,05, 2.04) 1010
DCLREIB rs3761936 - + 0.35 (0.20, 0.685) 1010
DCLRE1E rs12022378 - + 038 (.20, 0.65) 1010
ERCC1 53212988 —_— 0.76 (083, 0.92) 1010
ERCC1 rs3212955 —_— 0.78 (0.66, 0.96) 1010
IL4 22243248 —_— 1.44 (1,05 1.97) 654
IL& rz1800795 —_—, 0.70 (0.51, 0.96) 654
NEIL3 312645561 —_— 1.28 (1.05, 1.59) 1010
MSHS rs707938 —_— D.67 (0.50, 0.89) 1010
POLDY 31673041 -+ 0.53 (0.35, 0.79) 1010
RPA3 34140805 —_—— 1.43(1.11, .85 1010
RPA3 52160138 —_—— 1.48(1.14, 1.88) 1010
RPA3 rsB947203 —_— 147 (111, 1.94) 1010
P53 rsB079544 —_— 1.34 (1.04, 1.72) 1010
| | | 1 | | 1 | |
0.25 0.5 0.7 1.0 15 20 25 30 4.0 50
Odds Ratio
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Odds
Gene Wariant Ratio (95% Cl) Cases
Head/neck
GSTM1 null —— 1.16 (1.01, 1.33) 3754
GSTT1 null —— 1.08(1.02, 1.14) 3874
MGMT Leu84Phe —_— 0.74 (0.55, 1.00) 514
MGMT lie143val + 0.73 (0.53, 1.00) 536
XPC PAT+!- —_— 1.28(1.04, 1.58) 720
Leukemia
GSTM1 null —— 1.20 (1.14, 1.25) 3532
GSTP1 lie105Val —— 1.08(1.01, 1.16)} 1571
GSTT1 null - 118 (1.14, 1.29) 3484
MTHFR CE7TT —_—— 0.84 (0,71, 0.99) 2191
Lung
CYP1A1 Mspl 2.36 (1.16, 4 81) 1759
CYP1a1 exon? —_— 151 (1.24, 208) 1178
CYP2D6 poor metabolizer _— 0.59 (0.52, 0.90) 7504
GSTT1 null —_— 1.28 (1.10, 1.49) 1364
MDM2 SNP308 —— 1.27 (1.12, 1.44) 4276
mEH His113Tyr + 0,70 (0.51, 0.96) 986
MEO G463A —_— 0.71(0.57, 0.88) 3688
XPA G23A —_— 0.73 (0.61, 0.89) 1913
XPC Lys939GIn —_—— 1.30 (1.11, 1.53) 2580
XPD Lys751GIn —_—— 1.30 (1.13, 1.49) 5004
XRCCH Arg3g9Gin —_—— 1.34 (1.16, 1 54) 1702
Skin
XRCC3 Thr241Met —_—— 0.76 (0.62, 0.93) 1599
Meningioma
BRIP1 rsdS6B451 —_— 1.81(1.26, 2.06) 631
Mon-Hodgkin Lymphoma
IL1RN 9589A=T —— 1.08 (1.00, 1.17) 3020
IL10 -3575T=A |—— 1.11 (1.01, 1.23) 3030
MTHFR Ex5+79T —_—— 117 (1.02, 1.34) 4121
TNF-A -308G=A —_—— 1.19 (1.05, 1.33) 2718
Owvanan
CDKE raf —— 1.09 (1,00, 1.149) 3587
CDENIB Val108Gly —_— 0.79 (0.65, 0.95) 3618
CDKNZARE rs3731257 —_— 0.89 (0.81, 0.97) 3601
Prostate
AR CAG21 —_— 119 (1.07, 1.31) 4274
AR GGN16 —_— 1.31 (1.06, 1.61) 1918
CDH1 -160C=4 ———— 1.31(1.08, 1.60) 2633
CYP17 rs2486758 —— 1.07 (1.00, 1.14) 7914
CYP17 rsB862 —— 1.08 (1.00, 1.15) 8013
RNASEL Asp541Glu —_—— 1.27 (1,13, 1.44) 3038
Upper aerodigestive tract
XRCC1 Arg388Gin —_—— .85 (0.75, 0.98) 1672
Urothelial
CDH1 -160C=A + 2.57 (1.55, 4.24) 558
0.25 0.5 0.7 1.0 15 2.0 25 50
Odds Ratio
Figure 2.

Figure 2a and Figure 2b. Summary ORs and 95% CIs for Cancer Risk by Genetic Variants —

Limited to Meta- and Pooled Analyses With Significant Summary Risk Estimates
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